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Pro-inflammatory granzyme
K contributes extracellularly
to disease
Christopher T. Turner*

Future Industries Institute, University of South Australia, Adelaide, SA, Australia
Granzyme K (GzmK) is an immune-secreted serine protease typically expressed

at low levels but elevated in response to tissue injury and disease. Known as an

orphan granzyme due to limited scientific investigation, this tryptase is being

redefined as having important roles in inflammation and disease pathogenesis.

Multiple GzmK expressing CD8+ T cell subsets are being identified with

augmented expression and important roles in disease. Traditionally recognized

as a mediator of cytotoxic lymphocyte-mediated cell death, GzmK’s role is being

recharacterized through multiple recently released studies focused on newly

identified extracellular mechanisms of action. These studies identify GzmK to be

inflammatory, being able to trigger pro-inflammatory cytokine release, enhance

immune cell recruitment, exacerbate the immune response to bacterial

infections, and activate complement. In multiple disease states, dysregulated

GzmK expression and potential accumulation in the extracellular space directly

contributes to impaired health outcomes, thereby suggesting downregulation

may prevent disease severity. GzmK is therefore emerging as a therapeutic target,

potentially valuable in sepsis, pulmonary disease, inflammatory skin disease,

rheumatoid arthritis and even aging.
KEYWORDS

granzyme, inflammation, serine protease, CD8 lymphocytes +, cytotoxicity and
immune system
1 Introduction

1.1 Granzymes

Granule-secreted enzymes (granzymes) are a family of serine proteases identified to

mediate cell death by natural killer cells and cytotoxic T lymphocytes (1–5). There are five

human granzymes, comprising tryptases granzyme A (GzmA) and GzmK, aspartase GzmB,

chymase GzmH, and metase GzmM. Despite sharing structural sequence homology and a

conserved secondary structure (6, 7), granzymes exhibit distinct substrates and varied roles

in both healthy tissues and pathologic ones in multiple disease modalities. GzmA and

GzmB are the most extensively studied granzymes, while the others are less well elucidated,

thus referred to as ‘orphan’ granzymes. In recent years, several emerging studies have

focused on GzmK, revealing significant implications in various diseases and offering new
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insights into mechanisms of action. As a result, investigating GzmK

has become an exciting area of active research.
1.2 Granzyme K

GZMK, the human GzmK gene (EC: 3.4.21) is located on

chromosome 5.q11.2 and encodes a 264 amino acid protein. Also

known as granzyme-3, fragmentin-3, or NK-tryptase-2, GzmK is

synthesized in the rough endoplasmic reticulum as a zymogen

precursor and then stored in granules, where it is associated with

the proteoglycan serglycin. To become proteolytically active, the

proteinase cathepsin C (also known as dipeptidyl peptidase I)

performs NH2-terminal processing (8). As a highly cationic

tryptase-like protease, GzmK cleaves after basic amino acids,

preferentially after positions 6 and 9 but also after positions 7 and

8 (9). Since both GzmA and GzmK are tryptases, have closely

related three-dimensional structures (9) and share some common

substrates, GzmK was long considered a redundant enzyme to

GzmA. GZMK is located near GZMA on chromosome 5, likely
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due to gene duplication. However, the idea that GzmK is merely

redundant to GzmA is now rejected, as GzmK has unique substrates

and functions that distinguish it from GzmA. GzmK and GzmA

also shows wide structural variation around the active subsites (10).
1.3 Granzyme K expression is elevated or
augmented in multiple disease states

GzmK detection in plasma and tissues is low in healthy

conditions but becomes elevated in response to disease/tissue

injury, specifically accumulating in regions of inflammation

(Table 1). GzmK is elevated in bronchoalveolar lavage fluid from

acute bronchopneumonia patients and allergic asthma subject’s

post-allergen challenge, but not mild chronic obstructive

pulmonary disease (11). Plasma GzmK is elevated in patients

experiencing sepsis (12) and Dengue fever (13). In renal

transplant patients with immunosuppressive therapy and suffering

from cytomegalovirus infection, plasma GzmK is elevated and

associated directly with the infection (13). GzmK is also
TABLE 1 GzmK detection documented in disease.

