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Macrophages are highly plastic innate immune cells whose polarization and
effector functions are tightly linked to their metabolic programs. Ubiquitination,
the post-translational modification that attaches ubiquitin chains to target
proteins, plays a crucial role in regulating macrophage immunometabolism
and phenotype transitions. In this mini-review, we summarize the current
understanding of ubiquitin-dependent mechanisms that modulate
macrophage polarization. We discuss how E3 ubiquitin ligases and
deubiquitinases regulate key metabolic and signaling pathways, balancing pro-
inflammatory and immunosuppressive states. Additionally, we describe the
pathophysiological consequences of dysregulated ubiquitin-dependent control
of macrophage polarization and its implications for disease. These insights
underscore the importance of ubiquitination as a central modulator of
macrophage function and its potential as a therapeutic target for controlling
immunity in infections, inflammation, and cancer.
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1 Introduction

Precise control of protein function is essential for regulating cell signaling and fate.
Ubiquitination, a versatile post-translational modification, achieves this by covalently
attaching a 76-amino-acid ubiquitin protein to targets through an enzymatic cascade
involving EI activating enzymes, E2 conjugating enzymes, and E3 ligases (1) (Figure 1).
Substrates are tagged with either single ubiquitin molecules or polyubiquitin chains of
various linkage types, altering their stability, localization, or interactions (2, 3). Hundreds of
E3 ligases confer substrate specificity, while deubiquitinating enzymes (DUBs) remove
ubiquitin chains, creating a dynamic, finely tuned ubiquitin signaling system that regulates
cellular processes.

Ubiquitination is essential for regulating immune cells, including innate immune cells. It
is well established that ubiquitination controls key pro- and anti-inflammatory signaling
pathways, such as NF-xB and interferon signaling (4), balancing homeostasis and activation
to ensure robust yet restrained immune responses. More recently, it has become clear that
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FIGURE 1

Protein ubiquitination: a dynamic and reversible posttranslational modification with multiples possible outcomes that modulate macrophage
plasticity. Left. Schematic representation of the enzymatic steps involved in ubiquitination and deubiquitination. The ubiquitination process proceeds
in three steps: activation of ubiquitin (Ub) by an E1 enzyme in an ATP-dependent manner, its transfer to an E2 conjugating enzyme, and its covalent
attachment to a lysine residue on the substrate by an E3 ligase. Deubiquitinases (DUBs) reverse this process by cleaving isopeptide bonds either
between ubiquitin and the substrate or within ubiquitin chains, thereby editing or removing ubiquitin modifications. For simplicity, only one type of
ubiquitin chain is shown; in reality, substrates can be modified with mono-, multi-, or polyubiquitin chains, which may also be mixed or branched.
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This structural diversity enables a wide range of outcomes for the ubiquitinated substrate, including altered stability, degradation, trafficking,
localization, activity, and protein—protein interactions. Right: Selected examples of substrate-specific outcomes, such as degradation, altered
localization, modulation of activity, and changes in protein—protein interactions, illustrating how ubiquitin-mediated regulation contributes to
macrophage plasticity. Additional ubiquitin enzymes, substrates, and regulatory outcomes are discussed in the main text and shown in Figure 2.

Created in BioRender. Paolino, M. (2025) https://BioRender.com/i788nmb.

ubiquitination integrates metabolic signals with inflammation
regulation to fine-tune immune outcomes. This integration of
immune phenotype with metabolic programming -referred to as
immunometabolism- is a hallmark of macrophage biology. Their
polarization into distinct tissue functions requires coordinated
immune signaling and metabolic control (5-7). This principle is
well illustrated by the two main polarized macrophage phenotypes:
canonical pro-inflammatory M1-like macrophages, which rely on
glycolysis, and anti-inflammatory M2-like macrophages, which
depend on oxidative phosphorylation and fatty acid oxidation.

This mini-review highlights key studies illustrating how
ubiquitin-dependent pathways orchestrate macrophage functional
plasticity by not only regulating various inflammatory cascades, but
controlling and integrating key metabolic circuits to shape
functional outcomes, with significant implications for immune-
mediated diseases.

