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signature for prognostic
stratification in lung
adenocarcinoma
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1Tianjin Chest Hospital, Tianjin University, Tianjin, China, 2Clinical School of Thoracic, Tianjin Medical
University, Tianjin, China
Background: Lung adenocarcinoma (LUAD), the most common histological

subtype of lung cancer, demonstrates significant intertumoral heterogeneity.

While dendritic cells (DCs) are essential mediators of antitumor immunity, their

transcriptional diversity and prognostic value in LUAD remain underexplored.

Methods: We constructed a cellular atlas by integrating single-cell RNA

sequencing (scRNA-seq) data from LUAD and normal tissues, emphasizing

dendritic cells. High-dimensional weighted gene co-expression network

analysis (hdWGCNA) and pseudotime analysis were utilized to identify

functional modules and lineage trajectories. A dendritic cell-related signature

(DCRS) was constructed using multiple machine learning algorithms (Lasso-Cox,

RSF, CoxBoost, Stepwise-Cox), and its prognostic performance was validated in

seven external cohorts. Immune landscape, genomic instability, drug sensitivity,

and immunotherapy response were further analyzed. The functional role of

PLEK2, a DCRS hub gene, was validated in clinical samples and LUAD cell lines.

Results: We identified six DC clusters with distinct developmental states and

transcriptional programs. The M2module was enriched in prognostically relevant

clusters and used to derive the DCRS. Patients in the high-DCRS group exhibited

worse prognosis, lower immune infiltration, higher chromosomal instability and

tumor mutation burden, and reduced responsiveness to immunotherapy. Drug

sensitivity analysis revealed that the low-DCRS group was more responsive to

multiple chemotherapeutic agents. Functional validation confirmed that PLEK2

was overexpressed in LUAD tissues and promoted tumor cell proliferation,

migration, and colony formation.

Conclusion: We established a novel DCRS with robust prognostic and predictive

value in LUAD. This work highlights the pivotal role of dendritic cell programs in

shaping the tumor microenvironment and provides potential targets for

improving precision immunotherapy.
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1 Introduction

LUAD is the most prevalent subtype of non-small cell lung

cancer (NSCLC) and a major contributor to cancer-related

mortality worldwide (1, 2). Despite remarkable progress in

targeted therapies and immune checkpoint inhibitors (ICIs), the

prognosis of LUAD patients remains unsatisfactory, largely due to

substantial intratumoral heterogeneity and complex immune

evasion mechanisms (3).

The tumor immune microenvironment (TME) plays a decisive

role in tumor progression, therapeutic resistance, and patient survival

(4). Among immune cell populations, DCs act as professional antigen-

presenting cells that initiate and regulate adaptive immune responses

(5). DCs are essential for priming naïve T cells, promoting cytotoxic

lymphocyte activation, and orchestrating immunological memory

(6, 7). In the TME, however, DC function can be profoundly altered,

leading to impaired antigen presentation, T cell dysfunction, and

immune escape (8, 9). Emerging evidence indicates that distinct DC

subsets may either foster effective antitumor immunity or, conversely,

contribute to an immunosuppressive milieu, depending on their

maturation state and transcriptional programming (10). Nevertheless,

the precise heterogeneity, functional dynamics, and prognostic

relevance of DCs in LUAD remain incompletely understood.

scRNA-seq has revolutionized our ability to dissect complex

cellular ecosystems within tumors. Unlike bulk RNA sequencing,

scRNA-seq captures the transcriptomic profiles of individual cells,

enabling high-resolution characterization of rare immune subsets,

developmental trajectories, and functional states (11, 12). By

integrating scRNA-seq with computational approaches such as

pseudotime modeling and gene co-expression network analysis, it

becomes possible to systematically map the landscape of DCs and

identify clinically relevant transcriptional programs (13).

