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Intrinsic genetic alterations and dynamic transcriptional changes contribute to

the heterogeneity of solid tumors. Lung adenocarcinoma (LUAD) is characterized

by its significant histological, cellular and molecular heterogeneity. The present

study aimed to study the spatial transcriptomics of primary LUAD with initial

hopes to decipher molecular characteristics of subtype transitions in LUAD

progression, offering new insights for novel therapeutic strategies. Spatial

transcriptomics libraries were first generated from tumor samples collected

from patients with LUAD who underwent surgical resection in The Fourth

Hospital of Hebei Medical University in 2022 and were sequenced using

Illumina NovaSeq 6000 system. The processed data were analyzed for

differential gene expressions and networks, and were annotated according to

cell type, spatial ligand-receptor interaction and trajectory inference. Our

analysis revealed 34 annotated cell types, with cancer-associated fibroblasts

(CAFs) being the most abundant, playing a crucial role in tumor

microenvironment remodeling and prognosis. We noted significant spatial

correlations between various immune cells and found that different

histological subtypes displayed unique cell composition profiles, particularly in

the micropapillary subtype, which exhibited higher macrophage proportions and

distinct gene expression pathways related to extracellular matrix organization

and receptor tyrosine kinase signaling. Additionally, we explored the

dedifferentiation states within these subtypes, identifying that region with

higher dedifferentiation scores corresponded to increased tumor invasiveness

and potential drug resistance. Our findings demonstrate dynamic biological

changes and dedifferentiation states of tumor subtypes during the progression

process. This study reveals important biological processes in tumor development

and may offer valuable guidance for future therapeutic strategies.
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Introduction

The development of cancer is driven by the accumulation of

changes that affect the structure and function of the genome (1).

Changes in the morphology, function, and behavior of tumor cells

to adapt, known as cellular plasticity, are important features of

tumor progression and metastasis and are associated with a de-

differentiated state related to treatment resistance and poor clinical

outcomes (2). Both intrinsic and extrinsic factors, such as genetic

variations, epigenetic modifications, transcriptional changes, and

treatment-induced selective pressure, shape the plasticity of cancer

cells, thereby promoting heterogeneity both between and within

tumors (3). Cell fate transitions, including epithelial-mesenchymal

transition (EMT), mesenchymal-epithelial transition (MET), and

cancer stem cell formation, are fundamental processes in cellular

reprogramming and tumor metastasis (4, 5). Cellular plasticity is

often associated with a low-differentiated phenotype of genes, which

can be mediated by transcription factors and microRNAs that

regulate the tumor microenvironment, cell polarity, adhesion, and

motility (6).

Lung adenocarcinoma (LUAD), one of the most common and

lethal malignant tumors, is characterized by significant histological

heterogeneity, as well as cellular and molecular heterogeneity (7).

Multiple histological subtypes may coexist within the tumor tissue.

Some high-grade subtypes (such as micropapillary, solid, and

complex glandular structures) exhibit highly aggressive behavior

and are associated with poor prognosis, while low-grade subtypes

(such as lepidic and acinar) display relatively slow growth

characteristics (8). Although extensive genetic and epigenetic

heterogeneity has been demonstrated in LUAD, the molecular

characteristics and biological interactions of different histological

subtype transitions within LUAD tissues remain unclear (9).

Single-cell sequencing technology has advanced the in-depth

study of intratumoral heterogeneity, tumor microenvironment,

progression and metastasis mechanisms of lung adenocarcinoma,

as well as resistance mechanisms, at the single-cell resolution level

(9–14). For example, comprehensive characterization of tumor-

infiltrating lymphocytes has revealed dynamic changes in T cell

functional states in non-small cell lung cancer (15). Additionally,

single-cell transcriptomic analysis of in situ adenocarcinoma,

microinvasive adenocarcinoma, and invasive adenocarcinoma

depicts the dynamic evolution from in situ adenocarcinoma to

invasive adenocarcinoma (16). Single-cell RNA sequencing

(scRNA-seq) identifies cell subpopulations within tissue but does

not capture their spatial distribution nor reveal local networks of

intercellular communication acting in situ (17). Spatial

transcriptomics sequencing can preserve spatial information

within tissue samples while measuring gene expression, allowing

for precise localization of the expression of different genes in

specific areas of the tissue. It enables the observation of

interactions between different cell types and their distribution

within the tissue, thereby complementing the limitations of

single-cell transcriptomics sequencing (18).

The present study applied spatial transcriptomics technology to

primary LUAD containing high-grade histological subtypes to
Frontiers in Immunology 02
explore the spatial cellular composition differences between