2 Ubiquitination in macrophage
functional diversity

Macrophage polarization refers to the ability of macrophages to
adopt distinct functional programs in response to environmental
signals, enabling them to coordinate diverse processes such as
pathogen clearance, tissue repair, immune regulation, and
inflammation resolution (8). Ubiquitination orchestrates signaling
pathways that drive macrophage polarization across a spectrum of
activation states, including pro-inflammatory M1-like and anti-
inflammatory M2-like phenotypes, among others, as well as their
functional plasticity—the ability to switch between these states.
Various E3 ligases act as molecular on/off switches, promoting or
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inhibiting specific pathways, while deubiquitinases (DUBs) adjust
responses by either sustaining signaling -by removing degradative
ubiquitin marks- or terminating it -by removing activating
ubiquitin chains (Figure 1).

2.1 Pro-inflammatory M1-like polarization

Classical M1 activation, leading to pro-inflammatory
macrophages, is typically triggered by TLR ligands like LPS and
cytokines such as IFN-y, TNF-a, and IL-1 (9) (Figure 2). These
signals converge on transcription factors NF-xB, AP-1, and IRFs,
promoting the production of IL-12, IL-6, IL-1, TNF-0, and iNOS
(10, 11). Ubiquitin signaling regulates these inflammatory pathways
at multiple levels, from receptor activation to transcription factor
control and negative feedback.

Upon TLR engagement, NLRX1 is rapidly ubiquitinated,
dissociates from TRAF6, and then binds the IKK complex, resulting
in inhibition of IKK phosphorylation and NF-xB activation (12).
Similarly, the E3 ligase TRIM23 promotes NF-kB activation during
viral infections by conjugating atypical Lysine 27-linked chains on
NEMO, which is crucial for IRF3 and NF-kB activation downstream
of viral sensors TLR3 and RIG-I/MDA-5 (13). Ubiquitination also
regulates inflammasome assembly; the deubiquitinase BRCC3, as part
of the BRISC complex, removes K48/K63 ubiquitin from NLRP3,
permitting ASC oligomerization, caspase-1 activation, and IL-1f
maturation (14). Loss of BRCC3 or activation of the vitamin D
receptor (which inhibits BRCC3) blocks IL-1p release, highlighting
the critical role of this deubiquitination step (15).

Additionally, both deubiquitinases and E3 ligases restrain M1
polarization to prevent excessive inflammation. A20 is a unique
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FIGURE 2

Ubiquitination plays a central role in regulating key signaling pathways that drive macrophage functional diversity and plasticity. This figure illustrates how
numerous E3 ubiquitin ligases (in purple: Cbl-b, Cbl, TRIM8, TRIM23, TRIM30c, TRIM32, TRIM59, TRAF6, NKLAM, LUBAC, Skp2, VHL, Itch, BRCC3, Parkin,
Keapl-Cul3, FBXW7, PDLIM2, Pellinol, MARCH1/8) and deubiquitinases (in pink: A20, CYLD, UCHL1, OTULIN, USP14, USP18, USP25) modulate the
functional responses of pro-inflammatory M1-like and anti-inflammatory M2-like macrophages—as well as transitions between these states—by
targeting key regulators of inflammatory and metabolic pathways for activation or degradation. Ubiquitination acts at multiple levels of the inflammatory
cascade, controlling the expression or stability of receptors (e.g., CSF-1R, Fcy, MHCII, CD80/86), inflammasome assembly, and the activation of proximal
signaling cascades downstream of key inflammatory receptors (e.g., TNFR, IFNR, TLR, IL-10R, IL-13/IL-4R), as well as the nuclear translocation of key
transcription factors (e.g., AP-1, NF-xB, STATS). It also regulates macrophage metabolism by modulating glycolysis, oxidative phosphorylation, hypoxia
adaptation, fatty acid oxidation, arginine metabolism, and mitophagy. Arrows indicate positive regulation; blunt-end lines indicate inhibition. While this
figure focuses on M1- and M2-like macrophages, where most mechanistic data related to ubiquitination are currently available, it is also known that
ubiquitination regulates other functionally relevant macrophage states, such as foam cells and dying macrophages, which are not depicted here. Created

in BioRender. Paolino, M. (2025) https://BioRender.com/i788nmb.

