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Combined single-cell RNA-seq
and bulk RNA-seq construction
of M2 TAMs signature for
predicting HNSCC prognosis
and immunotherapy
Jiale Wang †, Huan Li †, Mingrui Shi †, Chenghao Ren, Wu Wei,
Qi Zhao, Xinxin He, Zihui Yang, Jianhua Wei* and Xinjie Yang*

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical
Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of
Oral and Maxillofacial Surgery, School of Stomatology, The Former Fourth Military Medical University,
Xi’an, China
Tumor associated macrophages (TAMs) in Head and neck squamous cell

carcinoma (HNSCC), particularly M2-polarized subtypes, are pivotal drivers of

tumorigenesis, angiogenesis, and metastasis, contributing to adverse clinical

outcomes. Current prognostic markers lack precision, underscoring the need

for novel biomarkers and risk stratification models. Single-cell RNA sequencing

(scRNA-seq) was applied to profile the transcriptional landscape of TAMs in

HNSCC at single-cell resolution. 1,208 M2 TAMs were integrated from scRNA-

seq data with bulk RNA sequencing to identify molecular signatures. Weighted

correlation network analysis (WGCNA) and Uniform Manifold Approximation and

Projection (UMAP) analysis were applied to dissect TAMs heterogeneity and

interactions within the tumor microenvironment. In vivo experiments validated

the efficacy of the prognostic signature model. In this study, high infiltration of

M2 TAMs was strongly associated with advanced clinical stages, lymph node

metastasis, and reduced overall survival (P<0.001). TCGA datasets were utilized

for cross-platform verification. Multivariate Cox regression and survival analyses

were performed to establish prognostic relevance. 11 prognostic signature genes

(FCGBP, GIMAP5, WIPF1, RASGEF1B, GIMAP7, IGFLR1, GPR35, NCF1, CLECL1,

HEXB, IL10) were identified through integrative analysis, which formed the basis

of a robust risk stratificationmodel. The distribution of biomarkers in the high-risk

group, as determined by the signature we constructed, can serve as a better

indicator for assessing poor prognosis. In clinical samples, prognosis signature

has the potential to predict the prognosis effectively in patients with HNSCC.M2

TAMs-driven prognostic signature for HNSCC offers a clinically actionable tool

for risk stratification and outcome prediction.
KEYWORDS

single-cell RNA sequencing, tumor-associated macrophages, head and neck squamous
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth

most prevalent cancer globally and is characterized by its aggressive

behavior and poor prognosis (1). The treatment strategy for HNSCC

is a comprehensive sequential treatment with surgery as the primary

approach and adjuvant treatments include adjuvant radiotherapy,

chemotherapy and others (2). However, despite recent advancements

in therapeutic approaches, such as multidisciplinary approaches and

targeted immunotherapy, the 5-year overall survival rate for HNSCC

patients remains approximately 50% (3). Furthermore, the limited

accuracy of existing prognostic markers for HNSCC hinders the

development of more effective diagnosis tools.

Tumor-associated macrophages (TAMs) play a pivotal role in

tumorigenesis, angiogenesis, invasion metastasis, all of which

contribute to adverse clinical outcomes (4, 5). In colon cancer,

distinct TAMs populations inhabit separate microenvironments,

predicting divergent prognostic outcomes (6). In gastric cancer,

metabolic features of M2 macrophages identified through database

analysis, are associated with the poor prognosis (7). While previous

research establish that TAMs contribute to the poor prognosis of

patients with HNSCC, the underlying mechanisms remains poorly

understood (7).

Single-cell RNA sequencing (scRNA-seq) technique offers an

advanced methodology to analyze transcription at the single-cell level.

This technique allows for a more precise exploration of the molecular

signatures involved in tumor development and progression, compared

to traditional methods (8). This advantage bolsters the confidence in

using single-cell sequencing as a prognostic tool for cancer (9). The

scRNA-seq technique has been used to investigate interactions between

immune and non-immune cells (10) and has revealed the diversity of

TAMs and their role in tumor progression (11).