different histological subtypes, the molecular characteristics

driving these subtypes, and the differences in the tumor

microenvironment. Overall, these results would provide molecular

characteristics of subtype transitions in LUAD progression, offering

new insights for novel therapeutic strategies (Figure 1).
Materials and methods

Human specimens

Specimens were collected from patients with LUAD who

underwent surgical resection at the Fourth Hospital of Hebei

Medical University in 2022. Among the 188 patients with a

micropapillary histological pattern, we selected five cases where

the micropapillary pattern constituted between 30% and 50%. Two

experienced pathologists reviewed each slide to identify suitable

tissue sections for spatial transcriptomics analysis and annotated

the tumor slides for different histological subtypes, including lepidic

(LEP), acinar (ACI), micropapillary (MIP) subtypes, and normal

tissue (N). The pathological diagnoses for each slide were based on

the 2021 World Health Organization (WHO) classification of

LUAD (19) and the new grading system proposed by the

International Association for the Study of Lung Cancer Pathology

Committee (20). This study was conducted in accordance with the

Declaration of Helsinki (2013 revised version) and was approved by

the Ethics Committee of the Fourth Hospital of Hebei Medical

University (Institutional Review Board number 2021Ky103). All

patients signed written informed consent prior to participating in

this study.
Sample preparation

The RNA quality of FFPE tissue blocks was assessed by

calculating the DV200 of RNA extracted from FFPE tissue

sections, following the Qiagen RNeasy FFPE Kit protocol. Five-

micrometer sections were placed on Sigma-Aldrich Poly Prep Slides

in accordance with the Visium CytAssist Spatial Gene Expression

Protocols for FFPE Tissue Preparation Guide (10x Genomics,

CG000518 Rev C). After drying overnight, the slides were

incubated at 60°C for 2 hours. Deparaffinization was performed

according to the Visium CytAssist Spatial Gene Expression for

FFPE — Deparaffinization, Decrosslinking, Immunofluorescence

Staining & Imaging Protocol (10x Genomics, CG000519 Rev B).

The sections were then stained with hematoxylin and eosin and

imaged at 20x magnification using the brightfield imaging settings

on a Leica Aperio Versa8 whole-slide scanner. Decrosslinking of the

H&E stained sections was conducted immediately afterward. Next,

human whole transcriptome probe panels were added to the tissue.

After the probe pairs hybridized to their target genes and ligated to

one another, the slides were placed on the Visium CytAssist

instrument for RNase treatment and permeabilization. The ligated

probes were subsequently hybridized to the spatially barcoded
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oligonucleotides in the Capture Area. Spatial transcriptomics

libraries were generated from the probes and sequenced on the

Illumina NovaSeq 6000 system (conducted by Beijing Novogene

Technology Co., Ltd.).
ST data processing

Raw sequencing data were processed using Space Ranger

pipelines (version 2.0.0), including tissue detection, fiducial

detection, read alignment, barcode and UMI counting against

reference genome GRCh38 (version 3.0.0, pre-built by 10x

Genomics). Feature-spot matrices were generated based on spatial

barcodes, and then analyzed with the Seurat R package (V3.1.2)

(21). To normalize sequencing depth variance across spatial spots,

especially for technical artifacts and tissue anatomy, we used

SCTransform function based on regularized negative binomial

regression to normalize molecular count data, and detect high-

variance features. Data from the five spatial slides were integrated

using Seurat’s reciprocal principal component analysis (RPCA)

integration workflow to correct for potential batch effects. This

involves identifying anchors between datasets (slides) and using

these anchors to harmonize the gene expression data across slides.

The effectiveness of batch correction was confirmed by ensuring

that spots did not primarily cluster by sample origin in the UMAP

projections. Dimensionality reduction was performed with
Frontiers in Immunology 03
principal component analysis (PCA), then followed by a shared

SNN construction based on Jaccard index between spots with the

first 50 dimensions. Cluster determination was performed using the

FindClusters function at resolution 0.6 by a SNN modularity

optimization. The top 20 PCA dimensions were used for UMAP

dimensional reduction. Subsequently, clusters in UMAP space were

visualized by DimPlot and SpatialDimPlot functions. Spatially

variable features that correlate with spatial subtypes were

identified by FindSpatiallyVariables function with markvariogram

method. To identify differentially expressed genes for each cluster,

we used FindAllMarkers function in Seurat with default parameters,

and genes with logFC > 0.25 and adjusted P value < 0.05 were

considered as significantly different. The logFC threshold of 0.25

was chosen to capture a broader range of potentially relevant gene

expression changes while maintaining statistical rigor in

conjunction with the adjusted p-value cutoff.
Enrichment analysis

For genes associated with differentiation, R package

clusterProfiler (version v4.5.1) (22) was used to perform GO/

KEGG/REACTOME enrichment analysis using corresponding

gene sets. P value was adjusted for multiple comparisons by

Benjamini-Hochberg correction. Significant thresholds were set to

a q-value cutoff of 0.05.
FIGURE 1

Schematic overview of the study design. Workflow illustrating the collection of FFPE primary lung adenocarcinoma samples, preparation for spatial
transcriptomics (ST), data acquisition using the 10x Visium platform, and downstream bioinformatics analysis including identification of differentially
expressed genes (DEGs), hdWGCNA, gene set enrichment (GSE), gene set variation analysis (GSVA), trajectory inference, and data analysis.
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Cell-type annotations

To annotate cell types to spatial spots, we employed a multi-step

approach. Initially, cell type deconvolution was performed using the

SpaCET R package (23), which utilizes reference single-cell RNA

sequencing datasets from human lung tissue to estimate the

proportion of various cell types within each spatial spot. Each

spot was then assigned a dominant cell type based on the highest

estimated proportion. For further characterization of functional

states and pathway enrichments within these annotated spots, we

applied gene set variation analysis (GSVA) (24). Signature gene sets

for specific cell types and functional states were derived from

established literature and the SpaCET package. GSVA scores were

calculated for each gene set per spot, allowing for the assessment of

relative pathway activity within spatially defined regions and cell

populations. This combined approach allowed for robust cell type

identification and subsequent functional characterization.
Spatial ligand-receptor interaction analysis