ubiquitin-editing enzyme with dual functions: it removes activating
ubiquitin chains and adds degradative Lys48-linked chains to key
adaptors in the NF-kB and MAPK pathways, including TRAF6,
RIP1, and NEMO, thereby terminating signal transduction (16). A20
is also known to inhibit inflammasome activation by promoting the
ubiquitination and degradation of NEK7 (17). A20-deficient
macrophages exhibit prolonged activation and excessive cytokine
production, leading to heightened inflammation (18). The
deubiquitinase CYLD removes K63-linked chains from NF-xB
(TRAF2/6, NEMO, RIP1) and JNK (TAK1) adaptors as well as
STAT1, curbing M1 cytokine output and preventing inflammation
from escalating into pathology (19). Consequently, CYLD-deficient
macrophages exhibit hyperinflammatory signaling and are more
susceptible to developing colitis-associated colorectal cancer (20).
The deubiquitinase OTULIN adds further control by hydrolyzing
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linear, M1-linked ubiquitin chains on key adaptors of TLR and TNF
signaling, which are linked by the E3 ligase complex LUBAC (21);
OTULIN loss causes ligand-independent NF-xB activation and
severe inflammation, which mimics the human OTULIN related
autoinflammatory syndrome (ORAS) and is reversed by TNFo
blockade (22).

The E3 ligases Cbl-b, Itch, and GRAIL, with broad effects as key
negative regulators of immunity, dampen inflammatory signals
linked to MI-like polarization by acting on key receptors and
adaptors. Cbl-b ubiquitinates MyD88 and TRIF after CD11b-Src-
Syk signaling, ending TLR signaling (23). Cblb™~ macrophages
overproduce cytokines upon TLR4 activation, with varying
outcomes depending on infection: exaggerated cytokine responses
in T. gondii infection (24) but improved survival in Candida sepsis
(25). Itch restrains IL-1ot amplification by indirectly promoting pro-
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IL-1ow deubiquitination through yet unknown DUBs. Itch deficiency
leads to hyper-M1 responses and worsens osteoarthritis, reversible
with IL-1o. neutralization (26, 27). GRAIL directly suppresses LPS-
driven M1 polarization by downregulating IL-1f3, TNF-o, IL-6, and
TLR4, limiting macrophage-driven tissue damage in models of
endotoxemia as well as lung injury (28-30).

Other E3 ligases, like TRIM300. and TRIMS, are induced during
inflammation as negative feedback mechanisms to terminate
macrophage activation. TRIM30o. targets the adaptors TAB2/TAB3
for degradation to shut off NF-xB; TRIM300 overexpression protects
against endotoxin shock, while its loss prolongs cytokine release (31).
TRIMS8 ubiquitinates the adaptor TRIF, preventing binding to the
TBK1 kinase and limiting IRF3 and NF-kB activation; its loss leads to
cytokine overproduction in response to poly(I:C) or LPS (32). The E3
ligase Skp2, part of the SCF E3 ligase complex, promotes autophagic
degradation of phosphorylated IKK via p62, helping resolve NF-kB
signaling; without Skp2, NF-xB activation and cytokine output
persist (33).

Ubiquitin also regulates M1-linked transcription factors. The
nuclear E3 ligase PDLIM2 ubiquitinates NF-xB p65 (RelA) and
STATS3, restraining inflammation and blocking M2 skewing via IL-
10. In tumors, oxidative stress suppresses PDLIM2, impairing
macrophage anti-tumor responses; PDLIM2 loss drives
unchecked STAT3 activity and pro-tumor M2 skewing, while
restoration improves anti-tumor function (34). Similarly, other E3
ligases play crucial roles in macrophage polarization and function in
tissue injury and disease contexts. For instance, TRIM21 expression
promotes M1 polarization post-myocardial infarction; TRIM21-
deficient mice exhibit smaller infarcts, better cardiac function, and
increased M2 macrophages (35). TRIM59 enhances bactericidal M1
functions during sepsis; it ubiquitinates Fcy receptor machinery and
NEF-kB adaptors to sustain antimicrobial activity and control
inflammation. Its deletion impairs Fcy receptor expression and
phagocytosis, exaggerating cytokine production (36).

