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Lymphoma is a highly heterogeneous hematologic malignancy characterized by 
intricate molecular and pathological mechanisms. Key mechanisms contributing 
to its complexity include malignant clonal evolution driven by somatic mutations, 
epigenetic modifications affecting gene regulation and cellular behavior, and 
dynamic tumor microenvironment remodeling. These factors collectively 
undermine the efficacy of conventional therapeutic strategies. Differences in 
the molecular mechanisms of different subtypes lead to heterogeneity in 
treatment response and recurrence of drug resistance. Current and future 
investigative priorities emphasize molecular stratification, precision diagnosis 
and therapeutic strategies, advancement of novel diagnostic tools, and the 
implementation of artificial intelligence (AI) for integrative analysis of high-
dimensional biological data. Moreover, emerging areas such as microbiome­

targeted interventions are being explored to improve clinical outcomes and 
support the evolution of precision oncology in lymphoma treatment. 
KEYWORDS 

lymphoma, precision medicine, immunotherapy, nanotechnology, artificial intelligence 
1 Introduction 

Lymphoma is one of the most commonly diagnosed malignant neoplasms globally, 
with an estimated 89,000 new cases and over 21,000 related deaths reported in 2024. 
Pathologically, they are classified into Hodgkin’s lymphoma (HL) and non-Hodgkin 
lymphoma (NHL). NHL mainly comprises B-cell lymphomas such as diffuse large B-cell 
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lymphoma (DLBCL), follicular lymphoma (FL), metachronous 
lymphoma (MCL), and T-cell lymphomas such as peripheral T-
cell lymphoma (PTCL), interstitial large-cell lymphoma (ALCL), 
and angio-immunoblastoid T-cell lymphomas (AITL), and NK-cell 
lymphomas (1). HL is relatively uncommon and has considerable 
regional variability in incidence, with the classical subtype 
representing the most frequently observed form (2). The 
molecular pathogenesis of lymphoma subtypes is highly 
heterogeneous. For example, cell-of-origin (COO)-based 
classification of DLBCL distinguishes between germinal center B-
cell-like (GCB) and non-germinal center B-cell-like (non-GCB) 
subtypes, each characterized by distinct gene expression profiles, 
including differential expression of markers such as BCL6 and MYC 
(3). Double-hit lymphoma (DHL), defined by rearrangements 
involving MYC and BCL2 and/or BCL6, displays a highly

aggressive clinical phenotype, elevated proliferative potential, 
resistance to conventional therapeutic approaches, and very poor 
prognosis (4, 5). In-depth analysis of molecular features can provide 
a key basis for developing individualized treatment strategies. 
Currently, the treatment of lymphoma faces two major 
challenges: drug resistance and relapse. Tumor cells may be 
resistant to drugs through multiple escape mechanisms, and 
invasiveness and drug resistance may increase after relapse. 

This paper aims to provide a comprehensive and systematic 
analysis of the molecular mechanisms underlying lymphoma and to 
examine current therapeutic strategies with particular emphasis on 
the contributions of molecular pathology to diagnosis, prognostic 
evaluation, and therapeutic decision-making. The study further 
addresses limitations in existing treatment modalities. It 
highlights future research priorities, including developing next-
generation targeted therapies, optimization of immunotherapy 
protocols, investigating combinatorial treatment strategies, and 
incorporating nanotechnology and artificial intelligence (AI). The 
overarching goal is to advance therapeutic efficacy and improve 
patient survival while establishing a theoretical basis for the 
continued development of precision medicine in lymphoma care. 
2 Molecular pathological mechanisms 
of lymphoma 

2.1 Genomic diversity and key driving 
factors 

2.1.1 Genes with high-frequency mutations: MYC, 
BCL2, TP53, NOTCH1 

Recent advancements in molecular pathology research have 
identified recurrent genetic alterations associated with lymphoma. 
Frequent mutations such as MYC gene rearrangements, BCL2 
translocations, inactivating mutations in TP53, and truncating 
mutations in the PEST domain of NOTCH1 have been 
increasingly recognized. These mutations play a key role in the 
occurrence and development of lymphoma. MYC gene  
rearrangement disrupts the metabolic homeostasis of oxidative 
phosphorylation, leading to uncontrolled tumor proliferation. 
Frontiers in Immunology 02 
Such cases are often accompanied by genomic instability and 
reduced chemosensitivity (6). FL is characterized by an inherited 
alteration of IGH-BCL2 translocation, which puts the BCL2 gene 
under the control of immunoglobulin enhancers, resulting in 
overexpression. BCL2-positive patients typically respond poorly to 
chemotherapy and have shorter survival (7). Mutations or 
inactivation of the TP53 gene are relatively common in relapsed 
and refractory lymphoma. Such gene abnormalities are closely 
associated with increased tumor aggressiveness, treatment 
tolerance, and a high risk of recurrence, which seriously affect the 
prognosis of patients (8). NOTCH1 is a driver of MCL (9). Target 
gene networks such as HES1/HEY1 regulate cell proliferation and 
differentiation, angiogenesis, and drug resistance development, 
becoming key drivers of aggressive disease progression. 

2.1.2 Structural variations: chromosomal 
translocations and copy number variations 

Genomic structural abnormalities can contribute to the 
malignant transformation of lymphoma. A prominent example is 
chromosomal translocation, with the IGH-BCL2 translocation 
being the most frequently observed in follicular lymphoma. This 
translocation leads to BCL2 gene overexpression under the control 
of the IGH enhancer, therefore inhibiting apoptosis and facilitating 
lymphoma initiation and progression. Copy number variations 
(CNVs) are also quite common. For instance, the deletion of the 
cyclin-dependent kinase inhibitor 2A (CDKN2A) gene is an

independent factor associated with poor progression-free survival 
(PFS) and overall survival (OS) (10). Such patients often have a 
poor prognosis and reduced responsiveness to chemotherapy (11). 
Deletion of the p16INK4a protein encoded by CDKN2A leads to an 
uncontrolled cell cycle, which promotes tumor cell proliferation 
(12). These structural variants not only reveal the core mechanism 
of lymphoma progression but also provide molecular loopholes for 
targeted therapy. 
2.2 Epigenetic regulatory network 

Epigenetic regulatory networks show intricate interactions with 
non-coding RNAs via DNA methylation and covalent histone 
modifications, thus establishing multilayered modulation of gene 
transcription. Among these modifications, DNA methylation and 
histone methylation are the most prevalent. They are frequently 
associated with the transcriptional silencing of tumor suppressor 
genes and the inappropriate activation of proto-oncogenes, 
contributing to lymphomagenesis and disease progression. 
Dysregulation or mutations in genes related to DNA methylation 
(such as DNMTs, TET2, IDH2) and genes associated with histone 
methylation (such as EZH2, KMT2D) have been observed, and most 
of these alterations are associated with poor prognosis (13). DNA 
methyltransferases (DNMTs) are key factors in regulating DNA 
methylation. Among the DNMT family, DNMT1, DNMT3A, and 
DNMT3B are associated with tumourigenesis (14). Deficiency of 
DNMT1 leads to abnormal self-renewal, niche preservation, and cell 
differentiation of hematopoietic stem cells (HSCs), especially to the 
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myeloid lineage. Moreover, deficiency of DNMT3A and DNMT3B 
impairs the self-renewal ability of HSCs (15). Although DNMT3A is 
less frequently overexpressed in lymphoma than DNMT1 and 
DNMT3B, it shows the highest mutation frequency among the 
DNMT family. Its deletion has increased mast cell reactivity and 
exacerbated inflammatory responses in vivo (16, 17). Poole CJ et al. 
reported that D-MYC induces the overexpression of DNMT1 and 
DNMT3B, which promotes tumor maintenance (18). 

Post-translational modifications of histones, such as acetylation 
and methylation, play a key role in regulating the three-dimensional 
organization of chromatin. These reversible covalent changes 
contribute to the structural flexibility and dynamic remodeling of 
higher-order chromatin architecture. Considering histone 
acetylation as an example, as the core catalytic component of the 
Polycomb Repressive Complex 2 (PRC2) complex, EZH2 protein 
mediates epigenetic regulation by catalyzing the trimethylation of 
lysine 27 on histone H3 (H3K27me3). This modification can 
directly inhibit the transcriptional activity of target genes and 
collaborate with DNA methyltransferases to participate in gene 
silencing (19, 20). Importantly, gain-of-function mutations at the 
Y641 locus are detected in about 40% of B-cell lymphoma patients. 
These mutations significantly enhance abnormal silencing of 
oncogene-related  genes  by  altering  enzymatic  kinetics,  
representing one of the key molecular mechanisms driving 
tumorigenesis (21). 