Spatial intra-celltype ligand-receptor interaction pairs were

inferred using CellPhoneDB (version 3.1.0) (25) with a built-in

database for humans. Metadata and count matrix files were used as

input data, and other arguments were kept as default. P value was

calculated using the proportion of means that exceeded the actual

mean, and ranked based on its significance.
Trajectory inference

To rank cells by their developmental potential, we used

CytoTRACE (v.0.3.3). CytoTRACE is a statistical method, which

uses transcriptional diversity as a proxy for developmental potential

and assigns a CytoTRACE-score to each cell (26). CytoTRACE

scores were calculated for each cluster independently, using default

parameters. Cell cluster that has the lowest median CytoTRACE-

score was used as the root for trajectory analysis. We utilized

monocle2 (version 2.28.0) to generate pseudotime trajectories and

identify differentially expressed genes between branches (27).

Briefly, the highly variable genes (HVGs) identified by R package

Seurat were selected as genes that define a cell’s progress. DDRTree

algorithm was used to reduce data dimensionality, and cells were

ordered along the trajectory according to pseudo times. To identify

genes that were differentially expressed between the branches, a

special statistical test named “branched expression analysis

modeling” (BEAM) was used.
Analysis of spatial gene expression
programs

We performed high-dimensional weighted gene co-expression

network analysis (hdWGCNA) (28) in our ST dataset. Significant

DEGs identified between histologic sub-regions were used as input
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for hdWGCNA, and we applied the K-Nearest Neighbors algorithm

to identify groups of similar spots by means of transcriptomics

(termed metacells in this context, representing aggregated

transcriptionally similar spots rather than individual cells) and

constructed a metacell gene expression matrix. We obtained the

module eigengene values, which describe the expression patterns of

entire co-expression modules, and performed a differential module

eigengenes analysis applying a Mann-Whitney U test. WGCNA was

performed on each slide individually to account for sample-specific

variations. For each slide, the soft power threshold was selected by

analyzing the scale-free topology fit index, aiming for a signed R2 >

0.8 to ensure a scale-free network. Other parameters, such as

minimum module size, were kept consistent across analyses to

facilitate comparison.
Results

Spatial transcriptomic features of LUAD

LUAD can be classified into five histological patterns: lepidic,

acinar, papillary, micropapillary, and solid. These patterns are

factors influencing prognosis, particularly the micropapillary

histological pattern, which is associated with poor outcomes.

Most LUAD exhibit multiple histological patterns. To explore the

differences in cellular composition and molecular subtypes among

these patterns and to investigate the reasons for the poor prognosis

in patients with the micropapillary pattern, we conducted spatial

transcriptomics (ST) studies on samples from five patients who

underwent radical resection and included the micropapillary

histological pattern on the 10× Visium platform (Supplementary

Figure 1, Supplementary Table S1). The heterogenous histology was

as shown in Figure 2A. Transcriptomic data were obtained from a

total of 21,617 spots, with a median number of genes captured per

spot for each specimen being 6,914 (Supplementary Figure 2) and a

median Unique Molecular Identifier of 21,855 (Supplementary

Table S2). We performed clustering analysis (Figure 2B) and

dimensionality reduction (Figure 2C) on the gene expression

matrix using Seurat software. For example, the specimen from

patient P5 included micropapillary (MIP), micropapillary mixed

with acinar (MIP+ACI), acinar mixed with lepidic (ACI+LEP), and

normal tissue (N), which could be categorized into 10 clusters based

on differences in gene expression (Figure 2D) (Supplementary

Figure 3) (Supplementary Figure 4, Supplementary Table S3).

Based on the deconvolution results using the SpaCET package

and reference single-cell datasets, we annotated the cell types in the

spatial transcriptomics specimens. A total of 34 cell types were

annotated, including tumor cells, cancer-associated fibroblasts

(CAFs), and immune cells (macrophages, T cells, B cells, etc.,

along with their subgroups) (Supplementary Figure 5A;

Supplementary Table S4). Overall, CAFs were found to be the

most abundant cell type in LUAD (Supplementary Figure 5B).

Macrophages, particularly M2 (M2-like) macrophages, were the

second most abundant cell type. The cell annotation results for

different histological patterns are shown in (Figure 3A). In samples
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P3-P5, a minor proportion of tumor cells was detected in regions

annotated as “Normal” (N). These tumor cells were primarily

located at the interface between the tumor mass and the adjacent

normal tissue, likely representing microscopic infiltration or the

inherent resolution limits of ST spots capturing signals from

adjacent tumor areas (detailed mapping in Supplementary

Figure 7). Using cell type correlation analysis, we observed

significant spatial correlations between different cell types within

the same spot, such as between T follicular helper (Tfh) cells and

regulatory T (Treg) cells, as well as between naïve CD8+ T cells and

exhausted CD8+ T cells (Supplementary Figure 6A).
Frontiers in Immunology 05
Further analysis of cell composition similarity revealed a high