Disease/injury Tissue Cell source Species Reference

Aging, intrinsic PBMCs
Spleen, peritoneal cavity, lungs, liver

CD8+ T cells
CD8+ T cells

Human
Mouse

Mogilenko et al., 2021 (19)

Alzheimer’s disease PBMCs CD8+ T cells Human Duan et al., 2023 (23)

Amyotrophic lateral sclerosis CSF CD8+ T cells Human Kim et al., 2024 (28)

Asthma BALF
BALF

CD8+ T cells,
CD8+ T cells

Human
Mouse

Bratke et al., 2008 (11)
Lan et al., 2025 (15)

Atherosclerosis Atherosclerotic plaques CD8+ T cells Mouse Tyrell et al., 2023 (25)

Atopic dermatitis Skin mast cells, others? Human, mouse Turner et al., 2022 (18)

Burn (acute thermal injury) Skin Mast cells, M1 macrophages Human, mouse Turner et al., 2019 (16)

Cancer Liver, adipose, Tumour CD8+ T cells Human Duquette et al., 2023 (39)

Crohn’s disease PBMCs CD8+ T cells Human Lee et al., 2025 (60)

Chronic rhinosinusitis Blood, nasal tissue CD8+ T cells Human Guo et al., 2024 (61)

Psoriasis Skin Mast cells, others? Human, mouse Richardson et al., 2024 (17)

Rheumatoid arthritis Synovial tissue, blood CD8+ T cells Human Jonsson et al., 2022 (27)

Sjögren’s syndrome Salivary glands CD8+ T cells Human Xu et al., 2023 (26)

Infection

Acute bronchopneumonia BALF CD8+ T cells Human Bratke et al., 2008 (11)

Dengue fever plasma NKT Human Bade et al., 2005 (13), Choi et al., 2024 (62)

HIV PBMCs GzmB+CD8+ T cells Human Zhao et al., 2024 (63)

Sepsis Plasma
Spleen

Undefined
NK and NKT

Human Rucevic et al., 2007 (12)
Uranga-Murillo et al., 2021 (31)

viral infection Plasma Undefined Rucevic et al., 2007 (12), Bade et al., 2005 (13)

viral pneumonia BALF Undefined Human Bratke et al., 2008 (11)

endotoxemia Plasma Undefined Human Wensink et al., 2016 (14)
PBMCs = Peripheral blood mononuclear cells, CSF = cerebrospinal fluid, BALF = bronchoalveolar lavage fluid.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1620670
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Turner 10.3389/fimmu.2025.1620670
transiently elevated in circulation following lipopolysaccharide

(LPS) administration (14). GzmK is only released upon

stimulation with Pseudomonas aeruginosa, but not Escherichia

coli BL21, and Neisseria meningitidis, suggesting upregulation is

pathogen specific. Tissue GzmK levels predict chronic

rhinosinusitis-associated nasal polyp recurrence and asthma

comorbidity (15). GzmK is also elevated in skin damaged by

acute burn injury (16), and lesions in the inflammatory skin

diseases, psoriasis (17) and atopic dermatitis (18).

Specific immune cell populations, and in particular T cells, have

augmented GzmK expression in response to certain disease states,

including rheumatoid arthritis, amyotrophic lateral sclerosis, and

aging. A subset of GzmK+ exhausted memory T cells (Taa) has been

identified to accumulate with age in the lung, liver, peritoneal cavity,

and spleen (19). Separately, GzmK+ CD8+ T cells were found to be

higher in the plasma of older adults (20). Humans seropositive for

cytomegalovirus exhibit higher GzmK+ CD8+ T cells. GzmK+ NK

cell frequency is inversely correlated with antibody titers pre-and

post-influenza vaccination. GzmK+ T cells are increased in both

cancer and inflammaging, including squamous cell carcinoma (21),

melanoma (22), Alzheimer’s disease (23), and atherosclerosis (24,

25). In Sjögren’s syndrome patients, there is an increased

proportion of CXCR6+GzmK+CD8+ T cells in the peripheral

blood, with these displaying an activated phenotype (26). In

rheumatoid arthritis, GzmK+ CD8 T cells are enriched, with these

greater than 10% of all live cells in inflamed RA synovium (27).