In this study, we leveraged integrated scRNA-seq datasets from

LUAD tumors and normal lung tissues to focus on the dendritic cell

compartment. Through trajectory inference and hdWGCNA, we

identified functional modules associated with DC states. Based on

these findings, we constructed a DCRS and validated its prognostic

utility across multiple independent cohorts. Furthermore, we

explored the relationship between DCRS and immune infiltration,

genomic instability, therapeutic response, and functionally

validated the role of the hub gene PLEK2. Our work provides new

insights into DC-mediated immune regulation in LUAD and

proposes DCRS as a promising biomarker for clinical stratification.
2 Methods

2.1 Data acquisition

Two single-cell RNA sequencing datasets were utilized in this

study. The first dataset, GSE171145 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE171145), includes 9 LUAD samples with

EGFR mutations (14). The second dataset was obtained from

CodeOcean (https://codeocean.com/capsule/8321305/tree/v1),

comprising 10 LUAD samples and 10 normal lung tissue samples.
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Transcriptomic data for model training and validation were sourced

from The Cancer Genome Atlas (TCGA, https://portal.gdc.

cancer.gov/repository) and the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), with detailed information

provided in Appendix 1. Immune therapy efficacy data were

obtained from the following platforms: The Cancer Immunome

Atlas (TCIA, https://tcia.at/patients), Tumor Immune Dysfunction

and Exclusion (TIDE, https://tide.dfci.harvard.edu). These datasets

were used to assess the response to immunotherapy.
2.2 Single-cell data preprocessing and cell
annotation

In this study, single-cell RNA sequencing data were processed

and analyzed using the Seurat(v 4.4.0) package (15). The dataset

consisted of two batches: the first batch was in custom format, and

the second batch was in CellRanger 10X format. The custom format

data were loaded by reading the cellname.list.txt.gz and

counts.tsv.gz files to construct Seurat objects, while the

CellRanger 10X data were read directly from the corresponding

format to create Seurat objects. After preprocessing, all Seurat

objects were merged. During the quality control stage, in addition

to removing the effects of mitochondrial genes, the percentage of

hemoglobin genes was also filtered to ensure data quality. Data

normalization was performed using NormalizeData, followed by

the selection of 3000 variable genes for downstream analysis. To

correct for potential batch effects arising from differences in data

source and preprocessing formats, we applied the RunHarmony

function from the Harmony package. And cell cycle scoring was

conducted with the CellCycleScoring function. Dimensionality

reduction was performed using principal component analysis

(PCA) and UMAP to visualize the distribution and structure of

cell populations. Cell annotation was carried out by combining the

GPTCellType (v 1.0.1) package (16) and manual labeling.
2.3 Cell-cell communication analysis and
network construction

To investigate the interactions between cells, cell-cell

communication analysis was performed using the CellChat (v

1.6.1) package (17). First, a CellChat object was constructed based

on single-cell RNA sequencing data, and the label information for

each cell population was added to the object. By selecting ligand-

receptor pathways from the CellChatDB.human database,

overexpressed ligands and receptors, as well as their interactions,

were identified. The inference of cell communication was achieved

by calculating the communication probability for each ligand-

receptor pair, followed by projecting the data onto a protein-

protein interaction (PPI) network. To further explore the

biological significance of cell-cell communication, communication

probabilities at the signaling pathway level were calculated, and

network data were integrated to generate communication networks

between cell populations. Network centrality analysis was
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performed to identify the signaling pathways playing a key role in

the communication network.
2.4 Dendritic cell pseudotime analysis and
prognostic analysis

Dendritic cells were extracted from the overall Seurat object

using the subset function, followed by dimensionality reduction,

clustering, and other analytical processes. Pseudotime analysis was

primarily conducted using the SCP package (v 0.5.6). In this

process, the selected dendritic cell populations were assigned to

different lineages, and their developmental trajectories were inferred

using the RunSlingshot function. The results of pseudotime analysis

were visualized using FeatureDimPlot and DynamicHeatmap,

revealing gene expression changes of dendritic cells at different

developmental stages. Additionally, dendritic cell marker genes

were identified using the FindAllMarkers function.

Subsequently, in the TCGA-LUAD dataset, the ssGSEA

algorithm (18) was applied to calculate a score for each patient,

estimating the enrichment level of different dendritic cell

populations in individual patients. Based on these scores, Kaplan-

Meier survival analysis was performed using the survminer and

survival packages to assess the prognostic impact of various

dendritic cell populations on patient survival. Finally, pathway

enrichment analysis was conducted using the GSEA algorithm

(19) to explore the differences in pathway activity between

dendritic cell subpopulations.
2.5 hdWGCNA analysis

The hdWGCNA (v 0.4.05) (20, 21) analysis was performed by

preprocessing the Seurat object using the SetupForWGCNA function

and selecting appropriate genes for co-expression network analysis.