Long  noncoding  RNAs  l ike  Plasmacytoma  Variant  
Translocation 1 (PVT1) play a key role in epigenetic regulation. 
Traversa D et al. found that this RNA molecule is often 
overexpressed in lymphomas. It activates the MYC gene via 
chromosomal translocations and relieves MYC inhibition by 
sponging miRNAs, thus driving tumor proliferation and survival 
(22). Moreover, PVT1 has linear and  circular  transcriptional
variants. Simultaneous silencing of linear PVT1 and its circular 
isoform circPVT1 suppresses Burkitt lymphoma progression, 
whereas exogenous circPVT1 overexpression offsets the loss of 
endogenous circular transcripts and enhances malignant behavior 
in B-cell lymphomas (23). ceRNA competitively binds to miRNAs 
with mRNAs by sharing miRNA response elements (MREs), 
forming a “ceRNA-miRNA-mRNA” regulatory network. This 
network can upregulate MYC and BCL2, restore PTEN 
expression, and intervene in the PI3K/AKT pathway, affecting 
tumor cell proliferation and chemoresistance (24). PVT1 is 
located near c-MYC. Its circular product, circPVT1, co-localizes 
with c-MYC and has a stable circular structure. It can interact with 
RNA-binding proteins to regulate cell processes and promote 
lymphoma development (25). Since c-MYC is highly activated in 
Burkitt lymphoma, circPVT1 may rely on c-MYC to drive 
proliferation. Meanwhile, as a miRNA sponge, circPVT1 may 
competitively target miR-15/16 and other miRNAs that target 
BCL2 through the ceRNA mechanism, relieving the inhibition of 
BCL2/c-MYC (26). 
Frontiers in Immunology 03 
2.3 Tumor microenvironment interactions 

The tumor microenvironment (TME) (Figure 1) is a highly 
dynamic and intricate biological environment composed of 
malignant cells and various stromal elements, with key 
components including immune cells (e.g., T cells, macrophages, 
regulatory T cells), vascular endothelial cells, and the extracellular 
matrix (ECM) (27). Tumor-associated macrophages (TAMs) show 
significant  functional  heterogeneity  in  the  lymphoma  
microenvironment. M1-type macrophages activate T-cell immune 
responses by secreting pro-inflammatory cytokines like IL-12 and 
TNF-a, while M2-type macrophages induce T-cell exhaustion by 
releasing inhibitory factors such as IL-10 and TGF-b. The dynamic 
balance between these two directly affects tumor progression and 
treatment response (28). Specific overexpression of enolase 2 
(ENO2) promotes glycolytic metabolic reprogramming via 
activating the GSK3b/b-catenin/c-Myc signaling pathway, thus 
inducing macrophage polarization toward the M2 phenotype and 
creating a tumor-promoting microenvironment (29). When PD-L1 
inhibitors are used in combination with lenalidomide, they not only 
convert PD-1+ M2 TAMs to an M1 phenotype with phagocytosis 
through immunometabolic reprogramming but also block the IL­
10-PD-1/PD-L1 immunosuppressive axis and  restore the

proliferation of CD4+/CD8+ T cells (30). The CTLA-4/CD86 
costimulatory signaling axis also represents a PD-1-independent 
immune escape pathway, particularly prominent in cHL. Residual 
CTLA-4+ T cells and CD86+ TAMs persist after PD-1 blockade, 
suggesting that combining CTLA-4 inhibitors may emerge as a new 
strategy to overcome drug resistance (31). 

Tumor cells evade immune surveillance via diverse 
mechanisms. Antigen escape arises when tumor cells undergo 
mutation, downregulation, or loss of target antigens, impairing 
CAR-T  cell  recognition  (32, 33).  TME  contributes  to  
epigenetically driven T-cell exhaustion, diminishing normal T-cell 
activity and limiting durable responses to PD-1 inhibitor therapy 
(32, 33). Furthermore, tumors establish a comprehensive 
immunosuppressive network by recruiting regulatory T cells 
(Tregs), myeloid-derived suppressor cells (MDSCs), and secreting 
immunoinhibitory cytokines such as TGF-b and IL-10, which 
suppress T-cell function at multiple levels (32, 33). These 
processes contribute to therapeutic resistance and disease relapse. 

Metabolic competition plays a key role in reshaping the TME. 
Tumor cells undergo glycolysis by massively uptaking glucose via 
the Warburg effect, leading to lactic acid accumulation and 
increased acidity in the microenvironment. This not only directly 
inhibits T-cell function but also promotes the expansion of Tregs 
and regulatory B cells (Bregs) by activating immunosuppressive 
signaling pathways (such as TGF-b and IL-10) (34). Mishina T et al. 
reported that elevated expression levels of TGF-b and IL-10 in 
patients with DLBCL were significantly correlated with R-CHOP 
treatment failure. These findings indicate that targeting metabolic– 
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immune interactions may represent a pivotal strategy for improving 
therapeutic outcomes (35). 
2.4 Clonal evolution and drug resistance 
mechanisms 

Adaptive resistance in tumors, driven by clonal evolution, is a 
significant challenge in cancer therapy. This phenomenon primarily 
arises from the interaction between genomic alterations and 
epigenetic reprogramming. Liquid biopsy technology enables real-
time monitoring of spatiotemporal changes in resistant clones by 
jointly analyzing circulating tumor DNA (ctDNA) methylomes and 
mutation profiles. It can accurately capture adaptive mutations like 
BTK-C481S. Furthermore, it allows quantitative analysis of 
phenotypic plasticity indices, revealing the process of drug-
resistant  phenotype  transformation  mediated  by  DNA  
methylation and histone modification reprogramming under 
chemotherapy pressure (36). Studies analyzed 73 cases of DLBCL 
and found that pre-treatment ctDNA levels were an independent 
prognostic factor. The dynamic clearance rate of ctDNA has shown 
comparable efficacy to PET-CT in assessing therapeutic response. 
The presence of residual ctDNA after treatment correlates with a 
Frontiers in Immunology 04
high risk of disease recurrence. Moreover, ctDNA testing overcame 
the limitations of tumor spatial heterogeneity and enabled the 
detection of an additional 170 driver mutations not identified 
through conventional tissue biopsy (37). 

In single-cell multi-omics research, Tran N et al. used single-cell 
chromatin accessibility analysis (scATAC-seq) to study epigenetic 
changes in tumor cells during chemotherapy. They found that 
subclones acquire stem-like properties through abnormal 
activation of the KDM6A demethylase (38, 39). During 
chemotherapy, lymphoma cells can acquire chemoresistance by 
upregulating drug resistance-related genes through epigenetic 
mechanisms such as DNA methylation and histone modification 
changes. The development of evolutionary prediction models offers 
a strategic approach for optimizing intervention timing and 
enabling precise therapeutic targeting before the expansion of 
resistant clonal populations. 
3 Innovative treatment strategies 

Lymphoma treatment strategies are experiencing a paradigm 
shift from conventional approaches toward precision medicine. 
Based on first-line chemoimmunotherapy, emerging therapeutic 
FIGURE 1 

Schematic representation of cellular components in the tumor microenvironment. Tumor cells express surface markers (CD19 and CD20) and 
secrete immunosuppressive factors (IL-10 and VEGF). Tumor-derived PD-L1 binds to PD-1 on CD8+ T cells, inhibiting T cells. CD47 interacts with 
SIRPa on macrophages, suppressing phagocytosis and supporting tumor survival. Tregs express FOXP3, while M2 macrophages are marked by 
CD163+ and contribute to immunosuppression. CAFs release CXCL12, which binds CXCR4 on tumor cells to promote migration and homing and 
also secrete TGF-b, which modulates tumor growth and therapeutic resistance. CD31 marks endothelial cells and contributes to aberrant 
angiogenesis. ECM releases fibronectin and collagen, promoting fibrosis. M1 macrophages secrete IL-12 and TNF-a to increase T cell-mediated 
immunity, whereas M2 macrophages promote tumor growth via IL-10 and TGF-b-induced T cell exhaustion. Mast cells produce IL-6, IL-8, TNF-a, 
and VEGF, facilitating tumor proliferation, angiogenesis, and immune suppression. 
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interventions for relapsed or refractory cases are being developed 
across several key dimensions (Figure 2). 
3.1 Breakthroughs in targeted therapy 

3.1.1 Small molecule inhibitors: Bruton’s Tyrosine 
Kinase, BCL2, and Enhancer of Zeste Homolog 2 
inhibitors 

In cancer treatment, targeted molecular therapies are used not 
only as first-line treatments but also often as second-line regimens. 
Their mechanism of action involves the selective targeting of 
intrinsic molecular susceptibilities within malignant cells. These 
therapies include small-molecule inhibitors and protein 
degradation technologies. Common small-molecule inhibitors 
include BTK inhibitors, BCL2 inhibitors, and EZH2 inhibitors. 
The main action of BTK inhibitors has been systematically 
described by the teams of Broccoli A and Tian G (40, 41). 
Ibrutinib is an oral Bruton’s tyrosine kinase (BTK) inhibitor. It 
irreversibly inhibits the B-cell receptor (BCR) signaling pathway by 
covalently binding to the cysteine (Cys) 481 site, marking a 
milestone in treating B-cell tumors. First-generation drugs, such 
as Ibrutinib, have been approved by the European Medicines 
Agency (EMA) to treat relapsed or refractory mantle cell 
lymphoma (R/R MCL). Clinical evidence indicates that the timing 
of therapeutic intervention exerts a substantial influence on patient 
prognosis (42, 43). The SYMPATICO study showed that the 
combination of Venetoclax can extend the median PFS of 
relapsed MCL patients to 31.9 months (44). Patients treated with 
ibrutinib at the first recurrence had a 2.5-fold improvement in 
median PFS compared with late-line use (25.4 vs 10.3 months) (45). 
To address the therapeutic limitations of drug resistance, Chen Q 
Frontiers in Immunology 05 
et al. conducted a study demonstrating that the CDK1 inhibitor 
RO-3306 increases sensitivity to BTKi in DLBCL. These findings 
propose a novel therapeutic strategy for overcoming resistance 
mediated by the C481S mutation (46). For first-generation drugs 
like Ibrutinib, clinical response declines due to resistance mutations 
such as C481S. Second-generation inhibitors Acalabrutinib and 
Zanubrutinib address this by optimizing kinase selectivity to 
improve specificity and reduce off-target effects. Zanubrutinib 
improves oral bioavailability by 3.9% compared to Ibrutinib, 
showing higher ORR and longer PFS in relapsed MCL (47, 48). 
Chihara et al. reported that the combination of Ibrutinib with PD-1 
inhibitors yielded an ORR of 77.8% in patients with primary or 
secondary central nervous system (CNS) lymphoma. However, 
treatment was associated with grade 3 to 4 hematologic toxicities 
(49). In the future, comprehensive molecular profiling of CNS 
lymphoma is needed to refine diagnostic criteria and optimize 
therapeutic strategies. Furthermore, dynamic monitoring of 
ctDNA holds the potential for guiding timely interventions 
against resistant subclones, thus enabling more precise 
therapeutic targeting. Venetoclax is a highly selective BCL-2 
protein antagonist. It works by competitively binding to the BH3 
domain of BCL-2. This relieves BCL-2’s inhibition of pro-apoptotic 
proteins like BAX/BAK. It also restarts the tumor cell apoptosis 
program (50). BCL-2 overexpression often coexists with EZH2 
gain-of-function mutations. Targeted combination with 
Tazemetostat (an EZH2 inhibitor) can synergistically induce dual 
regulation of the epigenetic-apoptotic axis (51, 52). 