GzmK+ cytotoxic T cells were also found to be a major CD8+ T cell

population in gut samples from Crohn’s disease patients and

bronchoalveolar lavage fluid samples from COVID-19 patients,

with these enriched in diseased tissue but also found in

circulation (27). Finally, there is a higher proportion of

CD8+GzmKhi effector memory T cells in the cerebrospinal fluid

of patients with amyotrophic lateral sclerosis (28).
1.4 Granzyme K contributes to disease

The development of a GzmK knockout (GzmK-/-) mouse (29)

has allowed elucidation of the biological role of this protease in a

variety of disease states. Comparing GzmK-/- and GzmA-/- mice has

allowed confirmation that there is the lack of overlap between the

functions of GzmK and GzmA. GzmK-/- mice exposed to

Chikungunya virus infection displayed reduced foot swelling,

although this is less than observed in GzmA-/- mice (30). Sepsis

scores are also reduced in GzmK-/- mice compared to WT mice,

however, only GzmA-/- mice have improved survival (31).

In acute burn injury, GzmK-/- mice resolved inflammation faster,

and improved wound closure, quality of healing, and scar strength

compared to wild-type mice (16). Separately, in oxazolone-dermatitis

(18) and imiquimod-psoriasis (17) models of inflammatory skin

disease, severity is reduced in GzmK-/- mice. In the dermatitis

mice, GzmK-/- mice display reduced scaling, erosions and

erythema, with an associated improvement in angiogenesis and

decreased microvascular damage. In the psoriasis mice, GzmK-/-
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mice have reduced plaque formation, less erythema, and decreased

epidermal thickening. Using a different GzmK-/- mouse, this time

with skin exposed to imiquimod to induce skin inflammation, there is

decreased erythema, scaling and skin thickness (15). In mouse

asthma models, GzmK knockdown or pharmacological inhibition

decreased tissue pathology and restored lung function (15). GzmK-/-

mice display reduced arthritis severity and dermatitis with reduced

complement activation.
2 Different schools of thought:
intracellular versus extracellular roles
for GzmK

2.1 Intracellular roles for granzyme K

Historically, all granzymes were believed to mediate cytotoxic

lymphocyte-mediated cell death. Upon target cell engagement,

granules release their granzyme payload into the immunological

synapse. The pore-forming protein perforin is released in

conjunction with these granzymes and facilitates granzymes entry

into the target cells. Once internalized, granzymes induce cell death

through caspase-independent or -dependent mechanisms (reviewed

in (32)). The specific details related to these mechanisms remain

unclear and have not been independently confirmed. As such, this

remains an area of controversial area, especially the idea that GzmK

contributes to cell killing, and has been questioned by several

independent studies (33).
2.2 Extracellular roles for granzyme K

There are three main key indicators that GzmK is released from

cells and into the extracellular space: 1/leakage from the

immunological synapse, 2/secretion from non-cytotoxic and

possibly non-immune cells, and 3/interaction with extracellular

substrates. Notably, the GzmK+ CD8 T cells found to have a

relatively increased expression in multiple disease states

minimally express cytotoxic markers (27), suggesting extracellular

roles may be especially important in disease.
2.2.1 Leakage from immunological synapse
GzmK is expressed in diverse populations of cytotoxic cells,

including CD8+ T cells (gd T cells, mucosal-associated invariant T

(MAIT) cells, a subset of non-MAIT CD8 T cells, CD8+GzmKhi T

cells, and CD45RO+CCR7+ and CD45RO+CCR7- CD8 T cells)

natural killer cells (CD56bright and invariant NKT) and cytotoxic

CD4+ T cells (27, 28, 34–36). Following target-cell engagement and

granzyme release into the immunological synapse, only an estimated

two thirds are internalized with the remainder dispersed into the

extracellular milieu (37). Recently, CD8+ T cells were found to secrete

GzmK in the absence of T cell receptor stimulation, supporting

constitutive synthesis and secretion (38).
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2.2.2 Non-cytotoxic cells express and secrete
GzmK

