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Autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), systemic vasculitis, spondyloarthritis (SpA), including ankylosing

spondylitis (AS) and psoriatic arthritis (PsA), are characterized by chronic immune

activation and systemic inflammation. The systemic immune-inflammation index

(SII), computed as platelet count × neutrophil count/lymphocyte count, is a

promising biomarker that reflects both inflammatory burden and immune

dysregulation. In RA, elevation of SII is correlated with disease activity score,

response to TNF-a inhibitors, and reduced serum Klotho levels. In AS and PsA,

the SII is associated with disease activity scores, musculoskeletal imaging

findings, and treatment response. In SLE, the SII tracks global activity and

predicts lupus nephritis and pregnancy outcomes, while further reflecting

underlying features, such as lymphopenia, neutrophil extracellular trap

formation, and platelet activation. The SII is also useful in vasculitis-related

diseases, including Behçet’s syndrome and Kawasaki disease. In comparison to

traditional markers such as CRP and ESR, the SII provides broader immune

insights than routine hematologic data. SII is influenced by non-autoimmune

factors, including malignancy and infection, which are often excluded from

autoimmune studies, although significant in clinical interpretation. This review

summarizes the latest evidence on the SII across autoimmune conditions. It also

aims to outline the key limitations and future directions, including longitudinal

validation, integration with emerging indices (e.g., the systemic inflammatory

response index), and its role in multimodal disease monitoring.
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1 Introduction

Autoimmune diseases are characterized by the presence of

autoimmunity accompanied by a clinically identifiable pathology

(1–3). These conditions affect approximately 7–9% of the global

population (4). Systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), spondyloarthritis (SpA), and systemic vasculitis are

chronic immune-mediated disorders characterized by persistent

inflammation and multiorgan involvement (5, 6).

Despite diagnostic and therapeutic advancements, there is a

critical need for reliable, accessible, and dynamic biomarkers to

guide disease management for treatment strategy optimization. In

this context, the systemic immune-inflammation index (SII) has

emerged as a promising marker, initially validated in vasculitis,

oncology, and cardiovascular research, reflecting the systemic

balance between inflammatory and immune responses (7–10).

The SII, initially developed in oncology and cardiovascular

research, has demonstrated potential utility in autoimmune

diseases. This mini review aims to critically evaluate the current

evidence on the role of the SII in RA, SLE, SpA, and systemic

vasculitides, highlight its potential as a diagnostic and prognostic

biomarker, identify current limitations, and propose directions for

future research.
2 Definition and clinical relevance of
SII

The SII is a composite marker that incorporates three types of

circulating immune cells: neutrophils, platelets, and lymphocytes. It

is calculated using the following formula:

SII =
(platelet   count  �   neutrophil   count)

lymphocyte   count

First introduced by Hu et al. (11) in 2014 as a prognostic marker

for hepatocellular carcinoma (HCC), the SII has been associated

with increased all-cause death rates across a range of disorders,

including cancer, cardiovascular disease, and metabolic disorders.

Additionally, several studies have suggested that the SII may serve

as a useful index of disease progression in specific clinical contexts

(12–16). Given its capacity to simultaneously reflect both

proinflammatory and immunoregulatory dynamics, the SII has

garnered increasing interest in the field of immunology.
3 Pathophysiological basis of SII in
autoimmunity

Immune cells that constitute the SII, including neutrophils,

lymphocytes, and platelets, are directly implicated in the

pathogenesis of autoimmune diseases (17).

Neutrophils play a central role in initiating and amplifying

inflammation through neutrophil extracellular trap (NET)

formation, cytokine release, and direct tissue damage (18). In RA,
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neutrophils infiltrate synovial tissue and release proteolytic enzymes

and reactive oxygen species, contributing to joint destruction (19,

20). In SLE, excess NETs expose the nuclear antigens and promote

autoantibody formation (21).

Lymphocytes, particularly CD4 + T and B cells, are integral to the

autoimmune pathophysiology. RA is predominantly associated with

Th1- and Th17-mediated responses (22, 23), while SLE is characterized

by aberrant B cell activation, autoantibody production, and impaired

regulatory T cell function (24). Lymphocyte count serves as a surrogate

marker of immune homeostasis disruption, and the opposing roles of

regulatory T cells (Tregs) and pro-inflammatory subsets such as Th17

cells may obscure critical nuanced immunological dynamics (25–27).