2.2 Immunosuppressive M2-like
polarization

M2-like macrophages typically arise in response to IL-4/IL-13 via
STATS, or IL-10 and glucocorticoids via STAT3. Characteristically,
they express high levels of Argl, Ym1, Fizzl, IL-10, and scavenger
receptors like CD206. Functionally, they promote tissue repair,
fibrosis, and, importantly, support tumor progression (Figure 2).
The ubiquitin system is equally crucial in driving and fine-tuning
these anti-inflammatory programs (37).

IL-10-induced M2 polarization depends on ubiquitination. The
E3 ligase Pellinol enhances STATS3 stability and in turn its activity by
mediating its ubiquitination. Pellinol levels are elevated in mice and
humans with colitis, and if depleted from monocytes it reduces colon
inflammation and colorectal cancer (38). IL-10 induces MARCHI, an
E3 ligase that ubiquitinates MHC II and CD86, targeting them for
degradation. This strips macrophages of antigen-presenting
functions, enforcing an immunosuppressive M2 state. In March1™"
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cells, IL-10 fails to reduce MHC II and CD86, preserving T cell
activation and inflammation (39). TRIM59, another E3 ligase, which
limits M1 polarization by ubiquitinating and degrading STAT1 (40),
is induced by IL-4/IL-13 and helps maintain M2 identity. Though not
essential for canonical M2 marker expression, TRIM59 restrains
aberrant TNF-o. production. Without TRIM59, M2 macrophages
overproduce TNF-q, enhancing tumor invasion via TNF-responsive
genes like MMP-9. Blocking TNF-0, or downstream genes reverses
this, showing that TRIM59 preserves M2’s anti-inflammatory,
tumor-supportive role (41).

Ubiquitination also constrains M2 polarization. For instance,
the E3 ligase FBXW7 suppresses the tumor-promoting M2 program
in tumor-associated macrophages by targeting c-Myc (42). The E3
ligase PDLIM2 inhibits IL-10-driven M2 polarization by promoting
STAT3 degradation. When PDLIM?2 is repressed (e.g., by reactive
oxygen species -ROS-mediated activation of the transcription factor
BACH]I in tumors), STAT3 persists, pushing macrophages into a
highly suppressive state. Restoring PDLIM2 reactivates this
degradation switch, limiting fibrosis and the immunosuppressive
tumor microenvironment (34).

Ubiquitin-modifying enzymes active in M1 signaling also
support M2 polarization, highlighting the versatility of ubiquitin
regulators. Both the E3 ligase TRAF3 and the deubiquitinase USP25
converge on preserving STAT6 activity. TRAF3 binds STAT6 and
adds Ké63-linked ubiquitin, protecting it from degradation and
boosting M2 genes like Argl, Ym1l, and Fizzl. Similarly, USP25
removes K48-linked ubiquitin from STATS, stabilizing it. USP25-
deficient macrophages show impaired M2 gene expression, and
mice lacking USP25 are protected from M2-driven fibrosis due to
reduced macrophage accumulation. Finally, ubiquitination events
that limit M1 signaling can simultaneously promote M2 responses
(43, 44). A key example is A20, which as described above, shuts
down NF-xB and inflammasome signaling, allowing IL-4/STAT6
signaling. In myeloid-specific A20 knockout mice, macrophages
skew toward M1 and fail to mount type 2 responses during
helminth infection (18).