Multiple GzmK+ cells are non-cytotoxic, with these cell types

secreting no perforin and/or unable to form immunological

synapses (39). These cell types include macrophages (16), non-

cytotoxic CD56bright CD16− natural killer cells (35), and mast cells

(17, 18). In cultured macrophages, GzmK is constitutively secreted

from M1 but not MØ or M2a macrophages (16). In dual GzmK/

TBO stained mast cells, extracellular GzmK+ vesicles were also

observed following degranulation (18).

2.2.3 GzmK cleaves extracellular substrates
GzmK is potently inhibited in human plasma by the inter-

alpha-inhibitor protein complex (IaIp), leading to speculation of

the existence of extracellular GzmK substrates (11). Multiple

extracellular substrates have now been identified within the

extracellular matrix and on cell surface membranes. These include

cleavage of Protease-Activated Receptors (PAR) (40), complement

C2 and C4 (38), LPS (41), syndecan-1 (18) and decorin (18). The

use of degradomics and other techniques will allow further

identification of additional extracellular substrates.

In summation, the data now suggests extracellular GzmK as

having an emerging role in disease pathogenesis, likely more so than

GzmK-driven cell-mediated cytotoxicity. Fundamental to this idea

is the need for a better understanding of the extent extracellular

GzmK accumulates in diseased tissue, what kinds of tissues, and

whether the amount of accumulation directly correlates to

disease severity.
3 Current research gaps: does
extracellular GzmK accumulate in
diseased tissue?

In injured/inflamed tissues collected from a variety of diseases,

GzmK positive cells are clearly elevated (16–18). Numerous GzmK

expressing cell types have been identified in vitro, with multiple

found to secrete GzmK under specific culture conditions (16, 38).

Moreover, constitutive secretion of GzmK has been described in a

population of CD8+ T cells (38). In response to tissue injury and

inflammation, it is therefore extremely likely a pool of extracellular

GzmK will accumulate. However, due to limitations in the

sensitivity of immunohistochemistry, there is an inability to

accurately detect extracellular granzymes within these tissues.

This makes conclusions about the effect of GzmK accumulation

difficult to separate between cellular GzmK or that present

extracellularly. There have been recent advances and tools are

emerging for the detection of other granzymes in multiple

biological samples. Recently, fluorescence-energy resonance-

transfer (FRET)-based peptide probes (FAM-peptide-DABCYL)

were developed to detect GzmA activity in serum and tissue

lysates (42). The development of similar tools for GzmK detection

would be enormously useful to elucidate how GzmK accumulates in
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a range of tissue types. The ability to better understand how GzmK

accumulates in disease would inform the development of

therapeutic approaches, including inhibitor design.
4 Current research gaps: how
important is GzmK’s pro-inflammatory
role?

Emerging evidence over recent years has established GzmK as

having pro-inflammatory properties (Figure 1). This is, in part, due

to its ability to binds to LPS (41), induce pro-inflammatory cytokine

expression (18, 40, 41, 43, 44), facilitate immune cell recruitment

(44), and activate complement (35). GzmK has also been identified

as being a key contributor to inflammaging (19). The most well

described mechanisms will be discussed below.
4.1 LPS

Human GzmK has been demonstrated to bind to both purified

LPS and LPS on Gram-negative bacterial cell walls (41). GzmK

modulates toll-like receptor 4 (TLR4) signaling in immune cells,

leading to increased pro-inflammatory cytokine expression,

including TNF-a from monocytes and IL-1b from macrophages.