This limitation highlights the need for integrative biomarker frameworks

that combine the SII with subset-specific immunophenotyping to more

accurately reflect disease pathophysiology.

Platelets are traditionally regarded as hemostatic elements that

are active participants in immune modulation. They interact with

leukocytes, release inflammatory mediators, and contribute to

endothelial dysfunction. In SLE, platelet activation is linked to

vascular inflammation and thrombosis [9], while in RA, activated

platelets promote synovial inflammation through cytokine release

and immune cell recruitment (28, 29).

By integrating these three cellular parameters, the SII offers a

more comprehensive assessment of the immune-inflammatory

milieu than individual biomarkers. The balance between the

regulatory (lymphocytes) and pro-inflammatory (neutrophils and

platelets) elements captured by the SII may serve as an integrative

marker of systemic immune dysregulation in autoimmune diseases.

The applications of SII in autoimmune and inflammatory diseases

are listed in Table 1.
4 SII in RA

4.1 Background

RA is a chronic systemic autoimmune disorder characterized by

persistent synovial inflammation, progressive joint destruction, and

various extra-articular manifestations (30). Its complex pathogenesis

involves disrupted bone remodeling due to an imbalance between

osteoblast and osteoclast activity, synoviocyte hyperplasia, and immune

dysregulation (31). At the cellular level, the aberrant activation of T

cells, B cells, and macrophages drives chronic inflammation and tissue

damage. This immune activation is accompanied by excessive secretion

of pro-inflammatory cytokines such as tumor necrosis factor-alpha

(TNF-a), interleukin-6 (IL-6), and interleukin-17 (IL-17) (24, 32, 33).

Emerging evidence suggests that impaired regulatory T cell

function and the expansion of autoreactive T cells promote B cell

hyperactivity and autoantibody production in RA (24, 34, 35).

Dysfunctional immune homeostasis, marked by impaired T-cell

regulation and excessive B-cell activity, plays a central role in

perpetuating autoimmunity (36, 37). As RA progresses, systemic

inflammation intensifies and can be quantitatively assessed using

hematological indices. The neutrophil-to-lymphocyte ratio (NLR)

and platelet-to-lymphocyte ratio (PLR) have shown greater
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sensitivity in reflecting inflammatory burden than individual cell

counts (37). More comprehensively, the SII, which incorporates

lymphocyte, neutrophil, and platelet counts, serves as an applicable

composite index of the immune-inflammatory status in RA.
4.2 SII in the evaluation of disease activity
and inflammation

The SII has emerged as a promising biomarker for systemic

inflammation and immune cell dynamics. Thus in RA, the SII has

shown value in assessing disease activity and inflammatory burden.

Satis et al. (38) reported that the SII levels were significantly

higher in patients with RA compared to healthy controls (HCs), with

a positive correlation between the SII values and disease activity.

Active RA was associated with higher SII (702.25 ± 39.56) than

remission (574.69 ± 34.72). Additional data showedmean SII levels of

666.42 ± 33.00 in patients with RA versus 596.71 ± 57.64 in HCs.

Supporting evidence from Choe et al. (39) demonstrated

significant correlations between SII and composite disease activity

scores, including the Disease Activity Score (DAS)28-ESR, DAS28-

CRP, CDAI, and SDAI. SII values increased with disease severity,

suggesting that it may be a sensitive cell-based index for tracking

RA progression.

Population-based data support this association. A cross-

sectional NHANES analysis (n = 37,604) (40) found that a higher

SII was independently associated with an increased RA prevalence.

Restricted cubic spline analysis revealed a non-linear dose–response

relationship, with an inflection point at ln-SII = 6.36 (SII ≈ 578.25),

beyond which RA risk increased sharply.
4.3 SII and therapeutic response in RA

Although RA remains the primary focus, the SII has

demonstrated utility in predicting treatment response. In a

retrospective study of 154 patients with RA treated with TNF-a
inhibitors, Bai et al. (41) found that pre-treatment SII levels were

significantly lower in responders than in non-responders. Among

the tested inflammatory markers, the SII and lymphocyte count

exhibited the strongest predictive value for therapeutic efficacy,

outperforming conventional biomarkers such as CRP and RF.