Coughlin CA et al. revealed that BCL10 mutations in DLBCL 
contribute to treatment resistance via two distinct mechanisms. 
First, they activate the NF-kB signaling pathway and establish a 
positive feedback loop involving IL-6 and STAT1/2, which increases 
the expression of anti-apoptotic BCL-2 family proteins such as 
FIGURE 2 

Innovative treatment strategies. 
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BCL-xL and BFL1, thus conferring resistance to Venetoclax 
monotherapy. Simultaneously, these mutations alter the BCR 
signaling network, suppressing the inhibitory effects of BTK 
inhibitors on downstream kinases (53). To address this resistance 
mechanism, the combination of non-covalent BTK inhibitors 
Pirtobrutinib and Venetoclax reveals significant synergistic effects. 
It blocks NF-kB/AP-1 transcriptional activation mediated by 
BCL10 mutations while suppressing the expression of anti­
apoptotic proteins BCL-2 and MCL-1. This significantly inhibits 
the growth of BCL10-mutated lymphoma cells, showing potent 
antitumor activity and providing a new strategy to overcome BCL10 
mutation-related drug resistance (53). 

The EZH2 inhibitor Tazemetostat targets the catalytic subunit 
of the histone methyltransferase PRC2 complex. It competitively 
inhibits its binding to the cofactor S-adenosylmethionine (SAM), 
thus blocking H3K27me3-mediated epigenetic silencing (54). In FL 
and DLBCL, EZH2 gain-of-function mutations (i.e., Y641F) drive 
silencing of tumor suppressor genes like CDKN2A by improving 
H3K27me3 catalytic efficiency. These mutations are significantly 
associated with tumor progression and poor prognosis (55). Izutsu 
K et al. used Tazemetostat as monotherapy for EZH2-mutated FL, 
yielding 70.6% ORR (56). This demonstrated good long-term 
efficacy and safety, supporting its use as a third-line treatment 
option. The ongoing SYMPHONY-1 Phase III trial (NCT04224493) 
for relapsed/refractory FL evaluates its synergistic effects when 
combined with lenalidomide-rituximab. Importantly, the EZH2 
resistance mutation profile reveals dynamic evolutionary 
characteristics. A recent study identified that the W113C 
mutation within the SET domain increases the binding affinity of 
SAM, thus attenuating the inhibitory potency of Tazemetostat by 
altering the positioning and structural stability of residue R685 (55). 
This resistance mechanism shows molecular heterogeneity 
compared to the classic Y641F mutation. This finding highlights 
the need for systematic screening of non-hotspot EZH2 mutations 
in clinical practice and drives the development of new-generation 
PRC2 inhibitors. Currently, MAK683, CPI-1205, SHR2554, PF­
06821497, and other agents are in Phase 2 or 3 antitumor trials. 
Efficacy validation of Tazemetostat combination regimens in 
DLBCL (NCT05618366 and NCT05604417) and analysis of 
resistance mechanisms will provide critical evidence-based 
support for targeted therapy. 

3.1.2 Protein degradation technologies 
Proteolysis-Targeting Chimera (PROTAC) technology 

constructs bifunctional molecules composed of a target protein­
ligand and an E3 ligase ligand. These molecules form a ternary 
complex of target protein-PROTAC-E3 ligase, triggering 
ubiquitination of the target protein and proteasome-mediated 
specific degradation  (57). This technology has demonstrated 
significant advantages in targeting oncoproteins (BCL6 and MYC) 
refractory to traditional therapies (58). Malarvannan M et al. 
comprehensively evaluated the design protocols and optimization 
strategies employed in developing PROTACs (59). As a 
representative example, the BCL6-specific degrader DZ-837 was 
rationally designed based on the N-phenyl-4-pyrimidineamine 
Frontiers in Immunology 06
scaffold. It can effectively reduce BCL6 protein levels in DLBCL 
cells. It can also be used in combination with Ibrutinib to overcome 
resistance mutations. PROTAC molecules directed against MYC 
have shown dual therapeutic efficacy in mouse models: prolonging 
survival and inhibiting tumor growth (60). Compared with gene 
editing technologies like CRISPR-Cas9, the PROTAC system has 
unique, reversible regulatory properties. Its mechanism of action 
does not rely on permanent genomic modifications. It provides 
more clinical application potential in terms of operational cycle, 
cost control, and off-target risk (61). Fu et al. further expanded this 
platform and successfully constructed an EZH2-targeted molecular 
library. Among these agents, the bifunctional degrader ZJ-20 
induces the degradation of the EZH2 enhancer, thus facilitating 
the disassembly of the entire PRC2. It shows excellent 
antiproliferative activity and favorable pharmacokinetic properties 
(62). Studies have developed new PROTAC molecules based on the 
reversible non-covalent BTK inhibitor ARQ531. These molecules 
can effectively circumvent resistance mechanisms mediated by 
C481S mutations. Their efficacy is significantly higher than 
traditional covalent BTK-PROTACs (63). Particularly, the 
innovative STAT3D PROTAC series molecules conjugate a 
STAT3-specific decoy with thalidomide. This not only efficiently 
reduces STAT3 protein levels but also precisely inhibits the 
expression of key oncogenes regulated by STAT3, such as

BCL2L1, CCND2, and MYC. As a result, it suppresses lymphoma 
cell proliferation while inducing cell apoptosis (64). This targeted 
degradation strategy showed minimal off-target activity against 
other members of the STAT family, such as STAT1 and STAT5, 
thus contributing to improved therapeutic specificity and 
reinforcing the direct anti-tumor efficacy in B-cell lymphoma. 
Together, these developments have validated the important 
application value of PROTAC technology in cancer therapy (64). 
3.2 Frontiers in immunotherapy 

3.2.1 Era of cell therapy 2.0 
Recently, CD20-directed therapy has been the core strategy in 

managing B-cell lymphoma. The following section provides a 
systematic overview of conventional therapeutic approaches 
targeting CD20, CD30, and CD52 antigens in treating 
lymphoma (Table 1). 

Advancements in multi-targeted therapeutic strategies are 
driving significant innovation in the clinical management of 
lymphoma. In this context, Esquinas et al. engineered novel 
chimeric CD79b-targeted CAR-T cells. They found that these 
CAR-T cells can induce CD79b and CD19 co-downregulation in 
NHL cells. Among them, CARLY3 has become an advantageous 
candidate for NHL treatment. It has excellent targeting specificity, 
durable tumor clearance ability, and minimal antigen loss rate (71). 

Traditional single-target CAR-T has an antigen escape defect. 
Dual-target CAR-T (CD19/CD22) addresses this by significantly 
reducing recurrence risk through a synergistic targeting 
mechanism. It shows improved efficacy in relapsed/refractory B-
cell lymphoma (72). CD20×CD3 bispecific antibodies are novel T 
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cell-engaging antibodies (such as glofitamab and epcoritamab). 
They are approved by the FDA/EMA for treating DLBCL and FL. 
However, approximately half of the patients exhibit primary 
resistance (73, 74). A retrospective analysis by Kyvsgaard ER et al. 
identified NOTCH1 mutation-induced loss of CD20 antigen 
expression as a critical mechanism contributing to therapeutic 
resistance, highlighting the role of genetic alterations in 
modulating treatment efficacy (74). The novel bispecific antibody 
TG-1801 targets both the CD47-SIRPa axis and CD19. This 
improves the ADCC/ADCP effects of anti-CD20 antibodies. It 
also achieves multi-dimensional antitumor activity by regulating 
the GPR183-PI3Kd pathway (75). Kolbe C et al. proposed a 
combinatorial therapeutic strategy involving anti-CD20 bispecific 
antibodies with CD39/CD73 inhibition. This regimen improves 
therapeutic efficacy by counteracting adenosine-mediated 
immunosuppression, restoring immune effector function within 
the TME. It increases tumor killing rates by 2.1-3.5 fold, CD8+ T 
cell expansion by 3.8 fold, and IFN-g secretion by 4.2 fold. Patients 
with high CD39-expressing effector memory T cells (TEM) show a 
67% higher response rate. This suggests that CD39 may serve as a 
predictive biomarker for efficacy (76). Resistance to BTK inhibitors 
(BTKi) and CAR-T is closely related to Myc pathway activation, 
with HSP90AB1 and CDK9 as key regulatory nodes (77). Jiang V 
et al. reported that the CDK9 inhibitor enitociclib effectively inhibits 
protein synthesis and induces apoptosis, successfully overcoming 
resistance to sequential therapies in a MCL model (78). A combined 
inhibition approach targeting both HSP90 and CDK9 offers a 
promising strategy for addressing therapeutic resistance. 
Moreover, CD19/CD70 dual-target CAR-T therapy achieved 
complete remission in patients with relapsed/refractory primary 
central nervous system DLBCL, sustaining 17 months of disease-
free survival without neurotoxicity, highlighting the potential of 
multi-targeted immunotherapies (79). These advances, comprising 
targeted therapies, immune modulation, and resistance reversal, 
have significantly enhanced the precision treatment landscape for 
lymphoma and laid a solid foundation for future clinical translation. 