Together, extracellular GzmK contributes directly to the immune

response to bacterial infections. However, based on studies in

GzmK-/- mice, the contribution of GzmK to overall disease

severity in response to infection appears to be less than other

immune-secreted proteases (i.e., GzmA) (29, 30).
4.2 Protease-activated receptor

PARs, a subfamily of G protein-coupled receptors, mediate the

cellular effects of proteinases. Comprising PAR1, 2, 3 and 4, they have

unique but sometimes overlapping roles in inflammation, hemostasis,

and thrombosis (45). Multiple studies confirm GzmK to cleave and

activate PAR1 (40, 44). This leads to increase pro-inflammatory

cytokine secretion and has been observed in multiple cell types,

including peritoneal macrophages and cultured M1 macrophages

(IL-1b) (16, 46), lung fibroblasts (IL-6, IL-8) (40), keratinocytes and
skin fibroblasts (IL-6) (16), and endothelial cells (IL-6) (44). These

observations are supported in vivo, where GzmK-/- mice with acute

burns display decreased IL-1b and IL-6 compared to WT mice (16).

GzmK-mediated PAR1 activation in endothelial cells also increases

the expression of intercellular adhesion molecule (ICAM)-1, vascular

cell adhesion molecule (VCAM)-1, and monocyte chemotactic

protein (MCP)-1 (44). This led to increased monocyte attachment

to endothelial cells, suggesting GzmK as an immune cell attractant. In

support, thermal injured GzmK-/- mice wounds display reduced

ICAM-1, VCAM-1, and MCP-1 expression in combination with

lower macrophage detection (16).
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More recently, GzmK is reported to cleave and activate PAR2

(18, 43). Similarly to PAR1, GzmK-mediated PAR2 activation

increases pro-inflammatory cytokine expression (IL-6 and IL-8),

which is observed in epithelial cells (43). GzmK activation of PAR2

is separately demonstrated through detection of cleavage on the

surface of a reporter cell (nLuc–PAR–eYFP CHO) (18).

Mechanistically, GzmK-mediated PAR2 cleavage led to

recruitment of b-arrestin and phosphorylation of ERK (43).

Notably, both GzmK and trypsin cleave PAR2 at the same

location, however, GzmK is unable to induce a classical Ca2+ flux.

Multiple naturally expressed proteases have also been described

to cleave PAR1 and/or PAR2, including trypsin, plasmin,

kallikreins, neutrophil elastase, mast cell tryptase, tissue factor/

factor VIIa/factor Xa, activated protein C, and matrix

metalloproteinase-1 (47). Some of these proteases may be

dysregulated in disease, whilst others are tightly regulated. As an

example, although matrix metalloproteinase-1 is elevated in

response to tissue injury, it is tightly regulated by tissue inhibitors

of metalloproteinases (TIMPs), thereby limiting its ability to act

uncontrolled. To better understand the role of GzmK in disease,

future studies must therefore elucidate the relative contributions

these proteases play in PAR activation and under what conditions

does GzmK have the greatest impact. This includes identifying

whether GzmK accumulates and increases its proteolytic activity in

response to sustained inflammation.
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4.3 Complement

Lymphocyte-derived GzmK is emerging as having a key role in

complement activation (38). GzmK mediates activation through the

cleavage of C2 and C4. Ultimately, this results in the generation of C3a,

C3b, C4b, and C5a, which are key effectors of complement. This has

been observed in vivo in rheumatoid arthritis patients, where regions of

complement activation correspond to increased GzmK detection (38).

Moreover, in arthritis and dermatitis mice, GzmK-mediated

complement activation reportedly contributes to disease progression.

Together, it is now clear GzmK mediates a pro-inflammatory

phenotype, occurring through multiple and distinct pathways.

GzmK will therefore likely have important pathologic roles in

multiple disease modalities characterized by inflammation.
5 Future developments in the field:
will pharmacological inhibition of
GzmK reduce disease?

Based on its pro-inflammatory and overall pathogenic effects in

multiple disease states, GzmK is emerging as a therapeutic target.