Several studies have demonstrated the utility of database

analysis of TAMs features in predicting cancer prognosis (6, 12–

14). In this study, we investigated, for the first time, the prognostic

application of TAMs in HNSCC using single-cell sequencing

technology. TAMs signature was screened by integrating both

bulk and single-cell RNA sequencing to predict prognosis and

guide immunotherapy. The results of the present study provide

valuable insights into the molecular mechanisms underlying M2

TAMs in HNSCC, elucidate the immune landscape of this

malignancy and identify potential therapeutic targets. Our

research established a robust prognostic prediction model for

HNSCC, contributing to more precise diagnosis and treatment.
2 Materials and methods

2.1 Patients and samples

The study was approved by the Stomatology Hospital of Air

Force Medical University, and all patients participated in this study

had signed the informed consent. Twenty patients with HNSCC who

underwent surgery between January 2023 and January 2024 provided

primary tumor tissues. The diagnosis of HNSCC was based onWHO
Frontiers in Immunology 02
Classification of Head and Neck Tumors (5th edition) and the TNM

staging system (8th edition, UICC). The collected tissues were fixed in

10% neutral-buffered formalin and embedded in paraffin for

subsequent pathological examination and staining.
2.2 Acquisition and preprocessing of data

Gene expression datasets were obtained from the Gene

Expression Omnibus (GEO) repository under accession numbers

GSE65858 (bulk RNA-seq), GSE150430 (single-cell RNA-seq), and

GSE123813 (single-cell RNA-seq). Fifteen primary tumor samples

from GSE150430 were included in this study (Table 1). RNA-seq

FPKM expression profiles, overall survival (OS) data, and clinical

annotations for HNSCC were retrieved from the National Cancer

Institute (NCI)’s Genomic Data Commons (GDC).
2.3 Screening

Fifteen primary samples from GSE150430 were processed using

the R software package and underwent quality control in GEO. Two

thousand highly variable genes were identified using the

“FindVariableFeatures” algorithm. Principal component analysis

(PCA) was conducted on these HVGs, with the top 50 principal

components retained for subsequent analyses. TAMs associated

marker genes were identified using the “FindAllMarkers” function

(P<0.05). WGCNA constructed co-expression modules (minimum

size=30 genes) through soft thresholding. Finally, module

eigengenes were intersected with TAMs signature genes identified

through single-cell analysis to pinpoint M2 TAMs related genes.
2.4 Survival analysis of the proportion of
macrophage infiltration

The relative abundance of M1 and M2 macrophages was

quantified using the XCell algorithm. Samples were stratified into

high-risk and low-risk groups based on macrophage infiltration

levels, applying a median cut-off value derived from the R package

XCell. Kaplan-Meier survival analysis with log-rank testing was

performed to evaluate the correlation between macrophage

infiltration density and overall survival (OS) in HNSCC patients.
TABLE 1 Quality control of single-cell transcriptome data and genetic.

Dataset
ID

Data
type

Samples
number

Purpose

TCGA-
HNSCC

bulk 494
Screening M2 macrophage-related
module genes, model construction,

training set

GSE65858 bulk 270 Model validation, validation set

GSE150430 scRNA 15
Screening characteristic genes of

TAM cells

GSE123813 scRNA 4 Evaluate immunotherapy
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2.5 The development of the prognostic
signature related to M2 TAMs

Univariate Cox regression was performed to identify M2

TAMs-related prognostic genes based on the survival curve

(P<0.05). The R package was employed to construct a LASSO

Cox regression model to identify prognostic factors. A risk score

model was developed by weighting key prognostic factors with

LASSO regression coefficients to predict survival.

Score =on
i=1expi � coefi

Based on corresponding scores, fifteen samples were classified

into high-risk group and low risk group and survival curve were

visualized using the Kaplan-Meier method with the log-rank test. The

receiver operating characteristic (ROC) curve was adapted to evaluate

the predictive performance of the scoring system, and the area under

the curve (AUC) was visualized with the R package time ROC.