3 Ubiquitin regulation of metabolic
reprogramming in macrophages

Metabolic reprogramming is a hallmark of macrophage
activation. While it is most well described for canonical M1 and
M2-like phenotypes, reprogramming to meet specific energy
requirements is believed to occur across all dynamic polarization
states, including those not covered in this review. Pro-inflammatory
MIl-like polarization shifts metabolism toward glycolysis and
disrupts the tricarboxylic acid cycle (6), whereas the anti-
inflammatory and repair functions of M2-like macrophages rely
on mitochondrial respiration and fatty acid oxidation (5, 7). The
ubiquitin system critically influences macrophage metabolism and
phenotype through various mechanisms, helping to integrate
metabolic and inflammatory signals to fine tune immune
outcomes (Figure 2).
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3.1 Glycolysis and hypoxic adaptations

A key driver of glycolytic reprogramming in M1 macrophages is
the transcription factor HIF-1c, which induces glycolytic enzymes
and supports IL-1B production (45). The E3 ligase VHL controls
HIF-1o. to restrain the M1 glycolytic burst required for
inflammatory activation. Under normoxia, VHL ubiquitinates
HIF-1o. for degradation, limiting glycolysis. In hypoxia or VHL
absence, HIF-1o stabilizes, promoting glycolysis and inflammatory
gene expression (46). Myeloid cells lacking VHL or with
constitutively active HIF-lo. show enhanced glycolysis and a
hyper-inflammatory profile.

Ubiquitin also regulates growth factor signaling linked to
metabolism. The RING-type E3 ligases Cbl and Cbl-b target the
colony-stimulating factor receptor (CSF-1R) for trafficking into
macropinosomes, leading to its degradation. Without Cbl/Cbl-b,
CSF-1R signaling is prolonged, leading to sustained AKT activation,
elevated inflammatory gene expression, and increased proliferation
(47). This links Cbl/Cbl-b loss to heightened glycolytic and
inflammatory states, acting as a brake on growth factor-driven
metabolic activation in M1-like macrophages.

The PI3K/AKT pathway is another key metabolic axis
influenced by ubiquitination. The deubiquitinase UCHLI
promotes M1 polarization by enhancing AKT signaling; not by
deubiquitinating AKT, but by facilitating autophagic degradation of
the PI3K pl110o subunit. This optimizes the signaling output and
increases AKT phosphorylation, skewing macrophages toward a
glycolytic, M1 phenotype (48). Uchll ™~ macrophages show reduced
AKT activity and lower M1 markers like iNOS and TNF-o,
supporting UCHLI’s role in sustaining metabolic signaling for
M1 activation.

Conversely, other DUBs inhibit glycolytic metabolism and
inflammation. USP18, induced by type I interferons, redirects
metabolism away from glycolysis and cytokine production,
promoting oxidative metabolism typical of M2 macrophages (49).
USP18-deficient cells remain locked in a glycolytic, pro-inflammatory
state, even under anti-inflammatory conditions, highlighting USP18
as a switch between M1 and M2 metabolic states.

3.2 Lipid metabolism

Macrophage polarization is closely linked to lipid metabolism
(50). M1 macrophages accumulate lipids, while M2 macrophages
preferentially oxidize fatty acids. E3 ubiquitin ligases regulate
systemic lipid metabolism and inflammation, as shown in obesity
models. Mice lacking the E3 ligase Itch are protected from diet-
induced obesity and insulin resistance, with adipose tissue
macrophages shifting to an M2-like state (51). These macrophages
express higher M2 markers like Argl and CD206, along with fatty
acid oxidation genes, and produce fewer pro-inflammatory cytokines,
suggesting Itch limits the oxidative M2 program. Conversely, Cbl-b
plays a protective role in metabolic syndrome by restraining lipid-
driven inflammation. In diet-induced obesity, Cbl-b™”~ mice show
worsened insulin resistance due to heightened macrophage activation
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in adipose tissue (52). Cbl-b ubiquitinates TLR4 in macrophages,
promoting its downregulation. Without Cbl-b, prolonged TLR4
signaling leads to excessive IL-6 and TNF-o. production, driving
chronic inflammation and insulin resistance. In atherosclerosis
models, Cbl-b deficiency worsens plaque formation by increasing
pro-inflammatory macrophage accumulation (53). Thus, Cbl-b acts
as a lipid-sensing checkpoint, preventing macrophage overactivation
and preserving metabolic homeostasis.

