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Background and objective: Liquid-liquid phase separation (LLPS) plays an

important role in the development of many tumors, including gastric cancer,

but its prognostic value is unclear. The aim of this study was to explore the

prognostic significance of LLPS-related genes in gastric cancer to provide a basis

for improving the accuracy of prognostic prediction and finding potential

therapeutic targets in gastric cancer.

Methods: Clinical and transcriptomic data of gastric cancer were downloaded

from TCGA and GEO databases, and LLPS-related genes were extracted from

PhaSepDB. Unsupervised clustering was used to identify molecular subtypes

based on LLPS gene expression. LLPS gene features were constructed and

validated by LASSO Cox regression, and their staging prediction value was also

evaluated by machine learning methods. Key genes were validated by qRT-PCR,

Western blot, immunofluorescence, and functional experiments (shRNA

knockdown, CCK-8, clone formation, and scratch assay).

Results: Twenty LLPS-associated genes showed significant mRNA expression,

copy number variation, somatic mutation, and interaction network alterations in

gastric cancer tissues. Two LLPS molecular isoforms with different survival

outcomes and immune microenvironment characteristics were identified. A

four-gene LLPS prognostic signature consisting of DACT1, EZH2, PAK2, and

PSPC1was constructed, and the high-risk group had a poorer prognosis and was

prone to drug resistance. Machine learning analysis further confirmed the

predictive value of this gene signature. Functional experiments showed that

knockdown of PSPC1 significantly inhibited the proliferation (inhibition rate

>50%, P <0.001) and migration ability (P<0.0001) of gastric cancer cells.

Immunofluorescence confirmed the local izat ion and aggregation

characteristics of DACT1 and PSPC1.
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Conclusion: This study revealed the important role of LLPS in gastric cancer, and

the constructed four-gene LLPS signature is expected to be a novel biomarker

for prognostic assessment and treatment of gastric cancer. PSPC1 plays a key

role in gastric cancer progression, and has the value of a potential

therapeutic target.
KEYWORDS
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1 Introduction

GC ranks as the fifth most common malignancy and is the fourth

leading cause of cancer-related death worldwide (1). Despite its high

occurrence, a large proportion of patients are unfortunately

diagnosed at more advanced stages, resulting in poor clinical

outcomes due to the lack of clear clinical markers (2). Among

patients with locoregionally confined GC, the 5-year relative overall

survival rate is 77.7%, but for those with advanced cancer, it drops to

just 10.2% (3). Therefore, discovering new prognostic biomarkers and

potential therapeutic targets is essential for better patient outcomes.

LLPS is a physicochemical process within cells that has gained

significant attention in recent years (4). LLPS results in the

formation of membraneless, droplet-like structures in the

cytoplasm or nucleoplasm, creating dynamic microenvironments

that regulate various biological processes (5, 6). LLPS is driven by

multivalent interactions among macromolecules, with one key

mechanism involving the intrinsically disordered regions (IDRs)

of proteins (7). Increasing evidence indicates that LLPS plays a

crucial role in cancer initiation (8, 9), progression (10), immune

escape (11, 12), vascularization (13, 14), metabolism, phenotypic

plasticity (15), and metastasis (16, 17). However, the role of LLPS in

GC remains insufficiently understood and requires further in-

depth investigation.

Based on this background, this study aimed to systematically

identify and assess the importance of LLPS-associated genes in GC

through comprehensive bioinformatics analysis. We developed an

innovative molecular signature centered on LLPS-related genes,

offering clinically actionable tools for personalized treatment and

prognosis assessment of GC, and laying the groundwork for a deeper

understanding of LLPS’s role in GC development and progression.
2 Materials and methods

2.1 Ethical approval

All data usage complied strictly with the relevant data use policies

and ethical governance frameworks of the TCGA and GEO databases.

All analyses were conducted using anonymized public data.
02
2.2 Data acquisition and preliminary
processing

Figure 1 provided a schematic overview of the study’s design

and methodological flowchart. Transcriptomic data and clinically

annotated patient information were sourced from the TCGA-STAD

project and the GSE84437 dataset available in the GEO database. In

August 2024, we obtained the TCGA-STAD data from the official

TCGA portal (https://portal.gdc.cancer.gov/), which comprises

RNA sequencing and clinical information for 412 gastric

adenocarcinoma patients and 36 normal tissues on August 15,

2024. The GSE84437 dataset, consisting of data from 433 GC

patients, was retrieved from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437). Survival

records for 448 patients were extracted from the TCGA dataset, and

the analysis included only those patients with complete gene

expression and survival data. The 561 LLPS-related genes were

sourced from PhaSepDB (http://db.phasep.pro/) (18). GSE19826

and GSE79973 datasets as validation sets.

Before merging the TCGA and GEO datasets, batch effect

correction was performed using the ComBat function from the

“sva” R package to minimize technical variation between different

data sources. The corrected data were then used for subsequent

differential expression analysis and model construction.
2.3 Determination of molecular subtypes

We utilized the “ConsensusClusterPlus” R package to perform

unsupervised consensus clustering for patient classification.