Univariate and multivariate Cox regression analyses were performed

to evaluate the independent prognostic value of the risk score.
2.6 Predicting drug sensitivity

The half-maximal inhibitory concentration (IC50) values for

training set samples were estimated using the Phenotype algorithm

implemented in the R package Predict (v1.2.3), with drug sensitivity

data sourced from the Genomics of Drug Sensitivity in Cancer

(GDSC) database (version 2.0; PMID: 22000000).
2.7 Gene set variation analysis and
functional annotation

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

using the R package clusterProfiler (v4.0.1) to functionally annotate

the signature genes. According to the enrichment analysis result,

differences in immune function between the high-risk group and

low-risk group were compared using Gene Set Variation Analysis

(GSVA) and Gene Set Enrichment Analysis (GSEA). Immune cell

infiltration across subgroups was compared using the Wilcoxon test

and the ssGSEA (single-sample gene-set enrichment analysis)

algorithm. The relative abundance of 28 immune cell subsets

(e.g., activated CD8+ T cells, dendritic cells, and macrophages)

within the tumor microenvironment (TME) were quantified.
2.8 Immunofluorescence

Tissue sections were fixed with 4% paraformaldehyde in PBS for

20 minutes at room temperature. Next, the membranes were

blocked with 1% BSA for 2 hours at room temperature. The

membranes were then incubated with primary antibodies against

CD163 and iNOS at 4°C overnight. The results were observed using

a laser scanning confocal microscope.
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2.9 Immunohistochemistry

Sections and TMAs were stained with or incubated with

primary antibodies using the Elivision™ Plus Polymer HRP

immunohistochemistry kit (Maxim, Fujian, China). The following

antibodies were used: anti-FCGBP (ab121199, Abcam, 1:500), anti-

GPR35 (ab150635, Abcam, 1:300), GIMAP7 polyclonal antibody

(Proteintech, 1:500), WIPF1 polyclonal antibody (Proteintech,

1:500), RASGEF1B polyclonal antibody (Proteintech, 1:300), p47

phox polyclonal antibody (Proteintech, 1:400), HEXB polyclonal

antibody (Proteintech, 1:400), IL-10 monoclonal antibody

(Proteintech, 1:500), CLECL1 monoclonal antibody (Proteintech,

1:500),GIMAP5 polyclonal antibody (AtaGenix,1:800),and

CLECL1 polyclonal antibody(AtaGenix,1:800). The score of each

section was classified into 0–4 by the ImageJ software based on the

intensity and the positive rate of stained cells.
2.10 Animal experiments

All experimental protocols were approved by the Institutional

Animal Care and Use Committee (IACUC) of the State Key

Laboratory, Air Force Military Medical University. Female BALB/c

nude mice (6-week-old, n=20) were subcutaneously inoculated with

SCC9 (1–5 × 107cells/mouse) into the left forelimb. One-week post-

inoculation, mice were randomized into four groups: the

experimental group first (n=5) received lipopolysaccharide (LPS)

(20 mg/kg, 200 mL), group second (n=5) was administered

recombinant IL-4 (20 mg/kg, 200 mL), while the control group

third (blank) (n=5) and forth(n=5) with (SCC+Normal Saline,200

mL). LPS and IL-4 treatments were administered to the mice one week

after tumor cell injection, when the subcutaneous tumorigenesis

model was successfully established with a tumor volume (V) > 100

mm³ (to avoid the impact of early intervention on tumor formation).

The experiment was terminated when the tumor volume (V) < 1500

mm³, and all mice were euthanized on day 27 in accordance with the

ethical norms for animal experiments. Following confirmation of

tumor formation, injections were administered three times at 48-hour

intervals. Tumor tissues were harvested for immunohistochemical

(IHC) analysis of CD68 (pan-macrophage marker), CD163 (M2

macrophage marker), and iNOS (M1 macrophage marker)

expression. Prognostic significance was evaluated based on tumor

weight as a key measure of tumor progression in HNSCC.
2.11 Statistical analysis

Statistical analyses were conducted using R software (version 4.1.2).