Clinical trials for novel monoclonal antibodies, bispecific 
antibodies, and CAR-T therapies are currently being conducted 
globally. The following table (Table 2) summarizes some

representative ongoing trials (March 2025). 
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Recent breakthroughs in universal CAR-T (UCAR-T) 
technology drive cell therapy toward an “off-the-shelf” model. 
This therapeutic strategy utilizes gene editing to ablate 
endogenous TCR and MHC molecules in T cells, generating 
universal cellular products compatible with multiple patients. 
Preliminary clinical trials have demonstrated both the efficacy and 
safety of this approach in treating lymphoma. Based on this 
foundation, research groups have engineered a modular universal 
chimeric antigen receptor T-cell (MU-CAR-T) platform 
incorporating an Sd/Gv covalent linkage system. This system 
enables the modular assembly of diverse single-chain variable 
fragments, facilitating flexible and precise multi-antigen targeting. 
MU-CAR-T cells have shown potent cytotoxic activity against HIV-

infected and T-cell lymphoma cells, while also suppressing tumor 
progression in vivo through enhanced immune infiltration and 
cytokine release (80). This modular framework streamlines 
manufacturing processes and quality control protocols and 
establishes a comprehensive therapeutic paradigm with broad 
applicability to oncological and viral pathologies. 

To optimize immunocompatibility, Zhu S and his team used 
lentiviral transduction technology. They developed CD38-targeted 
UCAR-T cells overexpressing LLT1. The introduction of LLT1 
promotes CAR-T cell proliferation and antitumor activity. It also 
effectively defends against rejection by allogeneic NK and T cells. 
This improved UCAR-T demonstrates higher survival rates and 
tumor clearance capacity. It reduces inflammatory responses, 
providing a key solution to the immune rejection problem in 
universal therapies (81). Deep mechanistic studies on host 
immune rejection have led to Dasatinib-resistant UCAR-T (KM 
UCAR-T) development. This involves introducing the T316I 
mutation in the LCK gene and knocking out the TRAC and B2M 
genes. When combined with a Dasatinib administration strategy, 
this approach has led to the development of a novel cell therapy 
with both anti-rejection and anti-tumor properties (82). In vitro 
studies have demonstrated that KM UCAR-T cells retain their 
activation and functional capacity in the presence of Dasatinib. 
Furthermore, in xenograft mouse models, these cells show effective 
tumor clearance and resistance to host immune responses (82). The 
integration of multiple strategies (multiplex antigen recognition, 
immune modulation, and optimization of manufacturing 
TABLE 1 Advantages and disadvantages of conventional CD20/CD30/CD52-targeted therapy for lymphoma. 

Target Representative drugs Indications Advantages and disadvantages Notes 

CD20 Rituximab DLBCL, FL, CLL, MCL Advantages: Broad applicability; Disadvantages: High rate of drug resistance, 
risk of HBV reactivation. 

(65) 

Ofatumumab FL Advantages: Effective for low CD20 expression. 
Disadvantages: High risk of infection. 

(66, 67) 

Obinutuzumab CLL, FL Advantages: PFS compared to rituximab. 
Disadvantages: More frequent infusion reactions. 

(68) 

CD30 Brentuximab vedotin cHL, ALCL Advantages: High targeting specificity, significantly prolongs the survival 
period. 
Disadvantages: Neuropathy, myelosuppression. 

(69) 

CD52 Alemtuzumab Cutaneous T-Cell 
Lymphoma (CTCL) 

Advantages: Potently clears malignant lymphocytes. 
Disadvantages: Extremely high risk of infection. 

(70) 
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processes) has significantly expanded the clinical potential of 
UCAR-T therapies. 

3.2.2 Expansion of immune checkpoint inhibitors 
Immune checkpoint therapy has introduced a transformative 

approach to cancer treatment by modulating T cell activation 
pathways and reshaping the anti-tumor immune response. 
Beyond the established targets of CTLA-4 and  PD-1/PD-L1,
identifying emerging immune checkpoints such as LAG-3, TIM-3, 
and TIGIT offers promising avenues to overcome current 
therapeutic limitations and improve clinical efficacy (83). LAG-3 
acts as a key co-inhibitory receptor that inhibits T-cell function by 
binding to MHC-II molecules (84, 85). LAG-3 and PD-1 work 
Frontiers in Immunology 08
synergistically to drive the exhaustion of CD8+ T cells, suppressing 
the IFN-g-dependent anti-tumor immunity. Blocking both 
pathways simultaneously can promote IFN-g release. It reduces 
T-cell exhaustion and enhances tumor clearance (86). Relatlimab is 
the first FDA-approved LAG-3 inhibitor. It is combined with a PD­
1 antibody to improve efficacy (87). In R/R HL patients who failed 
PD-1  treatment ,  the  combination  of  Relat l imab  and  
Pembrolizumab achieved an ORR of 31%, and the PFS at 12 
months reached 39%. Dual blockade of the LAG-3/PD-1 pathway 
can reverse the exhaustion of CD8+ T cells, promote the release of 
IFN-g, and enhance the tumor clearance ability (88). 

TIM-3 acts as a transmembrane immunomodulatory molecule. 
It drives T cell function exhaustion by binding ligands such as 
TABLE 2 All data are sourced from ClinicalTrials.gov. 

Trial ID Intervention Phase Target 
population 

Primary 
endpoint 

Status Estimated 
completion 
time 

Location 

NCT06824701 Tazemetostat 
+Zanubrutinib + anti-CD20 
monoclonal antibody 

1b r/r B-NHL Maximum 
Tolerated 
Dose (MTD) 

Recruiting 
(Not yet 
recruiting) 

2032-01 United States 

NCT06565689 YK012 
(Targeting CD19×CD3) 

1 r/r B-NHL Adverse Event 
(AE), Dose-
Limiting Toxicity 
(DLT), MTD 

Recruiting 2026-06-30 Beijing, China 

NCT06563596 Epcoritamab,+Zanubrutinib 
+ Rituximab 

II R/R FL Complete 
Metabolic 
Response 
(CMR) Rate 

Recruiting 2027-03-01 United States 

NCT06532643 Anti-CD20/CD30 CAR-T R/R Lymphoma Safety and 
Tolerability, 
Manufacturing 
Feasibility 

Recruiting 2025-09-01 Anhui, China 

NCT06464185 CD3-CD20 Bispecific 
Antibody in Combination 
with CD19 CAR-T 

B-NHL Incidence and 
Severity of AEs 

Recruiting 2026-04-30 Tianjin, China 

NCT06284122 Mosunetuzumab+ 
Lenalidomide+ Rituximab 

III FL PFS Recruiting 2028-11 Belgium, France, Germany, 
Portugal, Spain 

NCT06026319 CD79b ×CD19 CAR T I r/r NHL Incidence of AEs 
and Incidence of 
DLTs 

Recruiting 2027-01-01 Massachusetts, United States 

NCT06014762 P-CD19CD20-ALLO1 
(Targeting CD19 CD20) 

I r/r B-Cell 
Malignancies 

DLT Recruiting 2029-03 United States 

NCT05990465 LV20.19 CAR-T 
+ Pirtobrutinib 

I r/r B-Cell 
Malignancies 

Number of AEs Recruiting 2026-07 Wisconsin, United States 

NCT05607420 UCART20x22 r/r B-NHL Dose Exploration 
and DLT 

Recruiting 2027-11 United States, France, Spain 

NCT05421663 JNJ-90014496 (Targeting 
CD19 × CD20) 

Ib B-NHL AE Recruiting 2026-05-29 United States, Canada, 
Australia, Denmark, South 
Korea, Netherlands, Spain, 
United Kingdom 

NCT04802590 Ibrutinib + CD20 Antibody 
+ Venetoclax 

II MCL Minimal Residual 
Disease (MRD) 
Rate 

Recruiting 2026-03-31 Belgium, France, 
United Kingdom 
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Galectin-9. Its inhibitor, sabatolimab, has shown significant 
potential in the treatment of myeloid tumors (89–91). The 
recently developed small-molecule compound ML-T7 effectively 
disrupts PtdSer/CEACAM1 signaling, thus enhancing the 
functional activity of CAR-T cells. Moreover, by targeting the FG­
CC0 cleft of TIM-3, ML-T7 contributes to remodeling the immune 
microenvironment. Its therapeutic efficacy as a monotherapy is 
comparable to that of TIM-3-targeting antibodies, highlighting its 
potential as a promising immunomodulatory agent. The 
combination of PD-1 inhibitors can significantly improve the 
tumor  suppression  rate.  It  has  the  advantage  of  oral  
administration (92). It has been further found that the TIM-3/ 
Galectin-9 signaling axis forms a negative feedback loop. This 
occurs through IFN-g-mediated upregulation of Galectin-9. This 
finding provides theoretical support for developing combination 
immunotherapy (93). 