These findings support SII’s potential in stratifying patients for

biological therapy and predicting outcomes.
4.4 Association with molecular markers:
the Klotho link

Recent findings suggest that the SII may reflect not only

immune activation, but also molecular alterations associated with

aging and immune dysregulation. A study of 982 patients with RA

from the NHANES 2007–2016 identified a remarkable inverse

association between the SII and serum levels of soluble Klotho
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protein (42), and a significant inverse correlation was observed

between the SII and serum Klotho protein—an anti-aging, anti-

inflammatory molecule secreted mainly by the kidneys and

parathyroid glands (43, 44). Serum Klotho concentrations

quantified using ELISA showed consistent inverse correlations

with SII across regression models, independent of age,

comorbidities, or metabolic status (42).

Mechanistically, Klotho modulates immune and oxidative stress

pathways. Experimental studies indicate that Klotho attenuates

reactive oxygen species, suppresses pro-inflammatory cytokines

(e.g., IL-6, TNF-a), and inhibits NF-kB signaling (45). It also

influences the neutrophil activity, lymphocyte function, and

platelet activation (46–48). In RA, where macrophage-driven

inflammation contributes to joint destruction (36, 49), reduced

Klotho levels may indicate the failure of endogenous anti-

inflammatory regulation. The observed inverse trend between SII

and serum Klotho suggests that SII may reflect not only immune

cell imbalance but also the underlying immunosenescence and

molecular stress.
4.5 Diagnostic value and cut-off
determination

Several studies have evaluated the diagnostic utility of the SII

and have proposed clinically relevant cutoff values. Satis et al. (38),

reported an AUC of 0.643 for SII in distinguishing active RA, with

sensitivity of 56.3% and specificity of 45.5% at a threshold of 574.20.

In contrast, a study of female RA patients proposed a lower cutoff of

305.6, yielding 85% sensitivity and 42% specificity for distinguishing

patients from healthy controls (39). These findings suggest that the

SII may serve as an accessible and cost-effective adjunct for

screening and disease monitoring, particularly when conventional

biomarkers are inaccurate.

Another study comparing the SII and pan-immune-

inflammation value (PIV) found that both indices were elevated

in patients with active RA compared to those in remission or HCs.

PIV outperformed the SII in distinguishing remission from health,

suggesting that PIV may offer superior sensitivity in detecting low-

grade inflammation (50, 51). Another ROC-based study confirmed

the acceptable diagnostic performance of the SII in active disease

but noted limited utility for remission detection (39).
4.6 Summary and clinical implications

Collectively, the current evidence highlights the clinical

relevance of the SII in RA. It shows consistent correlation with

composite disease activity indices (e.g., DAS28 and CDAI) (38, 39),

enables stratification by inflammatory burden and treatment

response (41), and reflects broader immunometabolic

dysregulation, including Klotho deficiency (42). Proposed cutoffs

—305.6 (sensitivity, 85%; specificity, 42%) (39) may assist in disease

monitoring and risk classification. Satis et al. (38) reported an AUC
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of 0.643 for SII in distinguishing active RA, with sensitivity of 56.3%

and specificity of 45.5% at a cutoff of 574.20. These findings

collectively suggest that SII thresholds require careful

optimization to maximize diagnostic utility.

However, this study has a few limitations. The SII’s

discriminatory power diminishes in low-inflammatory or near-

remission states. In these cases, novel indices, such as PIV, may

provide better sensitivity. In support of this, ROC analyses showed

that, while the SII retained fair accuracy in active RA, it was less

effective for remission monitoring (39).

Future studies should validate the current cutoffs longitudinally

and define SII dynamics across treatment courses. Integrating the

SII with conventional markers (e.g., CRP and ESR) may enhance

diagnostic precision, while a combination with emerging indices

such as the systemic inflammation response index (SIRI) may

expand its value in predicting RA-related complications,

including interstitial lung disease and malignancy (52).
5 SII in AS and PsA

5.1 Background

AS and PsA are the two major subtypes of SpA that primarily

affect the axial skeleton and peripheral joints (53). These diseases

are frequently accompanied with systemic manifestations and

comorbidities. Immunologically, both AS and PsA are driven by

dysregulated immune responses and sustained inflammation,

contributing to progressive joint damage, reduced mobility, and

functional disability (54–56).
5.2 SII in disease activity assessment

Recent studies have evaluated the utility of SII in assessing

disease activity in patients with AS and PsA. In a cross-sectional

study involving 100 patients with SpA (including both AS and PsA),

the median SII exceeded 600, indicating active systemic

inflammation. Patients with high disease activity demonstrated

significantly elevated SII levels, which were positively correlated

with conventional inflammatory markers, such as ESR and CRP,

supporting the potential of SII as an objective indicator of

inflammatory burden in SpA (57).