Ubiquitin pathways also interact with nuclear receptors and
transcription factors regulating lipid metabolism in macrophages.
PPARYy, a lipid-activated transcription factor, is essential for the M2
phenotype, promoting fatty acid uptake and oxidation (54). The
deubiquitinase USP25 promotes IL-4-elicited M2 polarization by
preserving STAT6 levels, allowing full induction of PPAR-y, and in
turn, the expression of M2-associated genes including those involved
in lipid metabolism. In USP257" BMDMs, STAT6 activation is
blunted, leading to reduced PPARYy expression and impaired M2
polarization. USP25”" macrophages also exhibit defective IL-4-driven
polarization, lower expression of M2 markers, and fatty acid metabolic
enzymes. Consequently, USP25”" mice are protected from fibrosis in
M2-associated models (43). USP14 promotes M2 macrophage
polarization by stabilizing the transcription factor SIRT1 through
deubiquitination. SIRT1, together with the coactivator PGC-10, drives
the expression of genes involved in fatty acid oxidation (55). These
findings highlight the importance of ubiquitin-mediated stabilization
of lipid metabolism regulators in M2 metabolic reprogramming.

Macrophages play a key role in cholesterol and lipoprotein
homeostasis by taking up cholesterol-rich lipoproteins and
promoting reverse cholesterol transport to the liver for excretion.
In atherosclerosis, monocyte-derived macrophages take up oxidized
low-density lipoproteins (oxLDL) deposited in the arterial walls via
scavenger receptors such as CD36 or SR-B1 and become lipid-laden
foam cells—a key event in the onset and progression of
atherosclerosis that is tightly regulated by ubiquitination (56). For
example, the deubiquitinase UCHLLI stabilizes CD36 by removing
K48-linked ubiquitin, promoting oxLDL uptake and foam cell
formation; inhibiting UCHLI1 leads to CD36 degradation and
reduced lipid accumulation (57). In contrast, the transmembrane
E3 ligase GRAIL enhances foam cell formation by catalyzing K63-
linked ubiquitination of SR-BI, increasing its recycling to the
macrophage surface and boosting oxLDL uptake (58). For
cholesterol efflux, cholesterol-rich conditions trigger the
ubiquitination and lysosomal degradation of the cholesterol eftlux
transporter ABCA1 (59), and silencing of the E3 ligase HECTD1
increases ABCA1 levels and enhances cholesterol efflux (60), further
underscoring the role of ubiquitination in regulating foam cell
dynamics. Liver X Receptors (LXRs), key cholesterol-sensing
nuclear receptors that coordinate lipid metabolism and
inflammation in macrophages (61), induce efflux transporters
(ABCA1, ABCGI) and repress inflammatory genes in cholesterol-
loaded cells (62). LXRs also drive the expression of E3 ligases such
as IDO and RNF145, which ubiquitinate the LDL receptor (63) and
HMG-CoA reductase (64), respectively, targeting them for
degradation. This limits cholesterol uptake and links LXR activity
to sterol biosynthesis. LXRa is itself subject to ubiquitin-dependent
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regulation: in the absence of ligand, it is targeted for degradation by
the BRCA1-BARD1 E3 ubiquitin ligase complex, whereas ligand
binding prevents this, stabilizing LXRo and sustaining its
transcriptional activity (65).

3.3 Mitochondrial function and oxidative
stress

Mitochondrial function and quality control are vital to
macrophage immunometabolism. M1 macrophages accumulate
damaged mitochondria and ROS, triggering inflammasome
activation. In contrast, M2 macrophages maintain healthy
mitochondria for efficient oxidative phosphorylation (66).
Ubiquitin-dependent mitophagy, mediated by the E3 ligase Parkin
and kinase PINKI, clears damaged mitochondria. In Parkin™~ or
Pink1 ™~ macrophages, where mitophagy is impaired, dysfunctional
mitochondria accumulate, shifting metabolism toward oxidative
metabolism and M2-like features. These macrophages fail to induce
glycolysis and nitric oxide production typical of the M1 response but
still produce M1-like inflammatory cytokines such as IL-13 (67).
Parkin deficiency exacerbates inflammation through unchecked
inflammasome activation, as mitophagy disruption impairs
induction of A20, a negative regulator of NF-«xB and
inflammasome signaling. Without A20, NF-kB-driven cytokines
like IL-1B and NLRP3 are overproduced, driving inflammation and
fibrosis, highlighting mitophagy’s role in preventing excessive
inflammatory responses linked to mitochondrial dysfunction (68).