TIGIT, a co-inhibitory receptor that interacts with CD155 and 
CD112, plays a critical role in immune evasion by suppressing the 
activity of NK cells and T lymphocytes. Its underlying mechanisms 
and therapeutic potential in lymphoma have increasingly attracted 
research interest, positioning it as an emerging focus in tumor 
immunology (94, 95).In FL, TIGIT is significantly overexpressed in 
tumor-infiltrating T cell subsets. These include Treg, follicular 
helper T cells, and exhausted T cells. It is closely related to a poor 
survival prognosis. Importantly, anti-PD-1 therapy can specifically 
regulate TIGIT+ depleted T cell subsets. This suggests the potential 
value of a dual-target blockade strategy (96). The mechanism of 
recurrence after CAR-T therapy in mantle cell lymphoma showed 
that TIGIT expression was significantly upregulated on depleted T 
cells and cytotoxic T cells (CTLs). Tumor cells use monocyte-

expressed CD155/PVR to promote immunosuppressive signaling 
by upregulating TIGIT expression. This interaction is associated 
with the accumulation of MDSCs, collectively contributing to an 
immunosuppressive TME. These findings underscore the pivotal 
role of TIGIT in mediating resistance to CAR-T therapy (97). In 
DLBCL, the co-expression of TIGIT and PD-1 in tumor-infiltrating 
T cells (TILs) is particularly prominent. These TILs not only have 
close contact with malignant B cells but also reveal functional 
defects in cytokine secretion. Combined blockade of TIGIT and 
PD-1 can completely clear A20 lymphoma and significantly prolong 
survival in most mice. This highlights the clinical translation 
prospect of synergistic immune checkpoint inhibition (98). 
Further analysis of TME revealed that TIGIT was highly 
frequently expressed in TME cells from small B-cell lymphoma 
and ALCL, and its expression levels were significantly correlated 
with OS and PFS (99). In chronic lymphocytic leukemia/small 
lymphocytic lymphoma (CLL/SLL), negative expression of TME 
cells is associated with shorter OS. Subtype-specific differences exist 
in the co-expression patterns of TIGIT and PD-L1. These

differences provide a molecular basis for accurately screening the 
beneficiary population for TIGIT inhibitor combined with PD-1/ 
PD-L1 blockade (99). 

These novel immune checkpoints and the classic PD - 1/CTLA ­
4 form a multi-dimensional regulatory network. Their combined 
blockade strategies have demonstrated the potential to enhance the 
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anti-tumor immune response in pre-clinical models. Current 
research centers on precisely identifying predictive biomarkers, 
developing novel combinatorial strategies, such as co­
administration of TIM-3 inhibitors with PD-1 blockade, and 
exploring new drug modalities, including the small-molecule 
agent ML-T7. These efforts aim to address the clinical limitation 
of suboptimal response rates associated with existing immune 
checkpoint inhibitors and to establish a foundation for next-
generation tumor immunotherapy paradigms. 
3.3 Combination therapy strategies 

The innovation of combination therapy strategies in lymphoma 
has significantly improved clinical outcomes. The synergistic 
integration of immune checkpoint inhibitors (ICIs) and antibody-
drug conjugates (ADCs) has shown significant therapeutic benefits. 
ADCs enable targeted delivery of cytotoxic agents, facilitating 
precise tumor cell elimination and increased antigen exposure, 
while  anti-PD-L1  antibodies  al leviate  tumor-induced  
immunosuppression. This combination significantly amplifies 
anti-tumor efficacy compared to monotherapies. However, the 
underlying mechanisms of immunogenic cell death and the 
potential toxicity risks associated with such regimens require 
further comprehensive investigation. 

In epigenetic regulation, the histone deacetylase (HDAC) 
inhibitor Romidepsin is combined with PD-1 antibodies. This 
combination can upregulate chemokines to promote T-cell 
infiltration. It significantly activates CD4+/CD8+ TILs. The 
combination achieves synergistic tumor inhibition in B-cell 
lymphoma models (100). Ruan J et al. achieved an ORR of 65.2% 
in patients with previously untreated PTCL using a chemotherapy-

free regimen of Romidepsin and Lenalidomide. In the AITL 
subtype, the ORR increased to 78.6%. The two-year PFS and OS 
outcomes were comparable to those of the standard CHOP 
chemotherapy regimen. These findings suggest a viable 
therapeutic alternative for elderly patients or those unsuitable for 
conventional chemotherapy (101). In a phase I/II study, the PD-1 
antibody Sintilimab was combined with the histone deacetylase 
inhibitor Chidamide. This combination was used to treat relapsed/ 
refractory NK/T-cell lymphoma. It resulted in an increased ORR of 
59.5% and a CR rate of 48.6%. These results were significantly better 
than historical single-agent data (102). 

Metabolic intervention strategies focus on reversing the 
immunosuppressive microenvironment. The IDO inhibitor 
Epacadostat restores T/NK cell functionality by disrupting the 
tryptophan–kynurenine metabolic axis, reducing plasma 
kynurenine levels by up to 90% (103–105). Moreover, IL4I1­
mediated oxidative metabolism of tryptophan has been shown to 
induce the expression of immunosuppressive molecules, including 
PD-L1, by activating aryl hydrocarbon receptor (AHR) signaling. 
Silencing of IL4I1 expression significantly enhances the synergistic 
antitumor efficacy of PD-1 blockade in combination with CD19­
directed CAR-T therapy (106, 107). Furthermore, in a study 
evaluating the combination of Rituximab and Lenalidomide in 
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treatment-naïve FL, resistance was mediated by the transcription 
factor PD-1 through modulation of the PD-L1/4-1BBL signaling 
axis. Dual targeting of PD-L1/4-1BB antibodies can reverse drug 
resistance and promote dendritic cell maturation. This provides a 
new direction for FL therapy (108). Chamorro-Jorganes et al. found 
that combining EZH2 and BRD4 inhibitors showed significant 
antiproliferative effects. They achieve this by synergistically 
blocking MYC transcription and inducing G1 phase arrest. 
YPEL2 was identified as a key factor influencing the efficacy of 
dual targeting (109). 

Significant advances have been made in developing innovative 
treatment models through integrating physiotherapeutic 
approaches with immunotherapy. This combination has yielded 
promising breakthroughs, enhancing therapeutic outcomes. In a 
CAR-T bridging study for patients with R/R DLBCL, the one-year 
PFS (51.2%) and OS (86.7%) in the radiotherapy bridging group 
were significantly better than those in the chemotherapy bridging 
group (28.2%/52.7%). The treatment withdrawal and toxicity rates 
were also lower in the radiotherapy group. These findings suggest 
the unique value of local radiotherapy in optimizing the sequential 
regimen of CAR-T therapy (110). These multi-dimensional 
combination strategies, from immune activation to metabolic 
regulation to developing innovative therapies, have made 
substantial breakthroughs in individualized lymphoma treatment. 
 

3.4 Emerging fields 

3.4.1 Microbiome - tumor axis 
Growing insights into the TME have increased focus on the 

mechanistic interaction between microbial populations and tumor 
dynamics. The intestinal microbiota has emerged as a key 
modulator  in  the  onset,  progression,  and  therapeutic  
responsiveness of lymphoma. Its influence on tumor immune 
microenvironment homeostasis is exerted through several 
regulatory pathways, including modulation of host immune 
responses, metabolic output, and pro-inflammatory signaling 
networks (111). 

Routy B et al. found that fecal microbial transplantation (FMT) 
could enhance immunotherapy sensitivity. It does so by remodeling 
the microbiota structure. FMT intervention increased the response 
rate of PD-1 inhibitors in tumor-bearing mice by 2.3 times. The 
mechanism involved an increase in intestinal microbiota-mediated 
infiltration of CD8+ T cells. It also involved downregulating 
immunosuppressive factors such as IL-10 (112). The abundance 
of specific probiotics, such as Bifidobacteria and Akkermansia 
muciniphila, is positively correlated with the sensitivity of 
immunotherapy. Microbial metabolites such as short-chain fatty 
acids affect the progression of lymphoma by regulating the 
inflammatory  pathway  (113–115).  In  a  cl inical  study  
(NCT04567446) involving 33 patients with B-cell lymphoma, the 
objective response rate of the Akkermansia muciniphila (Akk 
bacteria) high-abundance group (;1%) reached 78% after 6 
months of CAR-T therapy. This rate was significantly higher than 
that of the low-abundance group. The abundance of Akk bacteria 
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was positively correlated with CD8+ T cell infiltration and IFN-g 
release in tumors/bone marrow. In the mouse model, the tumor 
volume of the Akk bacteria-supplemented group was reduced by 
58%, 72%, and 65% on days 10, 34, and 46, respectively. Survival 
was also significantly prolonged in this group. Clinical translational 
studies have further verified the clinical value of microbiota 
regulation. In a multicenter cohort analysis, the diversity of the 
gut microbiota in patients with allogeneic hematopoietic cell 
transplantation (allo-HCT) was significantly correlated with 
survival. The high microbial diversity group showed a 29% to 
51% reduction in mortality risk. Microbiota disruption was 
characterized by a significant loss of diversity accompanied by 
single-genus dominance. This pattern was a predictive indicator 
for developing graft-versus-host disease (116). Mendelian 
randomization studies have revealed species-specific effects from 
the perspective of causal associations. Faecalibacterium prausnitzii 
reduces the risk of Hodgkin lymphoma. Coprococcus antagonizes 
follicular lymphoma. Ruminococcaceae UCG-002 increases the risk 
of DLBCL by upregulating the inflammatory factor MIG (117, 118). 
Moreover, prospective studies of patients with DLBCL have shown 
the  following.  Dynamic  changes  in  the  abundance  of  
Enterobacteriaceae during R-CHOP treatment are significantly 
associated with the risk of bacterial infection. An initial 
Enterobacteriaceae  abundance  greater  than  4.5%  is  an  
independent prognostic indicator of infection risk. This 
observation supports the clinical adoption of early intervention 
strategies to preempt infection onset (119). These findings reveal 
the molecular mechanism by which the gut microbiota regulates the 
immune system against malignant tumors, which provides an 
important scientific basis for formulating personalized lymphoma 
treatment plans by adjusting the microbial community. 