Additional evidence was obtained from a retrospective study

involving 136 patients with AS and 63 HCs, which identified the SII

as the most effective single biomarker for differentiating active

diseases. Using a cut-off value of 513.2, the SII achieved 86.84%

sensitivity and 83.33% specificity for detecting active AS,

outperforming conventional laboratory indices (58).

Furthermore, in a study assessing patients with combined axial

and peripheral SpA, an increased SII was significantly associated

with active disease, as defined by BASDAI > 4 and DAPSA > 14.

Notably, SII strongly correlates with ultrasonography-detected

synovitis in peripheral SpA, suggesting its value as a marker of

both systemic and local inflammation (57).
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5.3 SII and therapeutic response in
psoriasis and PsA

Psoriasis, especially when accompanied by PsA, is increasingly

being recognized as a systemic inflammatory condition that extends

beyond cutaneous involvement (59). Biological therapies with anti-

inflammatory mechanisms have demonstrated efficacy in managing

skin and joint symptoms, systemic inflammation, and associated

comorbidities (60).

In this therapeutic context, the SII has shown potential as a

marker of treatment response. In a study of 220 patients with

psoriasis, SII values significantly decreased after three months of

biologic therapy (P< 0.001) (61). Subgroup analyses revealed

significant reductions across several classes of biologic agents,

including TNF-a inhibitors, IL-17 inhibitors, and IL-12/23

inhibitors, as well as with individual agents such as adalimumab,

infliximab, ixekizumab, secukinumab etc. This suggests that the SII

may serve as a reliable marker for monitoring therapeutic efficacy

and predicting remission in patients with psoriasis and PsA.

Another study reported significantly higher SII in patients with

PsA than in those with psoriasis. SII values were positively

correlated with PASI scores and the presence of arthritis, further

supporting its potential role as a prognostic marker for psoriatic

disease (62). Moreover, the SII was significantly elevated in patients

with moderate-to-severe PsA disease activity, as defined by the

DAPSA scores. A proposed diagnostic cutoff of 800 yields high

sensitivity and specificity for disease activity identification (63).
5.4 Summary and clinical implications

Collectively, the current evidence supports the clinical utility of

the SII in assessing disease activity in AS and monitoring treatment

responses in psoriasis and PsA. Its strong correlation with clinical

indices and imaging findings, along with its association with PsA

severity and progression, highlight its prognostic value. However,

this study had several limitations. Disease-specific cutoffs have not

yet been standardized, and their applicability across different SpA

subtypes and disease stages requires further clarification. Future

studies should prioritize longitudinal validation, integration of

conventional markers and emerging immune signatures, and

evaluation using multiparametric clinical algorithms (57).
6 SII in SLE

6.1 Background

SLE is a chronic multisystem autoimmune disorder

characterized by alternating flares, remission, and dysregulation

of the innate and adaptive immunity (64, 65). Clinically, SLE

presents with heterogeneous manifestations involving the skin,

joints, kidneys, central nervous system, and hematopoietic system

(66, 67). The cellular components of SII are pathophysiologically

relevant to SLE.
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Neutrophils form NETs and exacerbate inflammation

and tissue injury (68). Lymphopenia, a hallmark of active SLE,

reflects T cell exhaustion and immune dysregulation, and

lymphocyte counts and ratios serve as markers of immune

disturbances and autoantibody-driven inflammation (69).

Platelet activation contributes to the endothelial damage and

inflammation. Elevated platelet counts or activity indicates

heightened inflammation and may be correlated with disease

activity and organ damage (70). Thus, SII may act as a composite

indicator of disease burden and immune imbalance, especially

during flares.
6.2 SII and global disease activity

In multiple cohorts, the SII was consistently correlated with

global disease activity indices in SLE, particularly the SLE Disease

Activity Index (SLEDAI or SLEDAI-2K). Akdogan et al. (71)

reported a strong correlation between the SII and SLEDAI (r =

0.698, p = 0.01), with high discriminatory power for moderate-to-

severe activity (AUC = 0.930, sensitivity 77%, specificity 76%).