The Keapl-Nrf2 pathway links ubiquitin signaling to redox
balance, promoting the anti-inflammatory response typically
associated with M2 macrophage polarization. Under normal
conditions, Keapl, a substrate adaptor for the Cul3-RING E3
ligase, guides ubiquitinates Nrf2 for degradation. However, upon
oxidative stress, Keapl’s function is impaired, allowing Nrf2 to
escape degradation, translocate to the nucleus, and induce
antioxidant genes that protect mitochondria (69). Additionally,
Nrf2 promotes A20 expression, which dampens NF-xB and IL-1§
output (70). Thus, Keapl acts as a gatekeeper for oxidative
metabolism and anti-inflammatory tone.

Autophagy, essential to cellular metabolism, is regulated by
ubiquitination to support macrophage fitness during infection. In
Mycobacterium tuberculosis infection, TRIM32, a tripartite-motif E3
ligase, facilitates autophagic degradation of bacteria and damaged
mitochondria. TRIM32-deficient macrophages show impaired LC3
recruitment and bacterial clearance, while TRIM32 overexpression
enhances autophagic flux and preserves mitochondrial health under
stress (71).

3.4 Amino acid metabolism

Amino acid metabolism, especially L-arginine utilization,
distinguishes M1 and M2 macrophages. M1 macrophages
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produce and use iNOS to convert arginine into nitric oxide -NO-
for microbial killing, while M2 macrophages express arginase 1
-Argl- to produce ornithine which is then converted into
polyamines and L-proline for tissue repair. Ubiquitination also
regulates this metabolic divergence.

The E3 ligase RNF19b (NKLAM), induced by LPS/IFN-y,
enhances iNOS expression and NO production in Ml
macrophages by inducing STAT1 and NF-xB signaling. Nklam™"
macrophages show reduced NO production and iNOS expression,
with attenuated STAT1 Tyr701 phosphorylation and delayed NF-
KB p65 nuclear entry, leading to lower NF-«B activity and impaired
NO-dependent bacterial killing (72). Thus, NKLAM supports M1
polarization and NO-mediated microbicidal function.

Conversely, ubiquitin pathways that limit Argl levels can
restrain M2 metabolism. In tumor associated macrophages, c-
Myc drives Argl"™®" and IL-10"8" states. The F-box protein
FBXW?7, part of an SCF E3 ligase, targets c-Myc for degradation.
FBXW?7 loss stabilizes c-Myc, hyperactivating M2 genes and
increasing CD206" macrophages and tumor growth. Hence,
FBXW? limits the pro-tumoral, Argl-driven M2 phenotype (42).
Ubiquitination also controls Argl induction by regulating IL-4/
STAT6. The E3 ligase TRAF3 and the deubiquitinase USP25, by
stabilizing IL-4/STAT6, as mechanistically explained above,
promote the expression of Argl and other M2 genes. Without
TRAF3 or USP25, IL-4-induced Argl is impaired, undermining M2
polarization (43). Lastly, TRIM14 modulates iNOS activity to
optimize antimicrobial defense; Trim14”~ macrophages show
elevated iNOS activity resulting in heightened NO and stronger
bacterial control (73).

4 Ubiquitination and macrophage cell
death pathways

Although not the focus of this review, it is worth noting that
ubiquitination also regulates macrophage cell death pathways,
including apoptosis, necroptosis and ferroptosis. For example, the
deubiquitinating enzyme USP22 has been shown to protect
macrophages from apoptosis under pro-inflammatory conditions
by stabilizing pro-survival factors (74). In contrast, the E3 ligase
TRIM25 can promote cell death by driving necroptosis of oxidized
LDL-challenged macrophages by ubiquitinating the DNA repair
factor XRCCl, thereby triggering PARP1- and RIPK3-dependent
cell death (75). In ferroptosis, the Keap1-Cullin-3 E3 ligase complex
normally ubiquitinates the transcription factor Nrf2, targeting it for
proteasomal degradation (76). When this brake is lifted, Nrf2
accumulates and induces anti-ferroptotic genes such as SLC7A11
and GPX4, which protect macrophages from lipid peroxidation-
induced death (77). During T. gondii infections, the parasite dense
granule protein GRA35 interacts with the host E3 ligase Itch to
promote NLRP1 inflammasome-dependent macrophage
pyroptosis, a process that is blocked by proteasome inhibition or
loss of Itch (78).
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5 Discussion