The k-Nearest Neighbors (KNN) algorithm was employed to

aggregate similar cells into metacells, and their average gene

expression levels were calculated. Subsequently, a co-expression

network was constructed by selecting an optimal soft threshold,

and modules were identified using the blockwiseConsensusModules

function. The gene expression features of each module were

characterized by module eigengenes (MEs). The top 25 hub genes

for each module were further computed, and their expression levels

were assessed using the UCell method. The analysis results were

visualized using UMAP, heatmaps, and violin plots to illustrate the

gene expression patterns and functional characteristics of dendritic

cell populations.
2.6 Construction of dendritic cell-related
signature

Differential gene analysis was first performed on the TCGA-

LUAD dataset. The limma(v 3.60.4) package (22, 23) was used to

compare gene expression between tumor and normal samples.
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Significant genes were selected based on the criteria of a P-value

less than 0.05 and an absolute logFC greater than 0.8. These

differentially expressed genes were then intersected with dendritic

cell-related marker genes and the module genes identified through

hdWGCNA analysis to form the final candidate gene set.

Subsequently, univariate Cox regression analysis was employed to

identify prognosis-related variables. Variables that were statistically

significant in the univariate analysis were selected as candidate

features for the subsequent construction of the prognostic model.

For the model construction, multiple machine learning algorithms

were applied, including LASSO regression (24), CoxBoost

regression (25), and Random Forest (26). The performance of

these models was evaluated using cross-validation and C-index,

with the best-performing algorithm chosen as the final model. The

training and validation sets were stratified into risk groups based on

the median risk score derived from the model. Kaplan-Meier

survival curves (K-M curves) and ROC curves were utilized to

assess the predictive efficacy of the model. Furthermore, the model’s

reliability was validated by comparing it with 114 previously

published LUAD prognostic models.
2.7 Comprehensive evaluation of key
pathways in LUAD

In this study, enrichment analyses were performed using GSVA

(v 1.52.3) (27), GSEA (v 1.66.0), and ssGSEA methods. First, gene

sets from the Hallmark pathways were extracted using the msigdbr

package, and GSVA was applied to calculate enrichment scores for

the TCGA-LUAD dataset samples. Specifically, GSVA computed

enrichment scores for each sample across different gene sets,

reflecting the activity of samples in various pathways. Next,

differential analysis of GSVA scores between high-risk and low-

risk groups was conducted using the limma package, identifying

significantly enriched pathways. Subsequently, GSEA analysis was

performed on the differentially expressed genes in the TCGA-

LUAD dataset. The logFC values of genes were calculated by

comparing the gene expression differences between high-risk and

low-risk groups. GSEA based on KEGG pathways was then carried

out to identify pathways associated with LUAD prognosis. In the

ssGSEA analysis, immune-related gene sets were selected to assess

the activity of specific immune pathways, and the pathway

enrichment scores for each sample were computed. The ssGSEA

method provided a personalized pathway score for each sample,

evaluating the relationship between immune pathways and the

prognosis of LUAD patients.
2.8 Immune landscape and prognostic
implications in LUAD based on risk group
stratification

The results from seven immune cell infiltration algorithms

(including CIBERSORT (28), MCPCOUNTER (29), XCELL (30),

etc.) were first downloaded from the TIMER2.0 database (31).
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These algorithms were used to assess the immune cell abundance in