Predescu et al. (72) similarly identified the SII as a robust flare

marker, with an AUC of 0.963 for severe flares. Baykal et al. (73)

observed an elevated SII in pediatric patients with high disease

activity, especially in ANA-positive cases.
6.3 Organ-specific associations: lupus
nephritis and pregnancy outcomes

SII may reflect organ involvement, particularly in renal disease.

Ergun et al. (74) showed a higher SII in patients with lupus nephritis

than in those without proteinuria (p = 0.012), with correlations

between both proteinuria and SLEDAI. Yang et al. confirmed that

the SII independently predicted lupus nephritis (AUC = 0.6775)

and correlated with SLEDAI-2K (r = 0.24, p< 0.05) (75). However,

Özdemir et al. found no significant difference in the SII between

patients with and without nephritis (76).

Sahin et al. demonstrated that an elevated first-trimester SII

in pregnant patients with SLE was associated with adverse

outcomes, including preterm birth and fetal loss. The optimal

threshold (1612.6) yielded a sensitivity of 73.3% and specificity of

71.4% (77).
6.4 Treatment response monitoring

Longitudinal data on treatment-related SII changes are limited

but promising. Gambichler et al. (78) observed that clinical and

serological improvements were accompanied by a decline in the SII

and rising lymphocyte counts, suggesting their potential utility in

therapy monitoring. However, these findings are exploratory and

require further validation.
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6.5 Clinical applicability and limitations

The SII offers a rapid, noninvasive measure of systemic

inflammation and has demonstrated utility in autoimmune

conditions. However, its nonspecific nature is a limitation of this

study. Taha et al. (79) reported elevated SII levels in patients with

SLE, RA, and AS. Moreover, its components may vary with

physiological changes or treatments, which complicates

its interpretation.

Predescu et al. (72) reported a strong discriminative capacity

of the SII for severe SLE flares (AUC=0.963), which aligned with

the findings of Akdogan et al. (AUC=0.930) (71). However,

the implausible SII cutoff (877,002.19)—reflects likely

computational/unit errors given the incongruence with

hematologic parameters (mean platelets: 246.413 ± 118.145×10³/

μL, neutrophils: 3.818 ± 1.381×10³/μL, lymphocytes 1.591 ±

0.707×10³/μL). Consequently, while the AUC validates the SII’s

diagnostic potential, the cutoff was excluded from the synthesis to

prevent misinterpretation. This underscores the importance of a

rigorous methodology for threshold derivation for the clinical

translation of biomarkers.

Despite these challenges, the SII may complement conventional

markers, such as anti-dsDNA and complement levels, particularly

where access to immunologic assays is limited. Future work should

define disease-specific cutoffs, track longitudinal changes, and assess

the role of the SII in multiparametric models integrating clinical,

serological, and imaging data.
7 Systemic immune-inflammation
index in vasculitides

7.1 Background

Systemic vasculitides, including antineutrophil cytoplasmic

antibody (ANCA)-associated vasculitis (AAV), Behçet’s syndrome

(BS), and Kawasaki disease (KD), are complex inflammatory

conditions characterized by vascular inflammation and

multisystem involvement (80–82). Accurate biomarkers are

essential for evaluating disease activity, organ involvement, and

treatment responses. In vasculitis, where disease activity and

vascular injury are often difficult to assess, the SII may offer

additional diagnostic and prognostic value.
7.2 SII in disease activity assessment

A retrospective study of 190 Chinese patients with

myeloperoxidase (MPO)-AAV found that the baseline SII was

positively correlated with CRP and ESR, but not with the

Birmingham Vasculitis Activity Score (BVAS). Interestingly,

patients with higher SII values (≥2136.45) had a significantly
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TABLE 1 List of SII applications in autoimmune and inflammatory diseases.

Disease Reference
Activity
Assessment

Cut-off
Value

Therapy
Response

Key Findings and Remarks

RA (38) + 574.2 /
SII distinguished active disease from remission and controls,
outperforming SIRI.

RA (39) + 305.6 /
SII was positively correlated with disease activity, and showed
moderate diagnostic accuracy for active RA but poor sensitivity for
remission detection.

RA (41) / / +
SII was among the strongest predictors of TNF-a
inhibitor efficacy.

RA (40) / 578.25 /
Elevated ln-SII was independently linked to increased RA
prevalence, with risk markedly rising above the threshold
of 578.25.