3.4.2 Nanotechnology 
Recent advancements in nanotechnology are paving the way 

toward personalized therapeutic strategies for malignant tumors. 
Among these innovations, nucleic acid-based drug delivery systems, 
particularly mRNA vaccines, have emerged as a prominent area of 
investigation. A main challenge in this domain is overcoming 
intracellular delivery barriers associated with nucleic acid 
molecules while achieving targeted accumulation within the 
tumor immune microenvironment. 

Kranz LM et al. developed charge-optimized RNA lipid 
complexes (RNA-LPX) for delivery system optimization. These 
complexes trigger an immune response to virus-like infections 
through ligand-independent DC-targeting mechanisms (120). 
Sasaki  K ’s  team  manipulated  the  size  of  mRNA  l ipid  
nanoparticles (LNPs) to 200–500 nm by microfluidic technology, 
and the optimal formulation A-11-LNP was screened to 
significantly enhance the RNA uptake and antigen presentation 
efficiency of spleen DCs (121). Mannose-modified lipid 
nanoparticles (STLNPs-Man) can increase mRNA delivery 
efficiency  by  a factor of 4. This is achieved through  the DC

mannose receptor-mediated endocytosis pathway. They also 
enhance the synergistic effect with immune checkpoint inhibitors 
by downregulating T cell CTLA-4 expression. This downregulation 
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of CTLA-4 expression improves the combined efficacy (122). 
Moreover, a research group has engineered biomimetic 
nanoparticles cloaked with dendritic cell membranes (DPNs). 
They can enhance lysosomal escape efficiency through membrane 
fusion mechanisms (123). A team innovatively integrated a 
nanoplatform of CRISPR/Cas9 gene editing and photothermal 
therapy. It induces immunogenic cell death through PD-L1 
knockout synergistically with sub-high temperature. This 
significantly promotes DC maturation and cytotoxic lymphocyte 
infiltration (124). 

For the mechanism of drug resistance, a research team has 
developed an RGD-targeted peptide nanoplatform. This 
nanoplatform  can  specifical ly  del iver  Bcl-2  antisense  
oligonucleotides to avb3 integrin-high expression tumor cells. It 
achieves efficient gene silencing and adapts to various nucleic acid 
drugs (125). The nucleolin-targeted nanodrug PA-HM@DOX/ICG 
was functionalized with the AS1411 aptamer. This aptamer-based 
modification enables precise targeting of DLBCL cells by exploiting 
the overexpression of nucleolin on their surface. The combination 
therapy using this nanodrug resulted in a tumor inhibition rate of 
91.5%. It also caused a significant reduction in toxicity (126). 
Carvalho S.M. and others integrated ZnS quantum dot imaging 
and CD20/CD19 double antibody targeting. This integration was 
based on a chitosan-functionalized nanoplatform. It made the 
apoptosis rate of NHL cells reach 82.4%. Meanwhile, the damage 
to  normal  B cells  was less than  15%  (127). Technological 
advancements, including improved drug delivery efficiency, 
integration of combinatorial therapeutic modalities, and the 
realization of synchronous diagnostic and therapeutic functions, 
have significantly expanded the application potential of 
nanomedic ine  in  t r ea t ing  mal ignant  tumors  of  the  
lymphatic system. 

3.4.3 Artificial intelligence-driven strategies 
The rapid development of AI-assisted diagnosis and treatment 

platforms has pushed lymphoma to a new stage. AI technology 
integrates multi-omics data, such as genomics and transcriptomics, 
with deep learning algorithms. AI technology has achieved 
systematic innovation from molecular typing to treatment 
decision-making. Considering the EcoTyper framework as an 
example, a high-resolution TME map was constructed for the first 
time. This map contains 13 cell types and 44 cell states. It was 
created by collaboratively analyzing the bulk and single-cell RNA-
seq data of hundreds of DLBCL cases. This breakthrough 
overcomes the limitations of traditional classification. It also 
reveals the dynamic interaction network between malignant B 
cells and TME (128). In therapeutic development, the Auto-
RapTAC platform has significantly reduced the screening cycle 
for PROTAC molecules to just eight days by employing a modular, 
automated design. Using this high-throughput system, six potent 
degraders targeting CDK2, CDK12, and BCL6 have been 
successfully developed, thus substantially expediting the discovery 
and optimization of heterobifunctional drugs (129). AI can improve 
the efficiency of PROTAC development in the following ways. It 
uses machine learning to analyze structure-effect data and build 
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predictive models. It performs virtual screening of potentially 
efficient candidates. It generates and evaluates the optimal design 
of new structures. It mines and analyzes experimental data to reveal 
key influencing factors. It assists in optimizing the synthesis route 
and improving preparation efficiency. For example, AlphaFold uses 
deep residual convolutional neural networks to efficiently capture 
complex patterns in protein data for accurate structure prediction. 
This provides key information for PROTAC design (130). 

A deep learning-based whole-slide analysis tool for H&E 
staining demonstrated an overall accuracy of 0.932 in 
differentiating between FL, DLBCL, and CHL. Its multi-class 
diagnostic performance was comparable to that of expert 
pathologists and offered enhanced interpretability through heat 
map visualization. Virtual H&E staining technology achieved a 
staining quality pass rate of 92%, with diagnostic concordance 
closely matching that of conventional chemical staining (90% vs. 
92%). These advancements collectively lay a robust foundation for 
the transition toward digital pathology (131, 132). (https:// 
xulymphoma.shinyapps.io/PCDI_pred/) (127). 

In terms of prognosis prediction, researchers integrated multi­

omics data from 339 DLBCL patients. They aimed to construct a 
PCD index model. This model dynamically correlates ctDNA 
burden, minimal residual disease (MRD) status, and immune 
microenvironment characteristics. It does so through an online 
tool. The tool is designed to accurately identify patients with 
chemotherapy resistance to R-CHOP. It also guides targeted 
therapy selection (https://xulymphoma.shinyapps.io/PCDI_pred/) 
(133). Ferrández M.C. et al. developed a deep learning PET/CT 
prognostic model. This model demonstrated an area under the 
characteristic curve (AUC) of 0.71 in 1132 patients. The 
performance was significantly better than the International 
Prognostic Index (IPI). The model can predict treatment response 
without tumor segmentation (134). Song C’s team built  a
multimodal model based on 2.5D transfer learning. The 
integration of clinical features with radiomics data has enabled 
the development of a predictive model capable of accurately 
differentiating lymphoma from tuberculous lymphadenitis in 
patients with HIV/AIDS, achieving an AUC of 0.920 (135). AI 
has driven transformative progress in multiple pivotal areas, 
including elucidating molecular pathogenesis, accelerating drug 
discovery pipelines, and optimizing clinical decision-making 
processes. These advancements are progressively shaping a 
comprehensive precision medicine paradigm for lymphoma, thus 
promoting individualized diagnostic and therapeutic interventions 
from early detection through post-treatment monitoring. 

3.4.4 Liquid biopsy: ctDNA mutation profiling to 
guide treatment decisions 

ctDNA can be an important indicator for liquid biopsy. 
Analysis of the ctDNA mutational spectrum enables clinical 
target identification, dynamic monitoring of therapeutic efficacy, 
and early detection of disease recurrence. The ctDNA-based 
assessment of MRD has shown substantial advantages in 
individualized lymphoma treatment. Due to its high-sensitivity 
detection capabilities, this approach allows real-time tracking of 
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tumor dynamics, thus providing timely and reliable data to inform 
and refine clinical decision-making. 

In FL, high-sensitivity droplet digital PCR (ddPCR) revealed an 
EZH2 mutation frequency of 41.5%, significantly higher than the 
27% detected through conventional single-point tissue biopsy. 
Liquid biopsy further identified undetected mutations in an 
additional 14 tissue samples. Dynamic monitoring showed that 
ctDNA levels in treatment-responsive patients declined by over 
100-fold. Mutations could be detected and reproduced 6 months 
before recurrence, and EZH2 wild-type clones were more likely to 
infiltrate the bone marrow. This has expanded the scope of benefit 
for the precise use of inhibitors such as tazemetostat (136). In 
different lymphoma subtypes, ctDNA has distinct application 
values in disease monitoring and efficacy evaluation. For 
extranodal NK/T-cell lymphoma (ENKTL), ctDNA sequencing 
has identified BCOR, TP53, and  DDX3X mutations associated 
with prognosis. The dynamics of these mutations can distinguish 
between remission and relapse (137). Intravascular large B-cell 
lymphoma (IVLBCL) is characterized by significantly elevated 
ctDNA concentrations compared to DLBCL. High-frequency 
mutations are frequently observed in MYD88 (56%) and CD79B 
(44%), with BCL6 mutations significantly enriched in cases with 
CNS involvement (138). In PTCL, ctDNA was detected in 95.7%, 
one-year PFS and OS were significantly reduced in the high-
concentration group, and dynamic monitoring was consistent 
with imaging evaluation in 81.9% (139). ctDNA also plays a key 
role in predicting treatment response. Chen et al. developed a 
detection system for 29 TP53 mutation probes in patients with 
CAR-T-treated NHL. They found that the median PFS in the high 
ctDNA group was only 1.4 months. This was significantly shorter 
than that in the low ctDNA group (140). In cHL and DLBCL, 
ctDNA plasma concentrations were significantly negatively 
correlated with tumor mutational burden. Continuous monitoring 
of ctDNA could track clonal evolutionary trajectories in these 
malignancies. However, the threshold for ctDNA detection in FL 
needed to be optimized to improve clinical applicability (141, 142). 
Despite the limitations of some studies, such as small sample sizes 
and a constrained scope of detectable genetic alterations, blood-
based ctDNA analysis has successfully addressed several inherent 
drawbacks of conventional tissue biopsies. In DLBCL, ctDNA 
technology enables simultaneous guidance of therapeutic regimen 
selection, dynamic monitoring of treatment responses, and early 
detection of disease recurrence. These capabilities substantially 
enhance the precision and continuity of clinical management, 
spanning the entire course from initial diagnosis to post-
therapeutic surveillance. 