The Wilcoxon rank-sum test was applied to compare differences

between two groups, while the Kruskal-Wallis’s test was used for

comparisons involving multiple groups. Survival curves for prognostic

analysis were generated using the Kaplan-Meier method, and the log-

rank test was used to determine the significance of differences. In

graphical representations, significance levels were denoted as follows: ns

(not significant, P > 0.05), *(P < 0.05), ** (P < 0.01), and *** (P < 0.001).
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FIGURE 1

M2 macrophages exhibit high infiltration in HNSCC with poor prognosis. (A, B) High expression CD68 in stage III/IV (selected from the clinical
patient case database, Scale bar: 50 mm) (C) The OS of patients with high expression M1 type macrophage (D) The OS of patients with high
expression M2 type macrophage (E) Establishing a mouse subcutaneous tumor model with the following groups: Blank, SCC9+NS (Normal sailine),
SCC9+LPS,SCC9+IL4 (F) The weight of BALC/c nude mice cancer samples: SCC + IL4 treatment group exhibited a larger tumor volume compared
to the SCC + NS group, while the SCC + LPS treatment group showed a smaller tumor volume (G) The volume of BALC/c nude mice cancer
samples (H, I) Based on the iNOS/CD163 ratio, macrophages in SCC tumors exhibited a greater tendency toward M1 polarization upon LPS
treatment, whereas IL-4 treatment promoted more pronounced M2 polarization (Scale bar: 20µm; ns, not significant, P > 0.05), Asterisk (*) indicates
statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.
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3 Result

3.1 M2 TAMs leads to poor prognosis in
patients with HNSCC

TAMs infiltration was more abundant in stage III/IV tumors in

stage I/II based on the expression of CD68 in immunofluorescence

(Figures 1A, B). Survival curve based on TCGA data confirmed that

M2 macrophages are strongly associated with poor prognosis in

malignancies, while M1-type macrophages associated with better

prognosis (Figures 1C, D). Mouse subcutaneous tumor model was

constructed to reveal the infiltration situation (Figure 1E). The

weight and volume of SCC9 with IL-4 which means M2 TAMs rich

infiltration group were higher than SCC9 with LPS which means

M1-type TAMs rich infiltration, control and blank (P<0.05)

(Figures 1F, G). Immunofluorescence staining also showed that

M2 TAMs infiltration was richer based on the expression of CD163

in SCC9 with IL-4 group than in SCC9 with LPS (P<0.05)

(Figures 1H, I).
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3.2 Prognostic genes associated with the
M2 TAMs

WGCNA was employed to screen M2 macrophages-related

genes to explore their association with the prognosis of HNSCC.

As shown in Supplementary File 1, the WGCNA results identified

M2 macrophage-related genes in HNSCC and revealed 25 optimal

modules. Among these 25 optimal modules, the blue module, which

exhibited the highest Pearson correlation coefficient, was selected

for downstream analysis and contained 778 genes.

From 46,001 single-cell transcriptomes, the top 2,000 highly

variable genes (HVGs), including CRNN, CRCT1, and HLA-

DRA, were selected for further analysis (Figure 2A). Uniform

Manifold Approximation and Projection (UMAP) visualization

was used to display the top 50 principal components (PCs) and

reveal distinct cellular clusters. The Harmony algorithm was

applied to correct batch effects (Figure 2B). Cell-type-specific

marker genes were identified using the Find All Markers

function and the top five markers per cluster were visualized
FIGURE 2

Single cell data TAMs characterization gene screening. (A) scatter-plot of highly variable CRNN, CRCT1, and HLA-DRA (B) UMAP results
demonstrated the spatial distribution patterns of heterogeneous immune cell populations within the tumor microenvironment. (C) distribution of
sample cells after removal of batch effects different cell types top5 characteristic gene gas (bubble map).
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(Figure 2C). In total, 1,208 TAMs-specific signature genes

were identified.