RA (42) / / /
Higher SII quartiles were associated with progressively lower
Klotho levels.

SLE (76) – / /
SII was elevated in SLE but showed weaker diagnostic value and
no significant link to disease activity or renal involvement.

SLE (77) / 1612.6 /
First-trimester SII was significantly elevated in SLE pregnancies
with adverse outcomes.

SLE (75) + 545.9 /
SII was an independent risk factor for lupus nephritis and
moderately predictive of renal involvement.

SLE (73) + 415 /
SII reflected systemic inflammation and was associated with high
disease activity and ANA positivity.

SLE (71) + 681.3 /
SII showed the strongest correlation with SLEDAI and the highest
diagnostic performance (AUC = 0.930).

SLE (78) + / –
SII elevated in SLE but lacked independent prognostic value for
flare or treatment response.

SLE (72) + Excludeda /
SII demonstrated high discriminative power for severe disease
flares (AUC=0.963).

SLE (74) + 1348.4 /
SII was significantly associated with both SLE disease activity and
renal involvement.

AS (58) + 513.2 / SII outperformed traditional markers for AS activity assessment.

AS (57) – / / SII reflects inflammation but not clinical activity or health status.

Psoriasis (61) – / + SII was higher in patients comorbid psoriatic arthritis.

PsA (62) + 490 / SII as independent marker for disease severity and PsA risk.

PsA (63) + 800 +
SII correlates with PsA activity, and practical for monitoring
treatment response.

BS (84) + 552 /
SII showed strong discriminatory ability in distinguishing active
from inactive BS.

BS (86) / / /
SII demonstrated strong ability to differentiate vascular
involvement in BS (AUC=0.87).

BS (85) + 526.23 SII independently predicted active BS with a cut-off of 526.23.

MPO-AAV (83) – 2,136.45 /
SII ≥2,136.45 associated with significantly better cumulative
renal survival.

KD (87) / / /
Elevated SII independently associated with CALs; AUC=0.789 for
predicting coronary involvement at admission.

KD (89) + 1006.11 /
Post-IVIG SII independently predicted IVIG
resistance (AUC=0.706).

KD (88) / 668.6 / Lower SII independently associated with presence of CALs.

(Continued)
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lower risk of progression to end-stage renal disease (ESRD),

suggesting a possible protective association (83).

Several studies have linked the SII to disease activity in BS. In a

retrospective analysis, Tanacan et al. (84) reported a significantly

higher SII in active-BS than in inactive-BS, with a proposed cutoff

value of 552 × 109. Similarly, Menteseoglu and Atakan (85) found

that an elevated SII correlated with CRP level, ESR, NLR, and PLR,

and was an independent predictor of active disease in

regression analysis.

A large cohort study by Ulusoy et al. (86) showed a significantly

higher SII in patients with BS and vascular involvement than in

those with mucocutaneous or other phenotypes. The SII

demonstrated a strong discriminatory capacity for vascular

involvement (AUC = 0.87).

In KD, multiple studies have evaluated the role of the SII in

predicting coronary artery lesions (CALs), with mixed results.

Huang et al. (87) found a significant linear association between

the SII and CALs at admission, with an AUC of 0.789.

In contrast, Yalcinkaya et al. (88) observed a lower SII in

patients with KD and CALs and identified male sex, low

prognostic nutritional index (PNI), and reduced SII as

independent risk factors. Liu et al. (89) found that post-

intravenous immunoglobulin (IVIG) SII levels were significantly

higher in IVIG-resistant patients, although the baseline SII did not

differ according to resistance status.
7.3 SII and therapeutic response in
vasculitides

In addition to its role in disease activity, SII may help assess

treatment response and prognosis. For MPO-AAV, Chen et al. (83)

found that a higher baseline SII correlated with CRP level and ESR,

but not BVAS, and was associated with improved renal survival and

reduced ESRD risk (83).

In KD, an elevated baseline SII is associated with

IVIG resistance. Yi et al. (90) reported an optimal cutoff of

2209.66 (AUC of 0.626) and identified the SII, SIRI, and PIV

as independent predictors of non-responsiveness. Similarly, Liu

et al. (89) observed a significantly higher post-treatment SII in

IVIG-resistant patients (AUC = 0.706), indicating that the failure of

the SII to decline may signal persistent inflammation and

predict resistance.
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7.4 Summary and clinical implications

Emerging data support the use of the SII across vasculitis

subtypes. In AAV, elevated SII is correlated with inflammatory

markers and predicts renal outcomes (83). In the BS, the SII

distinguishes active from inactive disease (84, 85), correlates with

inflammatory indices, and differentiates vascular from

mucocutaneous forms with high accuracy (AUC of up to 0.87)

(86). In KD, SII predicts CALs and IVIG resistance, reflecting

disease severity and treatment response (87, 90).