each sample. Based on the risk stratification of the patients (high-

risk and low-risk groups), the ComplexHeatmap(v 2.20.0) package

(32) was employed to visualize the differences in immune cell

infiltration between the risk groups. Subsequently, the Estimate

algorithm was used to evaluate the immune and stromal scores of

the samples. This algorithm analyzes gene expression data from

each sample to calculate the immune score and tumor score,

providing quantitative information on the immune and stromal

components of the tumor microenvironment, further exploring the

differences in immune microenvironment between the high-risk

and low-risk groups. Next, the ssGSEA algorithm was used to assess

the differences in immune-related function between the high-risk

and low-risk groups. By calculating the enrichment scores of

immune-related pathways in each sample, ssGSEA evaluated the

activation levels of various pathways, revealing the differences in

immune responses between the risk groups.
2.9 qRT-PCR analysis

Quantitative real-time PCR (qRT-PCR) was performed to

validate the expression levels of key model genes. Total RNA was

extracted using TRIzol reagent and reverse-transcribed into cDNA

using a commercial synthesis kit. qRT-PCR assays were conducted

on an ABI QuantStudio system with three technical replicates per

sample. GAPDH was used as the internal control, and gene

expression levels were calculated using the DCt method (DCt =

Ct_target − Ct_GAPDH). Relative expression levels were expressed

as 2^-DCt. The primer sequences for the target gene PLEK2 were as

follows:Forward primer: CCGAAGCATGGGAGCCATT; Reverse

primer: AGTGCTCAGGCTAATTTCTTCC.
2.10 Cell culture and siRNA transfection

The human lung adenocarcinoma cell lines A549 and H1299

were obtained from an authenticated cell bank and cultured in RPMI-

1640 medium supplemented with 10% fetal bovine serum (FBS) and

1% penicillin-streptomycin at 37°C in a humidified incubator

containing 5% CO2. Cells in the logarithmic growth phase were

subjected to transfection. Small interfering RNAs (siRNAs) targeting

the gene of interest were transfected using Lipofectamine RNAiMAX

reagent (Invitrogen) following the manufacturer’s protocol. The

sequences of siRNAs targeting PLEK2 were as follows:

s iPLEK2_1:5 ′-ACCUCUUCAAAGUGAUUACUA-3 ′ ;
siPLEK2_2:5′-CCAGCUUUCCUGCAUUACUAU-3′. Cells were

harvested 48 hours post-transfection for subsequent analyses.
2.11 Transwell migration and invasion
assays

Cell migration and invasion abilities were assessed using

Transwell chambers (8 mm pore size, Corning). For migration
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assays, cells were seeded in serum-free medium into the upper

chambers; for invasion assays, Matrigel-coated chambers were used.

After 24 hours of incubation, cells on the lower membrane surface

were fixed with methanol, stained with crystal violet, and counted in

five random fields. All experiments were performed in triplicate.
2.12 CCK-8 cell proliferation assay

Cells were seeded into 96-well plates at appropriate densities

and cultured continuously for 7 days. CCK-8 reagent (Dojindo) was

added every 24 hours, and absorbance at 450 nm was measured

after 1–2 hours of incubation. Each group was assayed in triplicate,

and experiments were independently repeated three times to

generate proliferation curves.
2.13 Colony formation assay

Cells were seeded into 6-well plates at a low density (500–1000

cells per well) and cultured for approximately 10–14 days until

visible colonies formed. Colonies were then gently washed with

PBS, fixed with 4% paraformaldehyde for 15 minutes, and stained

with 0.1% crystal violet for 20 minutes. Excess dye was washed off,

and colonies were photographed and counted.
2.14 Statistical analysis

All statistical analyses were performed using R software (version

4.2.1) and GraphPad Prism (version 9.0). Continuous variables

were expressed as mean ± standard deviation (SD). Comparisons

between two groups were conducted using Student’s t-test or

nonparametric tests, as appropriate. Survival analyses were

performed using the Kaplan–Meier method, and differences

between groups were evaluated using the log-rank test.

Correlation analyses were conducted using Pearson or Spearman

correlation coefficients depending on data distribution. For multiple

testing correction in differential expression and enrichment

analyses, the Benjamini–Hochberg false discovery rate (FDR)

method was applied unless otherwise specified. All statistical tests

were two-sided, and a P-value less than 0.05 was considered

statistically significant. Statistical significance was indicated by

asterisks, with * for P < 0.05, ** for P < 0.01, and *** for P < 0.001.
3 Results

3.1 Single-cell clustering and immune
microenvironment cell–cell interaction
profiling

In this study, rigorous quality control was applied to the

integrated single-cell RNA sequencing data. Cells were filtered

based on the following criteria: number of detected genes
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(nFeature) between 500 and 10,000, total UMI counts (nCount)

between 1,000 and 100,000, and mitochondrial gene percentage

(pMT) below 40%. To minimize confounding effects from cell cycle

variability, cell cycle-related gene expression was regressed out

using the ScaleData function in Seurat, ensuring more reliable

downstream clustering analysis (see Supplementary Figure 1).