Subsequently, patient clusters were discerned and verified through

Principal Component Analysis (PCA).
2.4 Investigating pathological profiles and
prognostic patterns across LLPS clusters

We utilized the “survival” and “survminer” packages in R to

conduct Kaplan-Meier (K-M) survival analyses, examining the

prognostic relevance of GC patients grouped by distinct LLPS-
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based clusters. Moreover, we assessed clinical variables such as age,

tumor stage (T stage), and lymph node stage (N stage) across these

clusters to identify any statistically significant associations.
2.5 Molecular signature characterization
through gene set variation analysis of LLPS
clusters

To investigate the underpinning mechanisms of the distinctive

LLPS-derived clusters identified in this research, we applied the R
Frontiers in Immunology 03
package “GSVA”. This method enabled us to assess pathway activity

differences associated with the unique LLPS patterns, providing

insights into the functional implications of LLPS in GC.
2.6 Estimation of the tumor
microenvironment in different LLPS
clusters

By applying single-sample Gene Set Enrichment Analysis

(ssGSEA), we quantified the relative representation of 23 human
FIGURE 1

The flow diagram of our study.
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immune cell populations within the tumor microenvironment

(TME) across multiple LLPS clusters. Furthermore, we assessed

the transcript abundance of 33 key immune−checkpoint regulators

across these clusters to investigate differences in immune profile.
2.7 Establishment of a prognostic index
derived from a differentially expressed
gene model

The study utilized a dataset of 871 GC samples, consisting of

433 samples from the GEO database (GSE84437), noted for its large

size and detailed clinical follow-up, and 438 gastric adenocarcinoma

samples with survival information from the TCGA database.

Utilizing the R−based toolkit “caret” (19), we splited the

combined dataset evenly into a training and testing subsets, each

comprising 436 patients. The training set underwent univariate Cox

regression analysis to find LLPS-related differentially expressed

genes (DEGs) correlated with overall survival (OS) (20). We then

employed the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm with the R package “glmnet” to choose the

DEGs with the highest prognostic potential. Subsequently,

multivariate Cox regression analysis was employed to identify

independent prognostic DEGs associated with GC, which were

then utilized to construct the prognostic model. In conclusion,

aligning with findings from previous oncological research (21), the

risk−prediction score was determined based on the following

equation involving the selected genes:

Prognostic Score = (Gene A expression × Coefficient A) + (Gene

B expression × Coefficient B) + …
2.8 Independent prognostic analysis of the
risk model

To evaluate the independent prognostic significance of the risk

signature, univariate and multivariate Cox proportional-hazards

regression analyses were carried out utilizing the R package

“survival”. These analyses assessed the impact of the risk score

and other clinicopathological variables on overall survival. The K-M

method was employed to analyze survival outcomes, and survival

curves between different prognostic groups were compared using

the log-rank test to assess statistical significance.

Furthermore, we constructed a nomogram integrating both

clinicopathological characteristics and the prognostic risk score

using the”rms”R package. The concordance index (c-index) was

computed to evaluate the model’s predictive performance and the

agreement between projected survival probabilities and observed

outcomes. Furthermore, calibration plots and receiver operating

characteristic (ROC) curves were constructed to examine the

model’s reliability and predictive accuracy.
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2.9 TIDE analysis

We applied the TIDE (Tumor Immune Dysfunction and

Exclusion) tool to assess tumor immune evasion mechanisms and

analyzed the discrepancies in TIDE scores between different

risk groups.
2.10 Mutation data analysis

We used the R package “maftools” to preprocess and visualize

mutation data from TCGA stomach adenocarcinoma samples,

including mutation frequency analysis, distribution of mutation

types, and waterfall plots of mutated genes.
2.11 Investigation of the immunological
microenvironment characteristics and
pharmacological response profiles

We utilized the ESTIMATE computational framework to quantify

stromal and immune cell infiltration levels in gastric carcinoma

specimens. Through the R package “estimate”, we systematically

generated three quantitative metrics: stromal scores reflecting

extracellular matrix components, immune scores representing

leukocyte infiltration, and composite ESTIMATE scores. To

examine therapeutic response patterns, pharmacological sensitivity

data were acquired from the publicly accessible Genomics of Drug

Sensitivity in Cancer repository(https://www.cancerrxgene.org/) (22).

Spearman rank correla- tion was applied to explore the association

between drug−response patterns and the prognostic index.

Furthermore, the R computational toolkit “pRRophetic” was

implemented to predict half-maximal inhibitory concentrations

(IC50), enabling comparative analysis of chemotherapeutic

efficacy between prognostic subgroups.
2.12 The whole-gene CRISPR-Cas9 screens
via the computational estimation of
CRISPR effects by relative screen signal

Genome-wide screening CRISPR were downloaded from

DepMap database (https://depmap.org/portal/download/).

Approximately 17000 candidate genes were calculated by using

CERES algorithm the dependence of the score (23). A negative score

indicates cell growth inhibition or death following gene knockout,

with scores of 0 and -1 representing the median effects of non-

essential genes and common core essential genes, respectively. The

top 200 negatively scoring genes were visualized in a bar char.
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2.13 Pan-cancer analysis of gene
expression