Overall, the SII is a simple, accessible, and cost-effective

index for evaluating inflammation and vascular involvement in

vasculitis. However, disease-specific cutoffs and prospective

validations are needed to refine their clinical utility alongside

established biomarkers.
8 SII in oncology and infection:
insights into comorbidities

The SII has been linked to the prognosis and clinicopathological

features of various tumors (91). In gastric and lung cancers,

reductions in the SII after neoadjuvant therapy were significantly

associated with major pathological responses and favorable

outcomes (92, 93). Meta-analyses of colorectal cancer have

confirmed that an elevated SII is a robust predictor of poor

overall and disease-free survival (94). Additionally, UK Biobank

data showed that an elevated pre-diagnostic SII was associated with

higher cancer incidence, particularly within one year of diagnosis,

suggesting a possible paraneoplastic inflammatory response (95).

In ICU patients with sepsis, both low and high SII values were

associated with a higher 28-day mortality, forming a J-shaped risk

curve (96). In diabetes patients with odontogenic infections, SII

showed a high predictive value for severe infections (97). The SII

also correlated with pneumonia risk in patients with intracerebral

hemorrhage, although the performance varied across inflammatory

markers (98). Another study identified the SIRI and nutritional

scores as independent predictors of pneumonia and in-hospital

death in the same population (99). In children undergoing

cardiopulmonary bypass, a lower early postoperative SII is

associated with an increased risk of nosocomial infections (100).

These findings highlight the broad utility of SII in cancer and

infections. Most studies have focused on autoimmune diseases such
TABLE 1 Continued

Disease Reference
Activity
Assessment

Cut-off
Value

Therapy
Response

Key Findings and Remarks

KD (90) / 2,209.66 +
SII was an independent risk factor for IVIG
resistance (AUC=0.626)
SII, systemic immune-inflammation index; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; AS, ankylosing spondylitis; PsA, psoriatic arthritis; BS, Behçet’s syndrome; MPO-AAV,
myeloperoxidase−anti−neutrophil cytoplasmic antibody−associated vasculitis; KD, Kawasaki disease; SLEDAI, SLE Disease Activity Index; CALs, coronary artery lesions.
aThe reported SII cutoff value of 877,002.19 was excluded due to a clear internal inconsistency with hematological parameters, suggesting a probable miscalculation or unit mismatch. Only the
AUC was retained to reflect the diagnostic insights of the study.
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as RA, SLE, SpA, and vasculitis. As both conditions can elevate the

SII independently of autoimmunity, their exclusion is

methodologically appropriate but also highlights a clinical

limitation. When using the SII to monitor autoimmune

inflammation, clinicians should consider possible confounders,

such as occult malignancy or subclinical infection.
9 Conclusion and perspectives

The SII shows potential as a composite biomarker of immune-

inflammatory activity across autoimmune diseases, including RA,

SLE, SpA, and vasculitides. By integrating neutrophil, platelet, and

lymphocyte counts, the SII provides an accessible and cost-effective

adjunct for screening and disease monitoring. However, several

challenges remain to be resolved. The reported optimal SII cutoffs

vary substantially (e.g., 305.60–578.25 in RA vs. 415.00–1612.60 in

SLE), reflecting disease-specific pathophysiology, endpoint

definitions (e.g., renal involvement vs. global activity), and

statistical methodologies. Its limited specificity and modest

accuracy, along with confounding from infections or malignancies

and cutoff heterogeneity, warrant cautious interpretation and

further validation in large, well-characterized cohorts.

The clinical value of the SII may be enhanced by combining it

with conventional indices and emerging biomarkers, such as the

SIRI, or molecular indicators, such as Klotho. Future studies should

prioritize the standardization of disease activity definitions and

analytical protocols to harmonize the SII cutoff derivation. A more

integrated approach that incorporates clinical, imaging, and

molecular data may improve personalized management of

autoimmune diseases.
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inflammatory biomarkers for discriminating vascular involvement in Behçet’s
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