3.4.5 Dynamic risk stratification: real-time 
monitoring system based on ctDNA-MRD 

The ctDNA-based assessment of MRD has shown substantial 
advantages in personalizing lymphoma treatment. Due to its high 
sensitivity and high-specificity detection capabilities, this modality 
enables real-time surveillance of tumor dynamics, thus providing 
timely and reliable molecular data to inform precise clinical 
adjustments to therapeutic strategies. The ctDNA-MRD real-time 
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monitoring system can evaluate the treatment effect and predict 
recurrence by detecting changes in ctDNA levels, and guide the 
adjustment of treatment strategies. For patients with CAR-T­
treated R/R LBCL, the median OS of ctDNA-positive patients at 
day 28 was only 6.7 months. None of the ctDNA-negative patients 
experienced disease progression. The sensitivity and specificity of 
MRD detection reached 83%-100%. This systematically verified the 
early warning value of ctDNA in evaluating CAR-T efficacy. 
Compared with traditional PET/CT, ctDNA can identify 
individuals at high risk of recurrence in advance and enable 
timely adjustment of treatment strategies (143). Soscia R et al. 
analyzed 73 patients with DLBCL. The analysis was based on MRD 
monitoring using immunoglobulin (IG) gene rearrangements in 
ctDNA. It further demonstrated the prognostic stratification 
efficacy of this monitoring method. MRD-negative patients had 
significantly better PFS than positive patients at mid-treatment and 
treatment end (144). This non-invasive detection technology not 
only enables effective stratification of patient groups based on 
prognostic risk but also facilitates clinical trial design 
incorporating dynamic risk adjustment. It holds significant 
promise as a foundational tool for developing personalized 
diagnostic and therapeutic strategies in clinical practice. 

ctDNA mutation profiling and ctDNA-MRD real-time 
monitoring systems are essential technologies within liquid 
biopsy. Both methods are non-invasive and enable dynamic 
disease assessment. ctDNA mutation profiling is primarily used 
for early detection and prediction of treatment response, while 
ctDNA-MRD monitoring is applied during therapy to track disease 
progression and provide early relapse warnings. Despite their 
application at distinct clinical stages, these methodologies jointly 
contribute to advancing personalized medicine. 

3.4.6 Radiomics: PET/CT texture analysis to 
predict CAR-T efficacy 

Positron emission tomography/computed tomography (PET/ 
CT) is an image-based biomarker development method that enables 
accurate assessment based on the Lugano criteria through fusion 
imaging of metabolic activity (PET) and anatomical structure (CT) 
(145). However, traditional PET/CT detects lesions based on 
macroscopic tumor burden. This approach may miss microscopic 
residual lesions and lead to a false negative risk. It also has 
limitations such as radiation exposure and high economic costs. 
With the development of radiomics technology, in-depth analysis 
based on texture features is breaking through the traditional 
evaluation framework. The radiomics model established by Kim 
JJ et al. showed improved predictive accuracy relative to traditional 
parameters, such as metabolic tumor volume (MTV), in evaluating 
the therapeutic response to axi-cel CAR-T therapy in patients with 
relapsed or refractory DLBCL. The high shape complexity (PC 
value) of non-round/irregular nodules is strongly associated with 
poor prognosis. This provides a new dimension for non-invasive 
evaluation of immunotherapy response (137). In another study of 
mediastinal lymphoma subtypes (GZL/PMBCL/cHL), FDG-PET 
texture analysis was performed. It revealed that the metabolic 
activity of primary mediastinal large B-cell lymphoma (PMBCL) 
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was significantly higher than that of other subtypes. The random 
forest model showed a dichotomous AUC of 0.87 for this analysis. 
The heterogeneous characteristics of PMBCL identified through 
this analysis could assist in pathological typing and puncture 
localization (146). These innovative methods transform medical 
imaging information into quantifiable diagnostic indicators by 
analyzing the differential characteristics of tumor cell metabolism. 
Although these technologies require further large-scale clinical 
validation and fundamental research, their application in disease 
stratification, treatment response assessment, and the development 
of personalized therapeutic strategies is driving innovation in 
clinical management models for lymphoma. 
3.5 Others 

3.5.1 Design of the lymphoma cohort in the NCI­
MATCH trial 

The National Cancer Institute’s (NCI) Molecular Analysis 
Therapy Selection (MATCH) trial uses an adaptive design model. 
It detects gene mutations, copy number variations, and fusion 
events in tumor tissues based on next-generation sequencing 
(NGS) technology. The trial combines gain-of-function/deletion 
mutations to accurately match lymphoma patients with specific 
molecular markers to the corresponding targeted therapy group 
(147). The establishment of a nationwide network of clinical 
laboratories has enabled the standardization of testing protocols 
across institutional samples, thus validating the feasibility of large-
scale molecular subtyping in clinical translational settings (148). 

The NCI-MATCH trial has demonstrated substantial clinical 
value in managing various solid tumors, including breast and 
colorectal cancers. Based on the molecular classification expertise 
developed through this platform, research efforts are now focused 
on establishing a gene-guided therapeutic framework for 
lymphoma. This approach aims to identify more individualized 
treatment strategies for patients with relapsed or refractory disease 
by analyzing tumor-specific molecular alterations. In the NCI­
MATCH trial, Mansfield AS et al. reported cross-tumor efficacy 
in rare malignancies harboring ALK or ROS1 rearrangements. 
Among patients with ALK rearrangements, an objective response 
rate of 50% and a median PFS of 3.8 months were observed, 
outcomes that significantly surpassed those achieved with 
conventional chemotherapy regimens (149). Treatment with 
tazemetostat targeting EZH2/SMARCB1 mutant subsets in 
pediatric lymphoma resulted in disease control for six months or 
more. One patient experienced a sustained objective response. This 
demonstrates the therapeutic potential of epigenetic regulators in 
specific molecular subtypes (150). The trial uses a multi-arm design 
and integrates experts from different fields to simultaneously verify 
the effectiveness of other therapies. It accelerates the scientific 
research process and enhances the adaptability of treatment 
options, helping lymphoma patients obtain more personalized 
disease management strategies. 
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3.5.2 Real-world evidence: application of the 
flatiron health database in efficacy validation 

The incorporation of real-world evidence (RWE) into clinical 
research on lymphoma has emerged as a critical paradigm for 
validating therapeutic efficacy. The Flatiron Health database, an 
advanced platform integrating electronic health records (EHRs) 
with structured diagnostic and treatment data, offers distinct 
advantages.  Its  robust  data  mining  capabilities  enable  
comprehensive, multi-dimensional analyses, thus enhancing the 
evaluation of the clinical value and effectiveness of lymphoma 
treatment strategies. In a real-world cohort study involving 4336 
patients with MCL, the median real-world overall survival (rwOS) 
was 35 months. This rwOS was significantly better than that 
observed with conventional chemotherapy. A high-risk subgroup 
(5% of the cohort) harboring a 17p deletion/TP53 mutation had a 
poor prognosis. BTK inhibitors have shown the capacity to partially 
reverse adverse outcomes in this subgroup, providing an evidence-
based treatment option for older patients or those unable to tolerate 
intensive chemotherapy (151). In primary DLBCL, Breinholt et al. 
demonstrated that the prognostic relevance of TP53 mutations is 
consistent across cohorts. However, the clinical significance of 
PRDM1 and NOTCH2 mutations remains to be validated in larger 
patient populations (152). These findings highlight the need for 
dynamic optimization of molecular classification systems based on 
real-world data and evolving biological insights. Similarly, studies of 
FL and histological transformation (HT) have revealed a significant 
increase in the heterogeneity of tumor mutational burden and driver 
genes (such as EZH2, and CREBBP) as the disease progresses. This 
increased heterogeneity may affect the use of targeted drugs (such as 
EZH2 inhibitors). It highlights the need for dynamic monitoring of 
molecular profiles before treatment (153). The research method 
based on actual diagnosis and treatment records can use massive 
case information to evaluate the efficacy and safety of drugs and 
combine genetic testing results with patient recovery data to 
promote the discovery of new disease surveillance indicators. 
4 Challenges and future directions 