degree of similarity in cell annotation types among the same

histological subtypes, except for the LEP+ACI histological pattern

in patient P5 (Figure 3B). Significant variations in cell proportions

were observed across different histological subtypes. In the ACI

subtype, CAFs had the highest proportion, while endothelial cells

were the most abundant in normal tissue (N). In the MIP subtype,

the proportion of CAFs was lower, whereas the proportion of

macrophages was higher. Specifically, myofibroblastic CAFs

(mCAFs) were the predominant CAF subtype in ACI regions,

while M2-like macrophages (e.g., expressing CD163 and MRC1)
FIGURE 2

Spatial transcriptomic features of LUAD patient P5. (A) Hematoxylin and eosin (H&E) stained tissue section from patient P5 showing pathologist-
annotated regions: Micropapillary (MIP), Acinar+Lepidic (ACI+LEP), MIP+ACI, and Normal (N). (B) Spatial map of P5 tissue spots colored by Seurat
clusters. (C) UMAP visualization of spatial spots from P5, colored by Seurat clusters (top) and pathologist-annotated histological regions (bottom).
(D) Heatmap showing expression of top differentially expressed genes across the 10 identified Seurat clusters in P5. Color bar indicates normalized
gene expression levels.
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showed increased prevalence in MIP regions. Statistical analysis

confirmed a significant decrease in total CAF fractions (Wilcoxon

rank-sum test, p < 0.01) and a significant increase in total

macrophage fractions (Wilcoxon rank-sum test, p < 0.005) when

comparing MIP regions to ACI regions across all samples.

Interestingly, in the MIP+ACI histological pattern, the proportion

of CAFs was lower than that in ACI but higher than in MIP, placing

it between the two (Figure 3C). Figure 3D provides a clearer

comparison of the proportions of CAFs across the four

histological patterns mentioned above. Analysis of CAF marker

expression revealed significantly higher co-expression of MMP11,

ACTA2 (SMA), and COL1A1 in spots annotated as CAFs within

MIP and MIP+ACI regions compared to ACI or normal regions (p

< 0.01, Wilcoxon rank-sum test; representative images showing

spatial expression of these markers in Supplementary Figure 8).

These results reveal the heterogeneity of LUAD histological

subtypes and the differing enrichment of cells within these subtypes.
Frontiers in Immunology 06
We performed enrichment analysis on differentially expressed

genes in regions containing micropapillary and acinar histological

patterns. The analysis revealed that in the micropapillary regions of

all five specimens, pathways related to Extracellular Matrix

Organization and Signaling by Receptor Tyrosine Kinases were

significantly upregulated (Supplementary Table S5). Spatial

projection of the GSVA scores for the ‘Extracellular Matrix

Organization’ pathway (Reactome: R-HSA-1474244) and

‘Signaling by Receptor Tyrosine Kinases’ pathway (Reactome: R-

HSA-9006934) confirmed their heightened activity within the

pathologist-annotated MIP regions across the samples

(representative visualizations in Supplementary Figure 9A). Violin

plots of GSVA scores for these pathways by histological region also

demonstrated significantly higher enrichment in MIP compared to

ACI or N regions (p < 0.01, Wilcoxon rank-sum test,

Supplementary Figure 9B). GO functional enrichment analysis

identified 20 pathways that were upregulated in the
FIGURE 3

Cell type composition and correlation across LUAD histological subtypes. (A) Dot plot showing the proportion and number of spots for various
annotated cell types across different histological subtypes (ACI, LEP, MIP, MIP+ACI, N) in patients P1-P5. Dot size indicates proportion of cells, and
color indicates histological subtype. (B) Spearman correlation matrix of cell type compositions across different pathologist-annotated histological
regions. Color intensity and circle size represent the correlation coefficient. ***p < 0.001. (C) Boxplots showing expression levels (arbitrary units
based on deconvolution scores) of combined MIP and other cell types (top panel) and selected individual cell types (bottom panel) in ACI, MIP, and
MIP+ACI regions. (D) Boxplot comparing Cancer-Associated Fibroblast (CAF) expression levels across ACI, MIP, MIP+ACI, and N histological patterns.
***p < 0.001, NS, not significant.
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micropapillary histological pattern. KEGG functional enrichment

analysis revealed four upregulated pathways. REACTOME analysis

showed that the Extracellular Matrix Organization pathway was

significantly upregulated in micropapillary tissues. In both GO and

KEGG analyses, the Focal Adhesion pathway was also significantly

upregulated. REACTOME analysis revealed significant enrichment

of RTK signaling pathways. The upregulation of the Proteoglycans

in Cancer pathway in KEGG analysis also suggests the role of

proteoglycans in the metastasis of micropapillary LUAD cells.

Considering that the heterogeneity of LUAD tissue also exists

within the defined regions, where different histological patterns may

intersect, we individually analyzed each spot from the samples. This

allowed us to precisely identify spots containing only MIP pattern

cells and those containing only ACI pattern cells for further analysis

(Figure 4A). The lepidic (LEP) pattern present in patient P5 was not

included in this specific WGCNA comparison because the primary

focus was on the transition and differences between the more

aggressive MIP pattern and the intermediate ACI pattern, which

were more consistently represented across multiple samples.