Although GzmK inhibitory agents have been described, none are

highly specific and with each capable of inhibiting other proteases.
FIGURE 1

Main mechanisms involved in the GzmK-mediated inflammatory process. There is negligible GzmK in healthy tissues but is elevated in response to
tissue injury and inflammation. Enhanced GzmK secretion leads to enhanced immune cell recruitment, elevated pro-inflammatory cytokine
detection, complement activation and cell senescence. Reproduced with permission from BioRender.
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IaIp is a naturally occurring physiological inhibitor of GzmK. Found

in human and mouse plasma, Plasma IaIp levels are inversely

correlated with extracellular GzmK and disease severity in sepsis

patients (12). This suggests IaIp to provide a regulatory mechanism

(at least in circulation) for limiting the detrimental effects of

extracellular GzmK, likely in response to increased GzmK secretion

during pro-inflammatory events. IaIp, which also inhibits trypsin,

chymotrypsin, plasmin, neutrophil elastase, and cathepsin G (48), has

been assessed therapeutically in conditions where there is increased

inflammation. Circulating IaIp levels are higher in healthy volunteers
than severe sepsis patients (49), thus IaIp delivery was assessed in

mice as a potential sepsis treatment. Intravenous IaIp increased

survival after an intravenous challenge of Escherichia coli (49). In a

separate study, intraperitoneal IaIp delivery improved survival to

nearly 90% in both LPS induced sepsis and with live bacterial

infections (50). IaIp also improved survival after cecal ligation and

puncture (51, 52). Intraperitoneal IaIp has additionally been

evaluated for anthrax, lacking improved survival outcomes (53).

However, combining IaIp and moxifloxacin did improved survival

compared to controls including moxifloxacin alone.

The light chain of IaIp, also called bikunin, contains the GzmK

inhibitory activity (54), suggesting it may alternatively be used

therapeutically. Bikunin is cross-linked in the IaIp complex and

requires partial proteolytic degradation to activate. Following cleavage,

active bikunin is rapidly cleared from circulation by glomerular filtration

and receptor-mediated uptake (55). In rats, intravenous bikunin

injection has a half-life of only 10 min. This may account for free

bikunin only representing about 2% of total plasma bikunin (reported in

(8)). As such, the limited half-life of bikunin may be limiting for

therapeutic use unless improved delivery strategies are implemented.

Other non-specific synthetic GzmK inhibitors have been

identified, including Phe-Pro-Arg-chloromethyl ketone (PFR-CK),

PefablocSC, phenylmethylsulfonyl fluoride, and benzamidine (56,

57). In mice with asthma, PFR-CK, which also inhibits plasma

kallikrein, factor XIIa (58) and granzyme A (59), was recently

assessed (intraperitoneally every second day), displaying decreased

airway eosinophil infiltration, reduced goblet cell hyperplasia, and

improved lung function (15). Together, although the number of

studies is limited, pharmacological inhibition of GzmK has

potential as a therapeutic and warrants further investigation.
6 Discussion

It is now clear GzmK has important roles in disease pathogenesis,

but many questions remain. More work is required to better

understand the relative contributions of different cell types,

especially the various CD8+ T cell subsets, to the presence of GzmK
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in diseased tissue. We need better tools to assess extracellular GzmK

accumulation in damaged tissues and if elevated, what tissues display

the greatest increase. Although GzmK’s role in numerous mechanisms

have been described, we need to better uncover GzmK substrates and

how increased proteolytic cleavage of these substrates contributes to

disease. A greater knowledge of novel substrates will likely lead to the

identification of additional mechanisms of action. Remaining a

controversial issue, we need to establish the relative contribution of

GzmK’s catalytic activity to overall pro-inflammatory mediation.

Finally, we need to evaluate the therapeutic potential of

pharmacological GzmK inhibition. A better grasp of how GzmK

contributes to disease will guide the design of these therapeutics and

help select the specific diseases to focus on.
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