Gene expression data was derived from the normalized TCGA

dataset, with RNA-seq data obtained from the EBPlusPlusAdjust

PANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv file provided by

PanCanAtlas. The data was transformed into dimensionless Z-Score

values by tumor using (x-m)/s. Z-score values less than -3 or greater

than 3 were considered outliers and were removed. After outlier

removal, tumors were included in the analysis when there were at

least three normal samples. Wilcoxon Rank Sum Tests were used to

compare the statistical differences in expression levels between tumor

and normal tissues in the digestive system tumor dataset.
2.14 Cell culture

The gastric epithelial cell line GES and gastric cancer cell lines

HGC-27, MKN-45, MKN-74, and AGS were acquired from the

Chinese Academy of Sciences Cell Bank (Shanghai, China). Cells

were cultured in RPMI-1640 medium (Gibco, NY, USA) enriched

with 10% fetal bovine serum (FBS) (Biological Industries, KBH, IL)

and 1% penicillin-streptomycin solution (Gibco, NY, USA). All cell

cultures were maintained in incubation vessels at 37 °C in a

humidified atmosphere containing 5% CO&#x2082;.
2.15 Quantitative reverse-transcription
polymerase chain reaction validate RNA
expression of key genes

GC cells were collected for RNA extraction using TRIzol

reagent (Invitrogen, CA, USA). Total RNA was reverse

transcribed to cDNA using PrimeScriptTM RT reagent Kit

(TaKaRa, Shiga, Japan). Quantitative real-time PCR was

performed using ChamQ SYBR qPCR Master Mix (Vazyme,

Nanjing, China) according to the manufacturer’s instructions.

The relative expression levels were normalized to HPRT and

calculated using the 2–△△Ct method. All primer sequences used

for RT-qPCR analysis are listed in Supplementary Table S1.
2.16 Immunofluorescence

Following culture, cells underwent fixation with 4%

paraformaldehyde solution (10 min) and membrane permeabilization

using 1%Triton X-100 (5min) at ambient temperature. To prevent non-

specific interactions, cells were immersed in a 5% BSA solution for 1 h at

ambient temperature. The samples were then exposed to specific primary

antibodies and maintained at 4°C for 12 hours to ensure complete

reaction equilibrium. After thorough PBS washing steps, samples were

treated with goat anti-mouse secondary antibodies conjugated to Alexa

Fluor 488 (Thermo Fisher Scientific) for one hour under ambient

conditions. Nuclear visualization was achieved through DAPI

counterstaining. Immunofluorescence(IF) images were acquired using
Frontiers in Immunology 05
a DMi8 LEICA fluorescence microscope system. Supplementary Table

S2 presents the full set of primary antibodies utilized in this study.
2.17 Western blot analysis

Protein samples were isolated through RIPA buffer-mediated

lysis (Solarbio, Beijing, China). Following protein separation

through SDS-PAGE electrophoresis, the samples were transferred

to PVDF membranes (Millipore, MA, USA). Subsequently, the

membranes underwent blocking with 5% non-fat dry milk

solution in TBST buffer at ambient temperature for 2 h. After

blocking, membranes were incubated overnight at 4 °C with the

designated primary antibodies, then exposed for 1h at room

temperature to the matching HRP−conjugated secondary

antibodies. Immunoreactive bands were detected using an

enhanced chemiluminescence substrate (MeilunBio, Dalian,

China) and documented using a ChemiDoc XRS+ system (Bio-

Rad, CA, USA). Detailed information regarding the primary

antibodies utilized is available in Supplementary Table S2.
2.18 Lentivirus production and generation
of stable cell lines

Short hairpin RNAs (shRNAs) targeting human PSPC1 were

purchased from Zhenjiang Huamao Biotechnology Co., Ltd.

(Zhenjiang, China) and supplied in the lentiviral vector pLenti-

U6-shRNA-CMV- GFP-2A-Puro. Silencing were generated in

HEK293T cells co-transfected with the PSPAX2 plasmid and

PMD2G plasmid via Polyethylenimine(PEI) transfection reagent

(Solarbio,China). Viral supernatants were collected at 48h and 72h

post-transfection, filtered using a 0.45mm pore-size membrane, and

enriched with 10% PEG-6000. Target cells were transduced with the

lentiviral preparations in the presence of 8 mg/mL polybrene. At

48h later, puromycin (Solarbio,China) was added to a final

concentration of 2 mg/mL for selection, alongside a negative-

selection control group at the same density. Selection was

discontinued once all cells in the control dish had died, and the

surviving population was expanded as a stably transduced line.
2.19 CCK8 assay

HGC-27 and AGS cells were seeded at a density of 3×10³ cells

per well. Each well received 10mL of CCK-8 solution (MCE,

Shanghai, China). Following an additional 2-hour incubation

period, the optical density at 450 nm was determined using a

microplate reader (Thermo Fisher Scientific, MA, USA).
2.20 Colony formation assay

For colony formation analysis, HGC-27 and AGS cells were

plated in 6-well plates at 1×103 cells per well. After 10 days, colonies
frontiersin.org
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were fixed with 4% paraformaldehyde and stained using 0.1%

crystal violet solution. The number of colonies formed was

counted using Image J software.
2.21 Wound healing assay

AGS cells were transferred to 6-well plates. Following 24 hours

of incubation to allow cell attachment, a scratch wound was

generated in the cell monolayer using a sterile 200mL pipette tip.