Additionally, the limited number of spots exclusively containing

LEP in P5 might not provide sufficient statistical power for robust

module detection in comparison to MIP and ACI. Given that

these spots were fewer in number, the differential analysis
Frontiers in Immunology 07
had considerable uncertainty. We employed Weighted Gene

Co-expression Network Analysis (WGCNA) to identify gene

modules and calculated the odds ratios for the overlap of each

module with cell type marker genes. A higher odds ratio indicates a

stronger significance of overlap between the genes within the

module and the marker genes of a specific cell type. Patient P1

was clustered into four gene modules: SM1, SM2, SM3, and SM4

(Figure 4B, P1 dendrogram), showcasing the most representative

genes for each module (Figure 4C). For patient P1, the SM1 and

SM3 modules significantly overlapped with genes from

micropapillary growth regions, while the genes in the SM2 and

SM4 modules significantly overlapped with genes from ACI regions

(Figures 4A, D). We summarized that module P1.SM1, P1.SM3,

P2.SM1, P2.SM2, P2.SM4, P3.SM1, P3.SM3, P4.SM1, P5.SM2, and

P5.SM3 significantly overlapped with representative genes from the

corresponding micropapillary regions (Figure 4A, Supplementary

Figure 6B). Based on the differences in gene modules, we conducted

enrichment analysis, revealing that the BH3 Domain Binding

(GO:0051434) pathway was enriched in the relevant modules of

four specimens (P1.SM1, P2.SM1, P3.SM3, P5.SM3). The

Extracellular Matrix Organization (GO:0030198) and Focal

Adhesion pathways were enriched in the relevant modules of

three specimens.
FIGURE 4

hdWGCNA reveals gene modules associated with histological patterns in patient P1. (A) Spatial map of patient P1 H&E stained tissue showing regions
predominantly composed of Acinar (ACI, blue spots) and new ACI (New_ACI, red spots identified by module expression, likely corresponding to MIP
based on text). (B) Dendrogram of hdWGCNA for patient P1, showing gene clustering and identified modules (SM1-SM4) colored below. (C) Bar plots
showing kME (module membership) scores for the top genes in modules SM1, SM2, SM3, and SM4 for patient P1. (D) Spatial visualization of module
eigengene scores for SM1, SM2, SM3, and SM4 overlaid on the P1 tissue section. Color intensity indicates module expression level.
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Heterogeneity of dedifferentiation states in
different histological patterns

To gain deeper insight into the dynamic dedifferentiation

changes of specific subtypes, we performed differentiation analysis

using Monocle (27) and CytoTRACE (26) and applied principal

component analysis to visualize developmental trajectories

(Figure 5A). Patient P1 included two histological subtypes, MIP

and ACI, and we observed that the MIP region exhibited higher

CytoTRACE scores compared to the ACI region (Figures 5B, C).

Within the cluster of the ACI region, cluster 2 (Figure 5D) was

located at the boundary of the ACI area, with a CytoTRACE score

higher than other clusters within ACI but lower than those in the

MIP region (Figure 5E). Patient P3 included MIP+ACI, ACI, and

normal (N) regions, with the MIP+ACI region showing higher

CytoTRACE scores compared to the ACI region, while both were

higher than the normal tissue region (Supplementary Figure 10).

Across all five patients (P1-P5), a quantitative comparison revealed

that regions with a higher proportion of MIP pattern consistently

exhibited significantly higher mean CytoTRACE scores compared

to regions predominantly composed of ACI or LEP patterns

(ANOVA, p < 0.001). Furthermore, there was a significant

positive correlation between the percentage of MIP pattern within

a tumor region (as determined by pathological annotation) and its

average CytoTRACE score (Pearson r = 0.78, p < 0.01 across all

samples). For patient P1 (Figures 5D, E), detailed analysis of the 12
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identified clusters showed distinct gene expression signatures. For

instance, clusters predominantly in the MIP region (e.g., clusters 8,

9, 10 with high CytoTRACE scores) were enriched for genes

involved in cell proliferation (e.g., MKI67, TOP2A) and EMT

(e.g., VIM, ZEB1). Conversely, clusters mainly in the ACI region

(e.g., clusters 0, 1, 3 with lower CytoTRACE scores) showed higher

expression of differentiation markers (e.g., NKX2-1, SFTA1P) and

pathways related to cell adhesion. Cluster 2, with an intermediate

CytoTRACE score, co-expressed markers from both MIP-

associated and ACI-associated clusters, suggesting a transitional

state. A full list of differentially expressed genes and pathway

enrichments for each cluster is provided in Supplementary Tables

S6, S7.
Cell communication

To characterize cell-cell communication networks, we used

CellPhoneDB (29) to infer potential ligand-receptor interactions.

This analysis revealed a complex web of communication, with

specific interactions enriched in different histological contexts

(detailed interactions in Supplementary Figure 11). Tumor cells

exhibited strong interactions with CAFs, primarily involving

TGFB1/2 (Tumor) - TGFBR1/2 (CAF) and various collagen-

integrin pairs, particularly enriched in MIP and ACI regions.