After quality control, a total of 152,856 high-quality cells were

retained. Uniform Manifold Approximation and Projection (UMAP)

was performed for dimensionality reduction, resulting in the

identification of 35 distinct cell clusters (Figure 1A). Based on

canonical marker gene expression, cell types were annotated,

revealing major populations such as epithelial cells, immune cells,

fibroblasts, and others (Figure 1B). The spatial distribution of cells

across individual patient samples is visualized in Figure 1C,

demonstrating the diverse cellular compositions among different

tissues. The abundance of each cell type per sample is shown in

Figure 1D, highlighting marked inter-individual heterogeneity in the

tumor microenvironment. Figure 1E displays representative marker

gene expression patterns across annotated cell types, supporting the

accuracy and specificity of the cell classification. To further investigate

intercellular communication within the tumor microenvironment,

CellChat analysis was conducted separately for tumor and normal

tissues. As shown in Figure 1F, both the number of inferred

interactions and the overall interaction strength were markedly

higher in tumor samples compared to normal tissues, suggesting

more active cellular crosstalk in the tumor context. At the signaling

pathway level, differential information flowwas observed across various

pathways (Figure 1G), with several pathways showing increased or

decreased signaling activity in tumors. Figure 1H illustrates the

differential communication networks between cell types, depicting

how interactions among epithelial, immune, and stromal cells are

reorganized in the tumor microenvironment.
3.2 Trajectory inference and functional
heterogeneity of dendritic cells

To explore the developmental dynamics and functional

heterogeneity of dendritic cells, this population was extracted and

analyzed independently. UMAP visualization revealed distinct

clustering patterns among dendritic cells (Figure 2A). Using the

SlingShot algorithm, two principal pseudotime trajectories were

identified, suggesting bifurcating differentiation paths toward

distinct cellular states (Figures 2B, C).

Genes associated with these trajectories were subjected to GO

enrichment analysis, which highlighted processes such as immune

regulation, chemokine signaling, and antigen presentation (Figure 2D).

Hallmark pathway enrichment (Figure 2E) revealed that functional

clusters exhibited differential enrichment in key immune and stress-

related programs. Specifically, cluster 1 was enriched in immune-

activating pathways such as “INTERFERON_ALPHA_RESPONSE”

and “TNFA_SIGNALING_VIA_NFKB”, whereas cluster 5 was

associated with proliferative signatures including “G2M_

CHECKPOINT” and “MYC_TARGETS_V1”. To investigate

their clinical relevance, the relative abundance of each cluster
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was quantified per patient in the TCGA-LUAD cohort and

stratified by median values. Kaplan–Meier survival analyses

revealed that clusters 1 and 5 were significantly associated with

overall survival outcomes (Figure 2F), suggesting their potential as

prognostic indicators.
3.3 Identification of co-expression
modules in dendritic cells via hdWGCNA

To identify transcriptional programs within dendritic cells, we

constructed a gene co-expression network using the hdWGCNA

framework. A soft-thresholding power of 5 was selected based on

scale-free topology criteria, as determined by network diagnostics

(Figure 3A). With this threshold, a weighted network was built and

hierarchical clustering revealed seven distinct gene modules, each

represented by a unique color (Figure 3B). Intra-modular gene co-

expression networks were further visualized (Supplementary

Figure 2), revealing that most modules exhibited densely

interconnected structures, suggesting strong functional coherence

among member genes.

Spatial distribution of module eigengene (ME) scores projected

onto UMAP embedding revealed distinct expression patterns across

the cellular landscape (Figure 3C). M2 exhibited the most pronounced

spatial concentration, aligning with Cluster 1 and Cluster 5 regions.

M3 and M6 also showed relatively focused expression zones, whereas

M1 and M4 were more diffusely distributed, suggesting broader

functional activity. The expression levels of module eigengenes

(MEs) varied across individual cells, reflecting differential module

activity (Figure 3D). Correlation analysis between modules showed a

strong negative association between M2 and M1 (Figure 3E),

suggesting potentially antagonistic functional roles. Notably, M2

module activity was significantly elevated in Cluster 1 and Cluster 5

(Figure 3F), indicating that this module may underlie specific

functional programs in these two dendritic cell subsets and

warranting further investigation.
3.4 Construction of a dendritic cell-related
signature via multi-omics integration and
machine learning

To develop a DCRS in LUAD, we first performed differential

gene expression analysis in the TCGA-LUAD dataset, identifying

genes with |log2FC| > 0.8 and FDR < 0.05 (Figure 4A). These genes

were intersected with markers from Cluster 1 and Cluster 5 and M2

module genes derived from hdWGCNA, yielding a total of 108

overlapping genes (Figure 4B).