The culture medium was then replaced with medium containing 1%

FBS instead of 10% FBS. Cell migration was monitored by capturing

images at various time points, and the wound area was quantified

using Image J software.
2.22 Statistical analysis

Comprehensive data assessments were performed through the

R environment (version 4.4.0) and validated using GraphPad Prism

(version 9.0) for all statistical computations. For continuous

variables, the Student’s t-test was applied; for categorical

variables, the Chi-square test or Fisher’s exact test was used. By

applying the “limma” R package for differential expression analysis,

significant differences were identified using criteria of FDR<0.05

combined with |log&#x2082;−fold change|>1. Survival analysis was

conducted using the “survival” and “survminer” R packages, with

the K-M method employed to calculate survival functions and the

log-rank test used to compare survival curves between different

prognostic groups. In cases involving multiple comparisons, the

Benjamini-Hochberg correction was employed to maintain the false

discovery rate (FDR) at an acceptable level. All p-values were

founded on two-sided tests, and results with p-values below 0.05

were considered statistically significant.
3 Results

3.1 Panoramic profiling of LLPS-linked
genetic features in GC

The diagram of research was demonstrated in Figure 1. Using

TCGA data and the “limma” package, we analyzed LLPS-related

gene expression and found significant differences between two

groups (Supplementary Figure 1A). Among them, 68 genes were

upregulated and 5 were downregulated (Supplementary Figure 1B).

Functional enrichment indicated that these genes are involved in

DNA replication initiation, cell division, RNA metabolism, nuclear

structure, chromosome regulation, transcription regulation, and

epigenetic modifications (Figure 2A). Pathway analysis further

highlighted enrichment in the Polycomb Repressive Complex, cell

cycle, and lysine metabolism pathways (Figure 2B).

Univariate Cox regression analysis demonstrated the roles of

different genes in survival outcomes (Figure 2C).To further
Frontiers in Immunology 06
understand the genomic alterations and interactions of these

differentially expressed LLPS-related genes, we examined CNVs of

22 differentially expressed LLPS-related genes in GC, identifying

chromosomal alterations and their locations. SURF6 showed the

highest CNV gain (~15%), while EZH2 exhibited the highest CNV

loss (~15%) (Figure 2D). The chromosomal distribution of CNV

alterations for these genes was delineated (Figure 2E). A correlation

network revealed positive (red lines) and negative (blue lines)

correlations among the LLPS genes (Figure 2F).
3.2 Identification of LLPS clusters in GC
and prognostic significance

To further explore the transcriptional profiles of LLPS-related

genes involved in gastric cancer tumorigenesis, we combined

GC datasets from both the TCGA database and GSE84437,

creating a merged TCGA-GSE cohort (N = 845). Using the

“ConsensusClusterPlus” package in R, we performed an

unsupervised clustering analysis, with k = 2 as the optimal number

of clusters based on empirical CDF plots. This selection showed the

highest intra-cluster similarity and the greatest inter-cluster

separation (Figures 3A, B). The resulting clusters displayed two

distinct expression patterns of LLPS-related genes. Additionally,

cases of GC in the TCGA-GEO cohort were effectively stratified

into separate groups (Figure 3C). Kaplan-Meier survival curves were

generated to assess the prognostic value of these clusters, revealing

significantly worse OS in patients within cluster B (Figure 3D).

Univariate analysis also identified differences in gene expression

between the two clusters (Figure 3E). Finally, we examined the

clinical and pathological features of the two groups to evaluate

their association with LLPS-linked gene levels (Figure 3F).

Next, we systematically evaluated a gastric cancer staging

prediction model based on LLPS-related genes by multiple machine

learning and deep learning methods. Four independent gastric cancer

gene expression datasets (GSE26253, GSE27342, GSE84433,

GSE26899) were integrated in this study, containing a total of 985

gastric cancer samples. To ensure the consistency and comparability

of the analysis, we uniformly classified all samples into three groups

of early, intermediate and advanced stages according to the AJCC/

UICC TNM staging system. The specific classification criteria were as

follows: both the GSE26253 dataset (n=360) and the GSE27342

dataset (n=160) directly provided the AJCC clinical staging

information, and we categorized stages IB and II as the early

group, stages IIIA and IIIB as the intermediate group, and stage IV

as the advanced group. Some of the stage III samples in the GSE27342

dataset that were not subdivided into substages were also uniformly

categorized into the intermediate group.For the GSE84433 dataset

(n=357), which provides detailed TNM staging information, we

grouped samples according to the combination of depth of primary

tumor invasion (T), lymph node metastasis (N), and distant

metastasis (M): samples that were T1-T2 and N0-N1 were

categorized as the early stage group, samples that were T3-T4 or

N2-N3 (without distant metastasis) were categorized as the
frontiersin.org
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intermediate stage group, and samples that had anysamples with

distant metastases (M1) were categorized as the late group.This

classification method is in line with the basic principle of AJCC

staging, which takes into account the degree of local invasion,

regional lymph node metastasis, and distant metastasis of the

tumor. The GSE26899 dataset (n=108) had been preclassified into
Frontiers in Immunology 07
two groups, early (stage 1-2) and late (stage 3-4), according to the

AJCC staging system, and we directly adopted its original grouping.

Finally, based on the expression data of four gene markers (DACT1,

EZH2, PAK2, PSPC1), we constructed a staging prediction model for

953 gastric cancer samples (319 early, 497 intermediate, and

137 advanced).
FIGURE 2

Landscape of LLPS-related Genes in Gastric Cancer. (A) GO Analysis. (B) Pathway Analysis. (C) Univariate COX regression analysis of the hazard ratio
between 20 LLPS genes. (D) Frequency of CNVs in LLPS genes.(E) The location of CNV alteration of 14 model genes on 23 chromosomes. (F) Correlation
network of the 20 LLPS genes.
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The results show that although deep learning and complex

feature engineering demonstrate potential in certain aspects, the

relatively simple three-gene combination (DACT1+EZH2+PSPC1)

combined with the random forest model still achieves the best

prediction performance (64.3% accuracy). The Bayesian approach,

although slightly less accurate overall, excels in high-confidence
Frontiers in Immunology 08
prediction, providing an important capability for quantifying

uncertainty in clinical applications.