CAFs, in turn, interacted broadly with immune cells through
FIGURE 5

Dedifferentiation trajectory analysis reveals heterogeneity in LUAD subtypes. (A) Pseudotime trajectory of spots from patient P1, colored by
CytoTRACE score. Black circles indicate branch points. (B) Spatial map of patient P1 showing CytoTRACE scores overlaid on tissue spots. Higher
scores (blue/purple) indicate greater dedifferentiation potential. (C) Violin plot comparing CytoTRACE scores between ACI and MIP regions in patient
P1 (p < 2.22e-16). (D) Spatial map of patient P1 (F22_00015, likely an internal ID for P1) colored by Seurat clusters (0-12). (E) Violin plots showing
CytoTRACE scores for each Seurat cluster (0-12) in patient P1.
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FIGURE 6 (Continued)

Spatial distribution of annotated cell types in a representative LUAD
sample. (A) Hematoxylin and eosin (H&E) stained tissue section
from patient P1 showing distinct acinar (ACI) and micropapillary
(MIP) histological regions. The boundary is indicated by the red
dotted line. Black dotted outlines highlight tertiary lymphoid-like
structures. (B) Spatial feature plots showing the distribution and
relative abundance scores of 33 annotated cell types across the
tissue section from patient P1. The color scale for each plot
indicates low (blue) to high (red) abundance. Note the marked
enrichment of Macrophages, exhausted T-CD8 cells, and
cDC2_CD1C cells within the MIP region.
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CXCL12 (CAF) - CXCR4 (various immune cells) signaling.

Notably, we found a high number of predicted interactions

between M2-like macrophages and cDC2_CD1C cells, including

pairs like CCL5-CCR5 and CD86-CTLA4, which were

predominantly found within MIP regions across multiple samples.

To visualize the spatial context of these cellular ecosystems, we

mapped the distribution of all annotated cell types in a

representative patient (P1), which presents clear ACI and MIP

histological regions (Figure 6A). The resulting spatial feature plots

reveal distinct cellular compositions that align with the histological

patterns (Figure 6B). For instance, consistent with our quantitative

analysis, Macrophage abundance is visibly higher in the MIP region

compared to the ACI region. Similarly, cell types such as exhausted

T-CD8 cells and cDC2-CD1C cells show a clear enrichment within

the MIP area. This spatial co-localization of M2-like macrophages

and cDC2_CD1C cells within the MIP microenvironment provides

a structural basis for the extensive interactions predicted by

CellPhoneDB. Comparison of interaction strengths revealed that

MIP regions generally showed higher overall interaction scores for

pathways related to immune modulation and ECM remodeling

compared to ACI or normal regions. We observed that when M2

macrophages served as ligand cells, CD74_COPA, CD74_APP, and

CD74_MIF were present in the analysis results of every specimen.
Discussion

The molecular characteristics of tumors and their

microenvironment determine tumor occurrence and progression

(30). Recent studies have indicated that driver mutations in LUAD

are not associated with specific histological subtypes, and oncogenic

alterations do not drive subtype progression or spatial heterogeneity.

Epigenetic and transcriptional reprogramming are key determinants

of histological subtypes (7). Meanwhile, substantial progress has been

made in RNA-seq, proteomics, and single-cell profiling; however,

information regarding the spatial localization of tumor cells, stromal

cells, and immune cells is lost during tissue dissociation. The lack of

comprehensive spatial features in tumors remains a barrier to

improving therapeutic strategies and clinical prognosis (31).

Therefore, delineating histological characteristics at spatially

resolved molecular resolution is crucial for describing the

heterogeneity of tumor histological subtypes and their

corresponding molecular features. Here, we integrated spatial
FIGURE 6 (Continued)
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transcriptomics and histomorphology in invasive LUAD to elucidate

the molecular mechanisms driving histological subtype progression

and microenvironment composition.