Throughout this review, we have highlighted ubiquitination as a
crucial regulator of macrophage biology, precisely modulating
immunometabolism and polarization. Through the action of E3
ubiquitin ligases and deubiquitinases, ubiquitination integrates key
metabolic regulators of glucose, lipid, mitochondrial, and amino
acid metabolism with major polarization signaling pathways,
enabling macrophages to adapt their functions to various immune
and metabolic cues. Dysregulation of these pathways can lead to
pathogenesis, underscoring their importance. Loss of negative
regulators like A20, CYLD, or OTULIN results in unchecked M1
polarization, causing excessive inflammation and tissue damage
that contribute to autoinflammatory diseases or cancer (20, 22).
Conversely, an overactive M2 program promotes tumor-associated
macrophages, aiding immune evasion and tumor progression.
Ubiquitin ligases such as FBXW7, PDLIM2, and GRAIL act as
brakes on M2 polarization, and their loss can worsen cancer
outcomes (34, 42).

This knowledge opens therapeutic possibilities for macrophage
reprogramming in disease settings. Enhancing negative regulators
like Cbl-b or GRAIL could reduce inflammation in conditions like
septic shock or cytokine storms. GRAIL overexpression protects
against LPS-induced acute lung injury by downregulating TLR4.
High GRAIL expression in lung cancer correlates with improved
survival, suggesting enhanced ubiquitin regulation can control
tumor-promoting inflammation (28). Conversely, inhibiting E3
ligases or DUBs could reawaken macrophage inflammatory activity
in tumors. For example, deleting USP18 in tumor-associated
macrophages activates type I interferon responses, depleting M2
TAMs and slowing tumor growth (79). Additionally, promoting
MAEA activity to enhance macrophage phagocytosis has been
shown to inhibit tumor progression in preclinical models (80).

Future research to map the full range of ubiquitin substrates and to
understand the context-dependent roles of E3 ligases and DUBs in
macrophages is essential. Many ubiquitin-modulating enzymes likely
have novel or additional, yet unexplored, targets in macrophages.
Expanding this knowledge could open new therapeutic opportunities.
While strategies targeting macrophage metabolism with nutrients,
nanoparticles, or small molecules show promise (81), those that
focus on core pathways like glycolysis or fatty acid oxidation often
exert broad, off-target effects For example, common metabolic
inhibitors like 2-deoxy-D-glucose and etomoxir are known to affect
multiple aspects of macrophage metabolism (altering ATP production,
signaling pathways, CoA levels, etc.) (82). These overlapping roles and
off-target effects make it difficult to achieve precise, disease-specific
modulation of macrophage metabolism (83). In contrast, targeting
ubiquitin enzymes offers a more direct and finely tuned approach to
modulate macrophage functions, providing greater specificity for
therapeutic interventions. The rapid development of tools to
modulate ubiquitination holds significant potential for manipulating
macrophage pathways. For instance, using targeted drugs, such as
small-molecule inhibitors, to block a DUB or E3 ligase that supports
immunosuppressive pathways could trigger a strong anti-tumor
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macrophage response, while designing PROTACs to degrade key
ubiquitin regulators of inflammation could reduce macrophage-
mediated tissue damage in infections and autoimmune diseases.

In conclusion, ubiquitination acts as a master regulator
of macrophage function, controlling their plasticity to adapt
to diverse environmental and metabolic challenges. Harnessing
the ubiquitin system to modulate macrophage inflammatory
and immunometabolic pathways—and consequently their
polarization—offers a promising strategy for developing targeted
therapies to either temper inflammation or enhance macrophage
functions in infections and cancer.
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