Based on these findings, we further explored the expression

patterns and functional significance of LLPS-related genes in gastric

cancer. As shown in Supplementary Data 4-9, the differential

expression patterns of key LLPS genes in different gastric cancer
FIGURE 3

Identification of LLPS-related Gene Clusters in Gastric Cancer. (A) Consensus matrix showing the similarity, with k=2 indicating the division into two clusters.
(B) Consensus cumulative distribution function (CDF) illustrating various cluster numbers (k values) to aid in determining the optimal number of clusters. (C)
PCA of the two clusters. (D) Comparison of OS between the two clusters. (E) Gene expression boxplot comparing the expression levels of various genes
between the two clusters. (F) Heatmap for the correlation between clinicopathologic features and the two clusters. *P<0.05, **P<0.01, ***P<0.001.
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stages were confirmed by integrative analysis, validating their

potential value as staging prediction biomarkers.
3.3 Tumor−microenvironment features
correlated with LLPS clusters

In order to rigorously investigate the contributions of LLPS-

related genes to the gastric tumoral milieu, we implemented GSVA

analysis. As illustrated in Figure 4A, a substantial enrichment of

Cluster B was observed in multiple biological pathways, including

muscle contraction, cation channel activity, and transporter activity

regulation. In the KEGG Pathway analysis showed that Cluster A and

Cluster B exhibited significant results. differences in gene expression.

Genes in Cluster A were enriched in pathways connected to cell

proliferation and DNA repair, including the “cell cycle” and “genome

repair”, while genes in Cluster B were enriched in pathways

associated with cellular homeostasis, apoptosis, and other metabolic

processes (Figure 4B). Moreover, using ssGSEA, Cluster B exhibited

higher levels of myeloid-derived suppressor cells (MDSCs), activated

B cell, regulatory T cells (Tregs), activated CD8 T cell, and

macrophages compared to Cluster A (Figure 4C).
3.4 Construction and validation of the LLPS
signature and associated prognostic
scoring system

To explore the molecular basis of GC progression, we selected

prognostic subtype-associated genes identified by Lasso-based Cox

regression (Figures 5A, B). The risk index was created from four

gene signatures linked to prognostic subtypes. This prognostic score

was calculated using expression profiles of these genes, as

explained below:

Prognos t i c s core=0 .140×DACT1 + 0 .384×PAK2-

0.212×EZH2-0.307×PSPC1

Risk score distribution across LLPS clusters was visualized

(Figure 5C). The alluvial diagram showed how gastric cancer

patients were allocated between the two LLPS clusters and the

two prognostic-score groups (Supplementary Figure 2A). Survival

analysis with the Kaplan-Meier method demonstrated significantly

worse outcomes for patients in the high prognostic score group

compared to those in the low group (Figure 5D). Additionally, the

predictive ability of the LLPS-related differentially expressed gene

signature was assessed through time-dependent ROC curve

analysis, showing strong prognostic accuracy at 1, 3, and 5

years (Figure 5E).

Multivariable stratification of the high-risk group indicated a

significant increase in mortality risk, as shown in the survival

distribution plot (Figure 6A). In the multivariate Cox regression

analysis, LRRS was associated with a hazard ratio of 1.84 (95% CI:

1.468–2.30, P<0.001; Figure 6B). The nomogram combined multiple

variables, with the risk group serving as an important predictive
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factor (Figures 6C, D). The heat map revealed distinct expression

patterns of the four genes, consistent with the prognostic score

(Figure 6E). Moreover, the genes identified earlier were validated in

two independent test sets (GSE19826 and GSE79973). The results

showed high expression levels of DACT1, PAK2, PSPC1, and EZH2

in GC (Figures 7A, C). The ROC analysis confirmed the predictive

power of these genes (Figures 7B, D).
3.5 Comprehensive evaluation of
immunological activity and tumor
mutational burden across distinct
prognostic score categories

Cancer progression and immunotherapy response are heavily

influenced by the immune microenvironment. Consequently, our

research aimed to analyze the tumor microenvironment pattern

among individuals with GC grouped into high- and low-risk

categories. We evaluated differences in the immunophenotypic

score. The low-risk group demonstrated an elevated

immunophenotypic score, suggesting a more promising

immunotherapeutic response potential (Figure 8A). The high-risk

score group exhibited a strong positive correlation with the inhibitory

immune checkpoints HAVCR2 and PDCD1 (Supplementary

Figure 3A). The immune cell subpopulation correlation analysis

indicated that prototypical immunosuppressive cells, including

Tregs, MDSCs, and macrophages, are co-enriched within the high-

risk score group, thereby further weakening the antitumor functions

of effector T cells and NK cells (Supplementary Figure 3B). The

heatmap displayed the distinctions between the two groups of

immune cells (Figure 8B). Subsequent mutational profiling of the

20 most frequently altered genes demonstrated a significantly

elevated mutational frequency in the low-risk group (Figures 8C,

D). By analyzing the gene expression landscape, we determined

stromal and immune scores for both cohorts (Figure 8E). A strong

positive correlation was observed between the prognostic score and

TMB, with significantly higher values in the low-risk cohort relative

to the high-risk cohort (Figure 8F). Additionally, we observed that the

TIDE score in the high-risk group was notably higher (Figure 8G).