The intersection of the 1208 TAMs-specific signature genes

from single-cell database and the 778 M2 macrophage-associated

genes from bulk database resulted in 259 candidate M2 TAMs-

associated genes (Figure 3A). Functional enrichment analysis

revealed that key prognostic factors were significantly enriched in
Frontiers in Immunology 06
immune processes such as T cell proliferation and lymphocyte

proliferation (Figure 3B). Twenty-nine genes associated with

clinical prognosis were identified through univariate cox analysis

and were furthered narrowed down to 11 key prognostic genes by

LASSO Cox regression analysis (Figures 3C–E). The HNSCC

samples were classified into two subgroups (cluster1 and

cluster2), based on the expression of the 11 key factors
FIGURE 3

M2 TAMs related prognostic genes. (A) Candidate M2 TAMs-related genes(1208 TAMs-specific signature genes from single-cell database GSE150430
and the 778 M2 macrophage-associated genes from bulk database TCGA- HNSCC). (B) Functional enrichment analysis of 11 key prognostic factors
(T cell proliferation, lymphocyte proliferation). (C) Key prognostic factors LASSO regression coefficients. (D) LASSO regresses the trajectory of the
independent variable, The horizontal axis represents the logarithm of the independent variable Lambda, while the vertical axis represents the
coefficients of the independent variables. (E) Confidence intervals for each l value in LASSO regression. (F) The upper heatmap depicts the
difference in the distribution of clinical characteristics between the two groups. The bottom heatmap shows the distribution of prognostic risk
factors expression. (G) HNSCC samples were consistently clustered, with 1 and 2 denoting the two subgroups. (H) Prognostic survival in two
subgroups curves.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1620931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1620931
(Figures 3F, G, Supplementary File 2). Prognostic survival rates in

cluster 2 showed a significantly worse prognosis (Figures 3H). The

subsequent analysis involved examining the expression levels of

these 11 key prognostic genes to establish a prognosis-

related signature.
3.3 Construction and validation the
prognostic gene model of M2 TAMs in
HNSCC

The gene coefficients from the linear combination of 11 key

prognostic factors were used to define the prognostic signature for

each patient, as shown in Table 2.

According to the median value, cases were classified into high-risk

group and low-risk group. Kaplan-Meier survival analysis and log-rank

tests revealed that patients in the high-risk group had a significantly

poorer prognosis in GSE65858 (P<0.02, Figure 4A). Based on

multivariate and univariate Cox regression analysis performed with

clinical features and prognosis signature, demonstrated a consistent

trend in predicting prognosis. These analyses also confirmed that the

prognostic signature was an independent prognostic factor (HR=1.65,

P-value=0.01, Supplementary Figures S2B). The data from GSE65858

further supported the prognosis signature to be an independent

prognostic factor (Figures 2C D). Patients in the high-risk group had

significantly worse overall survival rate in TCGA (P<0.001, Figure 4B).

A nomogram was plotted, incorporating clinical factors such as stage,

sex, lymph vascular invasion (LVI), and perineural invasion (PNI) to

provide a more comprehensive survival prediction (Figure 4C). The

calibration curve (Figures 4F–H) and decision curve analysis (Figure 4E)

demonstrated its reliability of the model. The concordance index (c-

index) analysis demonstrated that the prognostic signature exhibited

higher accuracy than other clinicopathological indicators (Figure 4D).

Next, the distribution of prognosis signature among clinical pathology

characteristics was analyzed.
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3.4 Association analysis of prognostic
signature with clinical and pathologic
features

The distribution of the prognostic signature across clinical

pathological characteristics, showed that the proportion of

patients with terminal cancer was higher in the high-risk group

(Figure 5A). However, there was no significant difference between

the two groups in terms of gender (Figure 5B), or lymphovascular

invasion (LVI) (Figure 5C). The proportion of patients with

perineural invasion (PNI) in the high-risk group was significantly

higher in those with advanced stage disease (Figure 5D).