Our findings indicate that histological subtypes exhibit high

similarity in major cell types, but the degree of cell enrichment

varies among different subtypes. Studies have shown that CAF-

mediated paracrine TGFb signaling induces tumor tissue

remodeling and determines the histological patterns of LUAD,

l ead ing to tumor he te rogene i ty (32 ) . Addi t iona l l y ,

characterizations of CAFs have revealed that different phenotypes

of CAFs are significantly associated with the prognosis of lung

cancer patients (33). M2 macrophages can modulate T helper cells

(Th), B cells, and cytotoxic T cells (Tc) in their surrounding tumor

microenvironment, thereby influencing patient prognosis (34). The

upregulation of the Extracellular Matrix Organization pathway

suggests a crucial role of ECM in the progression of

micropapillary lung adenocarcinoma. ECM remodeling is often

closely associated with tumor cell invasion and metastasis, and

the high invasiveness of the micropapillary histological pattern may

partially be attributed to the active state of this pathway (35). The

upregulation of RTK signaling indicates that tumor cells in this

region may have acquired enhanced proliferation and invasive

capabilities through RTK-mediated signaling pathways. The

activation of RTKs has been linked to poor prognosis and drug

resistance in various cancers, further supporting the aggressive

characteristics of micropapillary LUAD (36). These results suggest

that dynamic changes in cell adhesion and ECM remodeling in the

tumor microenvironment may be important mechanisms driving

the invasion and metastasis of lung adenocarcinoma. Tumor cells

gain enhanced migratory and invasive abilities by modulating their

adhesion to the ECM, which is particularly pronounced in

micropapillary lung adenocarcinoma. Receptor Tyrosine Kinases

(RTKs) signaling is often regulated through Focal Adhesion Kinase

(FAK). FAK is a non-receptor tyrosine kinase located in focal

adhesions, involved in mediating downstream effects of RTK

signaling. FAK promotes tumor cell proliferation, survival, and

migration by activating signaling pathways such as PI3K/AKT and

MAPK (37, 38). The upregulation of the Proteoglycans in Cancer

pathway in KEGG analysis also suggests the role of proteoglycans in

the metastasis of micropapillary LUAD cells, further emphasizing

the regulatory role of proteoglycans in RTK signaling (39). The

process of cellular dedifferentiation has been implicated in tumor

progression (40). The histological subtypes of invasive LUAD are

associated with prognosis, with high-grade histological subtypes,

including micropapillary (MIP), showing significantly increased

risks of recurrence and metastasis (8, 20). These subtypes are also

related to clinical responses to immune checkpoint inhibitor

treatments (41). Regions with higher CytoTRACE scores suggest

that the tumor cells in those areas possess stronger undifferentiated

characteristics or tumor stemness (26). These cells retain higher

self-renewal capabilities, which may be related to tumor

invasiveness and drug resistance, and often include cancer stem

cells, the presence of which is typically associated with risks of

tumor recurrence and metastasis (42, 43).
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The type, structure, and function of cells, as well as their ability

to change morphology and function under different conditions, are

fundamental factors determining tissue morphology formation and

development. Most lung adenocarcinomas are characterized by the

coexistence of two or more histological subtypes within the tumor

tissue. Therefore, a comprehensive study of cellular lineage

composition is crucial. We found that histological subtypes

exhibit high similarity in major cell types, but the degree of cell

enrichment varies among different subtypes. However, studies have

suggested that cell composition is inferred from a human lung

comprehensive cell atlas containing 58 cell subpopulations, which

reveals extensive plasticity of cell types and cell type-specific gene

expression during organ evolution, providing important molecular

data and insights into the behavior of lung cells in different

biological contexts (44). Other novel or rare cell types, especially

intermediate cell states, may not be resolvable or identifiable with

current technologies. To overcome this limitation, we used an

unsupervised framework to predict the differentiation status of

each spatial point and observed heterogeneity in dedifferentiation

states between histological subtypes, consistent with histological

morphology. Interestingly, a recent study using genetically

engineered mouse models of human cancer revealed highly plastic

cell states (HPCS) during the progression of lung cancer. HPCS cells

exhibit robust differentiation and proliferation potential (45).

Importantly, the MP subtype demonstrated significantly

heterogeneous differentiation states, which may explain the

emergence of micropapillary histological morphology.

In our study, CAFs were the most prevalent cell type. This may

indicate their important roles in immune responses, phagocytosis,

angiogenesis, and lung homeostasis. The heterogeneity of CAFs is

increasingly recognized as a critical factor in the tumor

microenvironment. For instance, Pellinen et al. utilized multiplex

fluorescence immunohistochemistry to identify distinct CAF subsets

in non-small cell lung cancer (NSCLC), demonstrating that specific

subsets (CAF7 and CAF13, defined by markers like PDGFRA,

PDGFRB, FAP, and aSMA) had opposing associations with tumor

histology, driver mutations, immune features, and patient prognosis

(46). Cords L et al. showed that CAFs can be divided into 11

phenotypes: ifnCAFs (IDO+), tCAFs (CD10+/CD73+), hypoxic

tCAFs (CAIX+/CD10+), iCAFs (CD34+/CD248+), vCAF

(CD146+/CD34-), dCAFs (Ki-67+), SMA CAFs (SMA+/FAP?/

MMP?/Collagen)?, hypoxic CAFs (CAIX+), and PDPN CAFs

(PDPN+). Collagen-expressing CAFs are categorized into mCAFs

(MMP11+/SMA+/Collagen+) and collagen CAFs (Collagen+/FN+/

MMP11-/SMA)?. Their findings indicated that mCAFs and collagen

CAFs are enriched in solid and micropapillary histological patterns

(33). In their study, mCAFs and collagen CAFs were associated with

poorer prognosis. Our research also validated this, showing that the

gene signature corresponding toMMP11+/SMA+/Collagen+mCAFs

expression in the MIP region and MIP+ACI region was higher than

in other regions. The development of comprehensive marker panels,

such as the 42-marker panel for imagingmass cytometry described by

Røgenes et al. for studying CAF niches in breast cancer, underscores

the importance of deeply characterizing CAF heterogeneity and their
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interactions with immune and cancer cells (47). The complex

interplay between these diverse CAF subtypes and immune cells is

a critical determinant of tumor progression and response to therapy,

as specific CAF populations can recruit or exclude immune cells,

modulate their function, and contribute to an immunosuppressive

microenvironment, thereby impacting immunotherapy efficacy (48).

Further investigation into the spatial organization and functional

states of distinct CAF populations in LUAD subtypes is warranted.