DACT1 showed strong positive correlations with Tregs, T helper cells

(Th1 and Tfh). Conversely, it showed negative correlations with

activated CD4 T cells and CD8 T cells (Figure 9A). EZH2

demonstrated significant positive correlations with activated CD4 T

cells, memory B cells, and activated CD8 T cells, while showing

negative relationships with monocytes and certain innate immune

cells (Figure 9B). PAK2 exhibited prominent positive correlations

with central memory CD4 T cells, immature dendritic cells, and

plasmacytoid dendritic cells, while showing weak or even negative

correlations with activated B cells and mast cells (Figure 9C). PSPC1

showed strong positive correlations with adaptive immune

components such as activated CD4 T cells, memory B cells, and

activated CD8 T cells, but demonstrates negative correlations with

certain myeloid immune cells (such as MDSCs) (Figure 9D).
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3.6 Gene Expression and CRISPR
Functional Dependency

We conducted multi-dimensional analyses focused on four

candidate genes-DACT1, EZH2, PAK2, and PSPC1. Figure 10
Frontiers in Immunology 10
showed the expression levels of these four genes in malignant

(red) and normal (blue) tissues across multiple cancer types,

including BRCA, COAD, LUAD, and KIRC. EZH2 and PSPC1

were significantly upregulated in the majority of cancers. DACT1

was notably downregulated in several cancer types. PAK2 exhibited
FIGURE 4

Features of the Tumor Microenvironment (TME) in the LLPS Clusters Identified in Gastric Cancer. (A) Comparison of the GSVA of Go Gene Ontology
(GO) Terms between the two LLPS clusters in GC. (B) Comparison of the GSVA of biological pathways between the two LLPS clusters in GC. (C)
Abundance of 23 infiltrating immune cell types in the two LLPS clusters.
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cancer-type specificity: it was distinctly elevated in some cancers

while showing no significant difference in others. Figure 11

presented dependency scores from the CERES algorithm-based

genome-wide CRISPR knockout data in GC cell lines, indicating

that these four genes are important for cancer survival. We used

immunohistochemistry (IHC) slides from the Human Protein Atlas

database to compare the protein abundance and localization of

DACT1, EZH2, PAK2, and PSPC1 in normal and corresponding

tumor tissues. DACT1 showed weak to moderate immunoreactivity

in normal tissues and no significant change in tumor tissues

(Figure 12A). In contrast, EZH2 displayed stronger, more

widespread brownish staining in tumor tissues, suggesting overall

upregulation in cancer cells (Figure 12B). PAK2 appeared to be
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expressed at moderate-to-low levels in normal tissues but showed

partial elevation in tumor tissues, indicating its potential role in

tumorigenesis (Figure 12C). PSPC1 demonstrated prominent

staining in tumor tissues, with some regions showing strong

positivity (Figure 12D).
3.7 Assessment of anticancer treatment
efficacy in cohorts stratified by high versus
low prognostic scores

We analyzed the drug responsiveness of groups with high or

low prognostic scores to various chemotherapeutic and targeted
FIGURE 5

Identification of an LLPS-related Differentially Expressed Gene (DEG) Signature and Risk Model for Gastric Cancer. (A) LASSO regression for 7
candidate genes. (B) Cross-validation for 7 OS-related genes in the LASSO regression.(C) Risk score in the LLPS clusters.(D)Kaplan-Meier curve
analysis for OS in total, test,and train Cohort. (E) The ROC curve analysis demonstrated the predictive efficiency of the prognostic score in total, test,
and train Cohort.
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agents (Figure 13). Boxplots clearly showed that the low score group

exhibited heightened sensitivity to 5-Fluorouracil, Cisplatin,

Paclitaxel, Oxaliplatin, Lapatinib, Erlotinib, Epirubicin,

Galliblocquinazole, and Vinblastine compared with the high

prognostic score group (P<0.001). Conversely, the high

prognostic score cohort demonstrated increased sensitivity to

Doramapimod, NU7441, AZD8055, AZD8186, and BMS-

754807 (P<0.001).
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3.8 Expression levels of LLPS genes
expression in GC cell lines

As described earlier, this novel index was based on four LLPS

genes (including DACT1, EZH2, PAK2, and PSPC1). Therefore, we

next performed qRT-PCR to determine the mRNA expression levels

of these target genes in GES, HGC-27, MKN-45, MKN-74, and AGS

cell lines (Figure 14A). The experimental findings were similar to the
FIGURE 6

LLPS-Associated Risk Scoring System for Gastric Cancer. (A) Ranked dot of prognostic score distribution and patient survival status. (B) Multivariate
independ- ent prgnostic analysis. (C) Nomogram was developed by integrating gender age, TNM stage, and LLPS risk. (D) Calibration plots to assess
the accuracy of nomogram. (E) The Heatmap of the expression of the four OS-related genes. *P<0.05, **P<0.01, ***P<0.001.
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results from GEO and TCGA databases. IF analysis showed the

localization of DACT1 and PSPC1 (Figure 14B, C). TheWestern Blot

results demonstrated high protein expression in cancer cell lines

(Figure 14D-G). Collectively, these results support the relevance of

the identified LLPS genes in gastric cancer (GC) and their potential

roles in tumor biology.