The risk scores of patients with PNI were elevated in those with

advanced disease (Figure 5E). However, no significant difference in

risk scores was observed between genders (Figure 5F). Furthermore,

there was no significant difference in risk scores between patients

with or without LVI (Figure 5G). Risk scores were significantly

higher in patients with PNI (Figure 5H). This malignant biological

behavior, which appeared frequently in the high-risk group,

indicated a poor prognosis.

In different clinical pathological characteristic subgroups, the

signatures showed that the prognosis in patients with advanced

stage (Figure 5M), men (Figure 5N), without PNI (Figure 5K),

without LVI (Figure 5K), female (Figure 5L), and those with PNI

(Figure 5P) were poorer. Patients in the high-risk group generally

had worse prognosis. On the contrary, patients in the early stage

(Figure 5I), in women (Figure 5J), showed no significant difference

in prognosis between high- and low-risk groups. (Figure 5O). These

findings suggest that the prognostic signature can effectively predict

the poor prognosis of HNSCC.
3.5 Immune profile in the high-risk and
low-risk groups of prognosis signature

GSEA analysis revealed that drug metabolism pathways were

significantly activated in the high-risk group (Figure 6A).

Conversely, immune-related biological processes, including the

activation and proliferation of B cells and T cells, were markedly

enhanced in the low-risk group (Figures 6B, C). The immune cell

scores were compared before and after treatment. Th17 cells

showed a significantly increase in cell scores following

immunotherapy in patients who responded to immunotherapy,

which can be interpreted as an increase in cellular activity.

(Figures 6D, E). Activated B cells, immature B cells, and natural

killer T cells were significantly more abundant in the low-risk

group, whereas the proportion of CD56+ natural killer cells was

lower than that in the high-risk group (Figure 6G). Subsequently,

comparison of immune checkpoint-related gene expression

revealed significantly higher expression of CD276 in the high-risk

group (Figure 6F). The distribution of biomarkers in the high-risk

group, as determined by the signature we constructed, can serve as a

better indicator for assessing poor prognosis.
TABLE 2 Key factor and corresponding coefficients.

Signature Coef

FCGBP -0.087011342

GIMAP5 -0.163148894

WIPF1 -0.011925908

RASGEF1B -0.192706961

GIMAP7 -0.016669482

IGFLR -0.145697518

GPR35 0.288017291

NCF1 -0.215696193

CLECL1 -0.215696193

HEXB 0.359694783

IL10 -0.230829119
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FIGURE 4

Construction and validation of a prognostic signature for M2 TAMs. (A, B) GSE65858 Prognostic survival curves and the prognostic independence
analysis for the high- and low-risk groups of the TCGA training set and GSE65858 validation set (log-rank p-value < 0.001). (C) nomogram of clinical
factors predicts patient survival rate (5 years survival, 3 years survival, 1 year survival). (D) C index concordance show the prognostic accuracy of the
signature is higher than other clinical pathological indicators. (E) Calibration curves for assessing accuracy of the nomogram. The dashed diagonal
line in grey represents the ideal model. (F–H) calibration curve reveals the demonstrated the reliability of the prognostic signature. OS, overall
survival; ROC: receiver operator characteristic.
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FIGURE 5

Association of prognostic signature with clinic pathology features.(A–D) Distribution of Clinical Characteristics (Stage (A), Sex (B), LVI (C) and PNI (D)) in
High and Low Risk Groups. (E–H) Different Distribution of risk scores for subgroups with four clinical characteristics (Stage (E), Sex (F), LVI (G) and PNI (H)).
(I–P) Prognostic Survival Curve for High and Low Risk Groups Grouped by four Clinical Characteristics (Stage (I, M), Sex (J, N), LVI (K, O) and PNI (L, P)).
TABLE 3 20 HNSCC Patients’ clinical data(2023-2024).