Currently, the precision diagnosis and treatment system of 
lymphoma still faces multiple challenges. The molecular markers 
used to diagnose lymphoma are not comprehensive, and some rare 
subtypes and complex cases still have blind spots. The CD20 
marker, commonly used in diagnosing and treating B-cell 
lymphomas, demonstrates reduced discriminatory efficacy in 
certain pathological subtypes, such as double-expression and 
triple-hit lymphomas. For instance, in approximately one-third of 
MCL patients receiving BTK inhibitors, acquired resistance 
contributes to disease progression. This resistance is often 
associated with mutations at the C481S locus of the BTK protein, 
which impair drug binding and therapeutic efficacy. It also includes 
VLA-4 integrin-mediated cell adhesion escape (154). These drugs 
can cause life-threatening side effects, such as severe cardiotoxicity 
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(155). Moreover, the dynamic remodeling of the tumor 
microenvironment further exacerbates treatment resistance, such 
as inadequate CD8+ T cell infiltration, which is significantly 
associated with chemotherapy resistance to CHL (156). There are 
also bottlenecks in the field of immunotherapy, with objective 
response rates of only 60%-70% with ICIs in CHL and secondary 
resistance in approximately 40% of patients (157, 158). Despite the 
transformative efficacy of CAR-T cell therapy, its personalized 
manufacturing process is complex and economically demanding. 
Although approved and implemented in clinical settings across 
various developed countries, the widespread adoption of CAR-T 
therapy in developing regions remains limited due to financial and 
infrastructural barriers. In technological accessibility, NGS is an 
important tool for molecular typing; however, its routine clinical 
application is still restricted by challenges including sample 
integrity, detection sensitivity, and high associated costs. For 
example, traditional fluorescence in situ hybridization (FISH) 
technology requires high-quality samples. Flow cytometry is 
limited in identifying low-abundance abnormal cells. The demand 
for data storage and analysis of single-cell sequencing technology 
has increased exponentially (159–161). Moreover, clinical research 
is limited by data fragmentation. It is difficult to integrate cross-
institutional case data and biological samples, especially for rare 
subtypes with an incidence rate of less than 1%. The insufficient 
sample size seriously limits the analysis of molecular characteristics 
and the optimization of treatment strategies. The advancement of 
precision diagnostics and therapeutics for lymphoma requires 
integrative, multi-dimensional innovation. A key strategy involves 
systematically exploring novel molecular biomarkers in parallel 
with an in-depth characterization of the metabolic phenotypes of 
lymphoma cells. This approach may enable the identification of 
distinct metabolic molecules, thus providing valuable insights and 
novel targets to improve diagnostic precision. For example, Göbel C 
et al. found that dual inhibition of the epigenetic regulators DOT1L 
and EZH2 reversed the MYC-driven germinal center B cell 
malignant phenotype, providing a new differentiation therapeutic 
pathway for DLBCL (GCB subtype) (162). Garcia-Lacarte M et al. 
found that the dual mechanism of action of the IL-10 signaling 
pathway in the microenvironment (maintaining malignant B cell 
survival and inducing T cell exhaustion) revealed a novel predictor 
of PD-1 inhibitor resistance (163). 

Besides, optimizing detection methodologies and advancing 
more sensitive and specific genetic analysis technologies, such as 
digital polymerase chain reaction (digital PCR), can improve the 
accuracy of low-frequency mutation identification by enabling 
absolute quantitative detection (164). Improve flow cytometry 
and other diagnostic techniques, such as improving the ability to 
identify abnormal cell populations by optimizing antibody 
combinations and detection parameters. However, AI-based DNA 
methylation marker panels (MDMs) can identify over 80% of NHL 
cases, including early-stage lesions, while maintaining 90% 
specificity (165). Simultaneously, new therapies, such as PROTAC 
technology, can degrade the BTK protein and circumvent the 
impact of the C481S mutation. It has been found that DNMT3A 
promotes oxidative phosphorylation (OXPHOS) by activating the 
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MEF2B/MYC axis, driving Ibrutinib resistance. Low-dose 
Decitabine targeting DNMT3A can restore drug sensitivity and 
provide a new strategy for reversing drug resistance (166). 
Construct a microenvironment regulation network to reverse the 
polarization state of TAMs. Targeting key glycolytic enzymes (e.g., 
LDHA, ENO2) offers a strategy to remodel the metabolic 
microenvironment of lymphoma. Pharmacological interventions 
aimed at stromal and immune cells within the tumor 
microenvironment may attenuate their protective influence on 
malignant  cel ls .  Similarly,  the  identification  of  novel  
immunotherapeutic targets and strategies is essential. Advancing 
the development of dual- or multi-target CAR-T and UCAR-T 
therapies holds promise for improving efficacy while reducing 
manufacturing costs. Furthermore, efforts to develop personalized 
lymphoma vaccines represent a pivotal direction for achieving 
individualized and cost-effective therapeutic solutions. China has 
established a leukemia diagnosis and treatment registry system. 
China has also established the Chinese Lymphoma Standard 
Dataset (2021 Edition). The Japanese Society of Hematology has 
published the Guidelines for Data Collection of Hematological 
Tumors. These efforts have laid the foundation for building a 
cross-institutional lymphoma diagnosis and treatment data 
platform (167). The establishment of a multi-institutional 
database, underpinned by the standardization of clinical 
diagnostic data, therapeutic interventions, and molecular testing 
as per the internationally recognized protocols, constitutes a 
foundational element in advancing precision medicine. This 
structured integration of diverse diagnostic, therapeutic, and 
multi-omics datasets enables coherent data aggregation across 
institutions, facilitating large-scale translational research and 
informing individualized clinical decision-making with improved 
accuracy and consistency. Next, a dynamic data quality control 
mechanism will be set up. Programs will be written to regularly 
check the completeness of the data, and statistical methods will be 
used to ensure consistency between data from different medical 
institutions. The establishment of a polycentric governance 
framework is essential to ensure regulatory compliance, 
operational efficiency, and clearly defined data ownership and 
collaboration protocols across institutions. Concurrently, 
developing advanced analytical tools is necessary  to  convert
unstructured data, such as clinical text and imaging, into 
structured, analyzable formats. These tools will contribute to an 
open-source, reusable lymphoma data standardization toolkit, 
promoting broader applicability. A multi-center database, 
modeled after The European LeukemiaNet, should integrate 
pathological, molecular, genetic, therapeutic, and long-term 
follow-up data. Such a platform would enable high-resolution 
data analysis to support treatment response prediction and the 
identification of novel lymphoma subtypes. Under strict adherence 
to patient privacy protections, international research collaborations 
between academic institutions and industry may be formalized 
through cooperative agreements. These partnerships will facilitate 
advancing precision medicine initiatives for lymphoma, promote 
global academic exchange, and accelerate the collective 
development of personalized therapeutic strategies worldwide. 
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HL Hodgkin Lymphoma 
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NHL Non-Hodgkin Lymphoma 
DLBCL Diffuse Large B-Cell Lymphoma 
FL Follicular Lymphoma 
MCL Mantle Cell Lymphoma 
PTCL Peripheral T-Cell Lymphoma 
ALCL Anaplastic Large Cell Lymphoma 
AITL angioimmunoblastic T-cell lymphoma 
COO vell of origin 
GCB germinal center b-cell 
DHL double-hit lymphoma 
CNV copy number variations 
CDKN2A cyclin-dependent kinase inhibitor 2A 
PFS progression-free survival 
OS overall survival 
DNMTs DNA methyltransferases 
HSCs hematopoietic stem cells 
PRC2 polycomb repressive complex 2 
H3K27me3 trimethylation of lysine 27 on histone H3 
PVT1 plasmacytoma variant translocation 1 
TME tumor microenvironment 
TAMs tumor-associated macrophages 
IL-10 interleukin-10 
TGF-b transforming growth factor-beta 
ENO2 enolase 2 
cHL classical Hodgkin lymphoma 
scATAC-seq single-cell assay for transposase-accessible chromatin 

using sequencing 
BTK bruton’s tyrosine kinase 
EZH2 zeste homolog 2 
EMA european medicines agency 
Cys cysteine 
ORR objective response rate 
CNS central nervous system 
BCR B-cell receptor 
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells 
SAM S-adenosylmethionine 
PROTAC protein degrader targeting chimera 
ogy 20 
CTCL cutaneous T-cell lymphoma 
FDA food and drug administration 
ADCC antibody-dependent cellular cytotoxicity 
ADCP antibody-dependent cellular phagocytosis 
MTD maximum tolerated dose 
AE adverse event 
DLT dose-limiting toxicity 
CMR complete metabolic response 
MRD minimal residual disease 
UCAR-T universal CAR-T 
CTLs cytotoxic T lymphocytes 
MDSCs myeloid-derived suppressor cells 
TILs tumor-infiltrating lymphocytes 
CLL chronic lymphocytic leukemia 
SLL small lymphocytic lymphoma 
ICIs immune checkpoint inhibitors 
ADCs antibody-drug conjugates 
CR complete response 
AHR aryl hydrocarbon receptor 
FMT fecal microbiota transplantation 
allo-HCT allogeneic hematopoietic cell transplantation 
LAG-3 lymphocyte activation gene-3 
TIM-3 T-cell immunoglobulin and mucin-domain containing-3 
TIGIT T-cell Immunoreceptor with ig and ITIM domains 
IFN-g interferon-gamma 
AI artificial intelligence 
AUC area under the curve 
IPI international prognostic index 
ctDNA circulating tumor DNA 
ENKTL extranodal NK/T-cell lymphoma 
IVLBCL Intravascular large B-cell lymphoma 
PET/CT positron emission tomography/computed tomography 
NCI-MATCH national cancer institute molecular analysis for therapy choice 
NGS next-generation sequencing 
RWE real-world evidence 
HER electronic health records 
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