3.9 PSPC1 plays an important role in
gastric cancer cell proliferation and
migration

To verify the functional role of PSPC1 in gastric cancer

progression, we performed loss-of-function experiments in two

gastric cancer cell lines, HGC-27 and AGS.
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First, we designed shRNAs (sh2 and sh3) targeting PSPC1 and

established stable knockdown cell lines by lentiviral infection. RT-

qPCR assay showed that in HGC-27 cells, both sh2 and sh3

significantly reduced the mRNA expression level of PSPC1 (**P <

0.01) (Figure 15A); in AGS cells, both shRNAs similarly effectively

inhibited PSPC1 expression (***P <0.001) (Figure 15B). Western

blot analysis further confirmed the knockdown effect at the protein

level (Figure 15C, D). Based on the knockdown efficiency, we

selected sh3 for subsequent functional experiments. To assess the

effect of PSPC1 on cell proliferation, we performed CCK-8 and

clone formation assays. CCK-8 results showed that PSPC1

knockdown significantly inhibited the proliferative ability of both

gastric cancer cells. In HGC-27 cells, the difference in proliferation

between the knockdown group and the control group reached a
FIGURE 7

Gene Expression Analysis and ROC Curve Comparison in test sets (GSE19826 and GSE79973). (A) Expression analysis of the four genes in the
GSE19826 data set. (B) ROC curve analysis of the four genes in the GSE19826 data set. (C) Expression analysis of the four genes in the GSE79973
data set. (D) ROC curve analysis of the four genes in the GSE79973 data set. *P<0.05, **P<0.01, ***P<0.001. Ns, Not Significant.
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significant level at 48 hours of culture (***P<0.001) (Figure 15E); in

AGS cells, this inhibition was more pronounced, with the

proliferative capacity of the knockdown group decreasing to

approximately 50% of that of the control group at 72 hours
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(***P<0.001) (Figure 15F). Clone formation assays further

supported this finding: the number of clones formed in HGC-27

and AGS cells significantly decreased from approximately 400 and

300 to less than 100 after PSPC1 knockdown, respectively
FIGURE 8

Immune Microenvironment and Tumor Mutational Burden (TMB) of Gastric Cancer Tissues with Different LLPS-Associated Prognostic Scores.
(A) Expression levels of immune checkpoint genes of the two risk groups. (B) Correlation between LRRS and immune checkpoint genes. (C) The
mutation frequency of the top 20 genes in the low LRRS group. (D) The mutation frequency of the top 20 genes in the high LRRS group. (E) TME
score of the two risk groups. (F) TMB of the two risk groups. (G) TIDE of the two risk groups. *P<0.05, **P<0.01, ***P<0.001.
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(****P<0.0001) (Figure 15G), suggesting that PSPC1 has an

important role in the long-term proliferative capacity of gastric

cancer cells.

In addition, we evaluated the effect of PSPC1 on cell migration

ability by scratch healing assay. The results showed that PSPC1

knockdown significantly inhibited the migration ability of AGS

cells.At each time point of 24, 48 and 72 hours, the migration area of

the sh3 group was significantly lower than that of the control group

(****P < 0.0001). In particular, at 72 hours, the scratches in the

control group were essentially healed (100% of the migrated area),

whereas the knockdown group migrated only about

50% (Figure 15H).

Taken together, these results indicate that PSPC1 plays an

important role in promoting the proliferation and migration of

gastric cancer cells, suggesting that it may act as a promoter of

gastric cancer progression.
4 Discussion

Recent studies have shown that tumorigenesis and development

are closely related to gene mutation, amplification, epigenetic

abnormalities and signaling pathway imbalance (24, 25), in which
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LLPS plays an important role (26). In this study, the expression and

mutation patterns of LLPS-related genes in gastric cancer were

systematically analyzed for the first time, and gastric cancer patients

were classified into two LLPS subtypes with different prognoses,

clinicopathological features, and immune infiltration patterns by

unsupervised clustering. A four-gene risk score model (LRRS)

containing DACT1, PAK2, EZH2, and PSPC1 was further

constructed, which was significantly associated with patient

survival, clinical features, and genomic alterations.

The four prognostic genes include two scaffold genes and two

client genes. DACT1 showed heterogeneity in different tumors: it

was downregulated in bladder (27), breast (28), and cervical (29)

cancers and upregulated in colon and squamous cancers (30, 31). In

the present study, DACT1 was found to be highly expressed in

gastric cancer cells, suggesting its unique role in gastric cancer.

PSPC1 is involved in RNA processing and transcriptional

regulation, and is a key component of parafollicular plaque

formation (32), which promotes the formation of intracellular

LLPS structures by binding RNA (33). Although PSPC1 is

associated with cell proliferation and metastasis in a variety of

tumors (34–36), its specific mechanism in gastric cancer has not

been previously elucidated. In the present study, we confirmed the

critical role of PSPC1 in gastric cancer progression by functional
FIGURE 9

Correlation Analysis of DACT1, EZH2, PAK2, and PSPC1 with Immune Cell Types. (A) DACT1 with each type of infiltrating immune cell. (B) EZH2 with
each type of infiltrating immune cell. (C) PAK2 with each type of infiltrating immune cell. (D) PSPC1with each type of infiltrating immune cell.
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FIGURE 10

(A-D) Pan-cancer Analysis of Gene Expression Differences: DACT1, EZH2, PAK2, and PSPC1. *P<0.05, **P<0.01, ***P<0.001.
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experiments, which is consistent with its report of promoting

malignant phenotypes in other tumors (37–41), suggesting that

PSPC1 may be involved in gastric cancer development by

influencing the LLPS process, providing a theoretical basis for the

development of targeted therapeutic strategies against PSPC1.