Patients (n=20)

gender n percent (%)

male 10 50

female 10 50

age

>60 9 45

<=60 11 55

metastasis

(Continued)
F
rontiers in Immunology
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TABLE 3 Continued

Patients (n=20)

M0 12 60

M1 8 40

stage

T1-T2 7 35

T3-T4 13 65

Invasion

yes 7 35

no 13 65
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3.6 Clinical validation of prognosis
signature of M2 TAMs

Based on the expression levels of the 11 key prognostic factors

and gene coefficients in a linear combination, the prognostic

signature of twenty patients was evaluated, as shown in Table 3.

Tissue sections from these patients with HNSCC were

examined immunohistochemically, and their expression scores

were analyzed (Figure 7A). The obtained scores were

incorporated into constructed signatures to generate predictions
Frontiers in Immunology 10
(Table 4). The gene expression levels were consistent with the key

genes predicted by LASSO regression for the prognostic factors

(Figures 7B–D).

According to the constructed prognostic signature, we

calculated the risk score for patients in the training set and

stratified them into high-risk and low-risk group based on the

median risk score (Figure 7E). The proportion of patients under 60

years old was higher in the high-risk group and lower in the low-

risk group (Figure 7F). Furthermore, the high-risk group also had a

significantly higher number of stage III/IV patients compared to
FIGURE 6

Prognostic signature-associated immunoepidemiogram. (A) drug metabolism pathways were significantly activated in the high-risk group in KEGG
GSEA analysis. (B, C) activation and proliferation of B cells and T cells were markedly enhanced in the low-risk group in GOBP GSEA analysis.
(D) Distribution of Th17 cell scores before immunotherapy. (E) Distribution of CD8 cell scores before immunotherapy. (F) Differences in immune
checkpoint expression between high and low risk groups. (G) Distribution of proportion of immune cell infiltration in high and low risk groups. GSEA:
Gene Set Enrichment Analysis.
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FIGURE 7

The signature verification of results. (A) The Immunohistochemistry quantitative images which were used to analysis by Image J (Twenty patients
with HNSCC who underwent surgery between January 2023 and January 2024 provided primary tumor tissues, Scale bar: 50 mm) (B–D) the
expression level of 11 key factor genes in clinical samples. (E) the samples were consistently clustered, with high- and low-risk two subgroups based
on the median value of signature. (F–I) Distribution of Clinical Characteristics (Stage (F), Sex (G), LVI (H) and PNI (I)).
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stage I/II patients (Figure 7G). Gender did not show a significantly

difference (Figure 7H). Additionally, low-risk group had

significantly more patients without invasion compared to those

with invasion (Figure 7I). These findings suggest that the prognosis

signature has the potential to predict the prognosis effectively in

patients with HNSCC.
4 Discussion

Our study revealed that the TAMs are the most abundant

subtype among tumor-infiltrating immune cells in HNSCC.

Increased TAMs infiltration within the TME has been

significantly associated with lymph node metastases and advanced

clinical stages in HNSCC. TAMs are broadly polarized into M1 and

M2 phenotypes (15). Animal in vivo experiments further identified

M2 TAMs infiltration as a prognostic indicator for HNSCC

progression. In this study, we analyzed the HNSCC specimens

and quantified M2 TAMs density. Through single-cell sequencing,

we identified M2 macrophage signature genes and subsequently

constructed a prognostic risk model based on these genes, which

was validated in clinical patient samples.

The identification of robust risk stratification models and

prognostic biomarkers is crucial for the accurate prediction of

clinical outcomes and the evidence-based optimization of

therapeutic interventions (16). We stratified patients with

HNSCC into high-risk and low-risk groups according to

predefined thresholds for M2 TAMs infiltration density derived

from TCGA cohort. Notably, patients with high M2 TAMs

infiltration density exhibited significantly poorer overall survival

rates compared to those with low infiltration levels (P<0.001).