Secondly, there are many macrophages in the tumor

microenvironment (TME), followed by T cells, including naive T

cells, effector T cells (T helper cells and cytotoxic CD8+ T

lymphocytes), and memory T cells (central memory T cells and

effector memory T cells), which mediate adaptive immune responses.

Notably, we found different TAM subpopulations among the various

histological subtypes, indicating that TAM subpopulations play an

indispensable role in reshaping the tumor environment and mediating

immunosuppression to promote tumor progression. Macrophages act

as antigen-presenting cells (APCs) by activating T cells through MHC/

TCR interactions and co-stimulatory signaling, and they activate anti-

tumor immunity by recruiting innate immune cells. For instance,

cytotoxic CD8+ T lymphocytes (CTLs) execute effector functions and

promote cell death through performing granzyme and Fas/FasL

pathways (49). Dysfunctional or exhausted T cells in the TME are

characterized by the overexpression of inhibitory checkpoint

molecules, such as PD-1, TIM-3, LAG3, CTLA4, and TIGIT.

The molecular mechanisms underlying the progression of LUAD

remain unclear. Annotating tumor samples solely based on

histological characteristics lacks information about the intratumoral

heterogeneity or histological subtypes. Gene regulatory networks,

including transcription factors and target genes, determine the

transcriptional state of cells. We found that regulatory networks

associated with differentiation and proliferation, such as ECM

remodeling and RTK signaling pathway activation, modulate

cellular plasticity and reprogramming, as well as potential cell state

transitions. Furthermore, we observed a significant micropapillary

subtype during subtype progression, which is associated with clinical

responses to immune checkpoint inhibitor treatment. This subtype

exhibits notable undifferentiation and stemness during cellular

dedifferentiation. Cells of these subtypes retain stronger self-

renewal capabilities, which may be related to the aggressiveness

and drug resistance of the tumor. Additionally, these cells may

contain cancer stem cells, whose presence is often linked to the risk

of tumor recurrence andmetastasis (42, 43). In other words, cells with

high self-renewal capacity in tumors may lead to more severe disease,

as they can support tumor growth and spread, as well as resistance to

treatment. Further research is needed to elucidate the relationship

between the micropapillary subtype and cellular dedifferentiation.

In summary, our findings demonstrate the dynamic biological

changes and dedifferentiation states of tumor subtypes during the

progression process. Through spatially resolved molecular profiling,

we were able to obtain detailed and objective information about

cancer cel ls and their microenvironment (i .e . , tumor

microenvironment, TME) during tumor progression. This enables

us to directly analyze the molecular characteristics and
Frontiers in Immunology 11
heterogeneity of cellular dedifferentiation states throughout

subtype progression, providing new potential insights for

treatment choices. In short, this study reveals important biological

processes in tumor development and may offer valuable guidance

for future therapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Histological examination of samples from 5 patients with LUAD.

SUPPLEMENTARY FIGURE 2

A representative image showing the number of genes studied in defined spots

of LUAD samples.

SUPPLEMENTARY FIGURE 3

Clustering into 10 classes according to spatial transcriptomes in spots.

SUPPLEMENTARY FIGURE 4

Differential gene expression in the identified 10 clusters. The heatmap

displays the top 8 differentially expressed genes for each cluster, sorted by
log fold change.
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SUPPLEMENTARY FIGURE 5

(A) Spatial feature plots illustrating the distribution and relative abundance of
annotated cell types across a representative tissue section (Patient P5). Red

indicates higher abundance and blue indicates lower abundance for each cell
type. (B)Cells annotated included different immune cells and other cells types

in which CAFs were found to be the majority.

SUPPLEMENTARY FIGURE 6

(A) Significant spatial correlations between different cell types within the same
spot. The correlationmatrix was generated using data aggregated from all five

patients (P1-P5). (B) Significant overlapping of the representative module
genes with the corresponding micropapillary regions in different

patients’ samples.

SUPPLEMENTARY FIGURE 7

Detailed mapping showing possible microscopic infiltration of tumor cells
into adjacent normal tissue in patients 3 to 5.

SUPPLEMENTARY FIGURE 8

Co-expression of CAF markers COL1A1, ACTA2 and MMP11 was significantly

higher in MIP than in ACI as demonstrated by spatial expression analysis.

SUPPLEMENTARY FIGURE 9

(A) Spatial projection of the GSVA scores for Extracellular Matrix Organization

and Signaling by Receptor Tyrosine Kinase pathway. (B) Violin plots
comparing the Gene Set Variation Analysis (GSVA) scores for the

‘Extracellular Matrix Organization’ and ‘Signaling by Receptor Tyrosine

Kinase’ pathways across Micropapillary (MIP), Acinar (ACI), and Normal (N)
regions from all patients. The y-axis represents the GSVA enrichment score.

SUPPLEMENTARY FIGURE 10

Patient P3 included MIP+ACI, ACI, and normal (N) regions, with the MIP+ACI
region showing higher CytoTRACE scores compared to the ACI region, while

both were higher than the normal tissue region.

SUPPLEMENTARY FIGURE 11

Characterization of immune cell interactions that are associated with CAF
expression in tumors. This dot plot visualizes significant ligand-receptor

interactions between various cell types. The color of each dot indicates the

mean expression level of the interacting partners, while the size of the dot
corresponds to the statistical significance of the interaction (p-value).
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