EZH2, as an epigenetic regulator, affects gene expression by

regulating histone methylation, and promotes tumor growth,
Frontiers in Immunology 17
metastasis, and drug resistance in a variety of malignancies (42,

43).In this study, we confirmed that EZH2 is highly expressed in

gastric cancer, and CERES algorithm analysis showed that several

gastric cancer cell lines were highly dependent on EZH2, supporting

its potential as a therapeutic target. PAK2 is involved in cytoskeletal

remodeling, migration, and cell cycle regulation, and in lung

squamous carcinoma, it promotes proliferation and invasion
FIGURE 11

(A-D) Genome-Wide CRISPR Screening Dependency Scores in Gastric Cancer Using CERES Algorithm.
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(44).We found that PAK2 was generally upregulated in

gastric cancer tissues and highly dependent on it in certain cell

lines, consistent with its critical role in maintaining tumor

cell function.

Tumorigenesis is affected by both genetic mutations and

immune dysregulation (45, 46).The high LRRS group showed a

complex immune profile: increased immune cell infiltration,
Frontiers in Immunology 18
elevated stromal scores, immunity scores, and ESTIMATE scores,

but greater immunosuppression. Genomic analysis revealed that

TTN mutations induced CD8+ and CD4+ T cell infiltration (47);

TP53 mutations affected cell cycle and DNA repair and remodeled

the immune microenvironment (48); MUC16 mutations increased

neoantigen production but may inhibit NK cell killing (49, 50); and

ARID1A mutations regulated the tumor inflammatory
FIGURE 12

(A-D) D ACT1, EZH2, PAK2, and PSPC1 Protein Expression in Normal and Tumor Tissues: Immunohistochemistry Analysis from the Human Protein Atlas.
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microenvironment and may enhance immunotherapy sensitivity

(51). Low-risk groups may have more “benign”mutations, and high

mutation loads enhance tumor antigenicity, promote immune

recognition, and improve prognosis.
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Drug sensitivity analysis revealed therapeutic strategies for

different prognostic groups.The low-scoring group was more

sensitive to first-line chemotherapeutic agents such as 5-

fluorouracil, cisplatin, paclitaxel, oxaliplatin, and epirubicin
FIGURE 13

(A-N) Drug sensitivity analysis in gastric cancer: risk group comparison.
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(p<0.001) (52), as well as responded well to HER2/EGFR-targeted

agents such as lapatinib and erlotinib, which was consistent with the

results of clinical trials in HER2-positive or EGFR-highly-expressed

gastric cancer (53, 54). The high-scoring group, on the other hand,

was more sensitive to novel kinase inhibitors such as Doramapimod

(p38 MAPK inhibitor), NU7441 (DNA-PK inhibitor), and

AZD8055 (mTOR inhibitor) (55–57), which provides a rationale

for individualized treatment.
Frontiers in Immunology 20
In this study, LLPS gene was firstly used as a prognostic marker

for gastric cancer, and its biological mechanism, immune

characteristics and mutation spectrum were systematically explored,

which provided a new idea for clinical individualized

treatment.However, the study still has limitations: clinical samples

are needed for further validation; the specific mechanisms of the four

risk genes in LLPS and their interrelationships need to be explored in

depth.Nevertheless, this study provides important candidate
FIGURE 14

Verification Expression Levels of LLPS Genes Expression in GC Cell Lines. (A) The relative expression levels of DACT1, EZH2, PSPC, and PAK2 mRNA. (B)
Immunofluorescence of DACT1. (C) Immunofluorescence of PSPC1. (D-F) Western Blot of DACT1, EZH2, PAK2 and PSPC1.**P < 0.01, ***P < 0.001. Ns:
Not Significant.
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FIGURE 15

PSPC1 silencing inhibits the proliferation of GC in vitro. (A) RT-PCR verified the expression of depleted PSPC1 in the HGC-27. (B) RT-PCR verified the
expression of depleted PSPC1 in the AGS. (C) Western blot showing depleted PSPC1 expression by two independent shRNA (sh2 and sh3) in HGC-
27. (D) Western blot showing depleted PSPC1 expression by shRNA (sh3) in AGS. (E) Proliferation rates of PSPC1-depleted cells assessed by CCK8
assay in HGC-27. (F) Proliferation rates of PSPC1-depleted cells assessed by CCK8 assay in AGS. (G) Colony formation assay was performed on
HGC-27 and AGS cells treated with PSPC1 silencing to validate the growth ability of the indicated cells in vitro. (H) Representative images and
quantitative analysis of wound healing assay of AGS cells transfected with shRNA (sh3) and vector. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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molecules for prognostic assessment and therapeutic target

development in gastric cancer.
5 Conclusion

In conclusion, our research identified 20 genes related to LLPS that

are linked to the prognosis of GC patients. By utilizing these genes, we

effectively categorized patients into two distinct subtypes, which have

different pathway activity, prognosis, clinicopathological features and

immune cell infiltration. In addition,we created a prognostic model

based on four of LLPS genes. Our results indicate that integrating

scores based on LLPS genes applied in clinical practice could serve as a

valuable instrument for predicting GC prognosis.
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