Through both multivariate and univariate Cox regression analysis

involving clinical features and prognosis signatures, the model

demonstrated a consistent trend in predicting prognosis. These

findings highlight the critical role of M2 macrophage enrichment as

an independent predictor of poor clinical outcomes in HNSCC.

M2-type TAMs are well-documented as a key driver of HNSCC

progression (17). Using WGCNA and UMAP analysis, we
Frontiers in Immunology 12
systematically screened genes from 1208 M2 TAMs across both

single-cell and bulk RNA sequencing datasets. The intersection of

these genes led to the identification of 11 key prognostic

biomarkers. These includeFCGBP (18), GIMAP5 (19), WIPF1

(20), RASGEF1B (21), GIMAP7 (19), IGFLR1 (22), GPR35 (23),

NCF1 (24), CLECL1 (25), HEXB (26) and IL10 (27) which

may serve as important predictors of HNSCC in tumor

microenvironment. FCGBP is likely involved in gel-forming

mucins activity (28). Previous studies on GIMAP5 have shown

that that its low expression is associated with poor prognosis in lung

cancer (19). The gene encoded by Wiskott–Aldrich syndrome

protein (WASP) interacting protein family member 1 (WIPF1)

participates in actin cytoskeleton organization and polymerization

that are associated with cell proliferation and invasion (29).

In hepatocellular carcinoma, aberrant expression of circular

RNA DHPR promotes tumor growth and metastasis by regulating

the RASGEF1B/RAS/MAPK axis (30). Macrophage-related gene

expression profiles were curated from the Gene Expression

Omnibus (GEO) repository, including GSE65858 and GSE150430

and GSE123813, all of which underwent rigorous quality control.

Single-cell analytical data serve as a critical component for

enhancing the robustness of predictive biomarkers. scRNA-seq has

emerged as a powerful methodology for dissecting intertumoral

heterogeneity by profiling transcriptional landscapes at single-cell

resolution. However, it should not be overlooked that the single-cell

database GSE65858 was derived from nasopharyngeal carcinoma.

Although the above-mentioned tumors are all malignant tumors of

squamous epithelial origin and share some core biological

characteristics, the biological differences in different disease

backgrounds may affect the integration results, which is a

limitation of this study.

The prognostic signature was validated as an independent

predictor of clinical outcomes in this cohort. Our findings

contribute to a deeper understanding of the molecular

mechanisms associated with M2 TAMs in HNSCC, uncover the

immune profile specific to HNSCC, and offer potential therapeutic

targets for intervention in this malignancy. Notably, the immune

checkpoint molecule CD276 demonstrated significantly elevated

expression in high-risk patients compared to the low-risk cohort

(P<0.05). These findings suggest CD276 as a potential therapeutic

target for immune checkpoint blockade strategies.

In conclusion, this study focused on constructing a novel M2

TAMs-related risk prediction model and identifying 11 risk factors

as prognosis indicators of tumor risk in patients with HNSCC.

Subsequent efforts should focus on screening core genes and

optimizing detection technologies (such as multiplex molecular

diagnostic platforms) to promote its translation into a rapid

clinical detection tool. By further stratifying the molecular

subtypes within the high-risk group, sorted by the prognostic

signature, the accuracy of target selection for HNSCC treatment

can be improved, providing convenience for new treatments and

techniques. We will next focus on further validating the accuracy of

the prognostic signature and exploring the relationship between

sensitivity to major anticancer drugs and the high-risk prognostic

group to enhance its clinical applicability.
TABLE 4 Signature scores for each sample.

Number Signature Number Signature

1 -35.10636046 11 -4.855251866

2 -25.96694989 12 -3.924183372

3 -19.99509091 13 -3.856082207

4 -19.80199138 14 -3.233356117

5 -19.54928762 15 1.536435724

6 -19.18544045 16 2.065886704

7 -13.88992481 17 3.773816865

8 -12.89721797 18 18.32559862

9 -7.090439303 19 19.99195797

10 -6.704592289 20 21.94864881
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