GO and KEGG enrichment analyses revealed that these intersecting

genes were predominantly involved in immune regulatory processes,

including antigen processing and presentation, MHC complex

assembly, and cytokine signaling pathways (Figure 4C). Univariate

Cox regression analysis identified multiple genes significantly

associated with overall survival, such as LDHA and HSP90AA1 as

risk factors, and CD86 andHLA-DMB as protective factors (Figure 4D).
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FIGURE 1

Construction of the single-cell atlas and analysis of cell–cell communication differences between tumor and normal tissues. (A) UMAP projection of
152,856 single cells grouped into 35 distinct clusters. (B) Cell types were annotated based on canonical marker genes, identifying epithelial, immune,
and stromal cell populations. (C) Spatial distribution of cells across individual patient samples. (D) Proportional abundance of each cell type across
samples, illustrating inter-patient heterogeneity in cellular composition. (E) Expression levels of representative marker genes across annotated cell
types, confirming annotation accuracy and specificity. (F) Bar plots showing that the number and strength of inferred intercellular interactions were
significantly higher in tumor tissues compared to normal controls. (G) Differential analysis of signaling pathways highlights tumor-enriched pathways
such as COLLAGEN and PERIOSTIN, with relative information flow indicating altered communication dynamics. (H) Network diagram of intercellular
communication across major cell types. Node size indicates the number of interactions involving each cell type, while edge thickness represents
interaction strength, demonstrating enhanced cross-talk among immune and non-immune populations in the tumor microenvironment.
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FIGURE 2

Pseudotime trajectory inference, functional enrichment, and prognostic analysis of dendritic cells. (A) UMAP visualization showing the clustering
results of dendritic cells. (B) Pseudotime trajectories inferred using the SlingShot algorithm, illustrating the differentiation progression of dendritic
cells. (C) Two distinct differentiation lineages (Lineage 1 and Lineage 2) were identified based on pseudotime analysis. (D) Heatmap and GO
enrichment of dynamic genes along both lineages, revealing functional transitions during dendritic cell maturation. (E) Hallmark pathway enrichment
analysis of six dendritic cell clusters, indicating distinct immune and metabolic programs. (F) Kaplan–Meier survival curves of LUAD patients in the
TCGA cohort, stratified by proportions of dendritic cell subclusters or pseudotime-defined lineages, demonstrating the prognostic relevance of
dendritic cell heterogeneity.
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FIGURE 3

hdWGCNA-based weighted gene co-expression network analysis of dendritic cells. (A) Soft-threshold power selection plots used to identify an
optimal power value ensuring scale-free topology for network construction. (B) Hierarchical clustering dendrogram of genes with module color
annotations. Seven co-expression modules (M1–M7) were identified. (C) UMAP visualization of module eigengene (ME) scores showing the spatial
distribution of each module across dendritic cell clusters. (D) Bar plots displaying the eigengene expression profiles (MEs) of individual modules,
reflecting their module-specific activity patterns. (E) Correlation matrix of MEs across all modules, indicating varying degrees of inter-module
relationships. (F) Violin plot of ME scores for the M2 module across different dendritic cell subpopulations, suggesting potential functional specificity
of this module.
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FIGURE 4

Differential expression analysis and machine learning-based prognostic model construction. (A) Volcano plot displaying differentially expressed genes
between tumor and normal samples in the TCGA-LUAD dataset. (B) Venn diagram showing the intersection of DEGs, marker genes from dendritic
cell clusters 1 and 5, and genes from the M2 module identified by hdWGCNA. (C) GO and KEGG enrichment analyses of the intersecting genes
reveal their involvement in immune responses, cytokine signaling, and metabolic pathways. (D) Univariate Cox regression analysis of the intersecting
genes, with a forest plot highlighting significant prognostic genes (HR >1 as risk factors; HR <1 as protective factors). (E) Prognostic models
constructed using various machine learning algorithms, including Lasso-Cox, Random Survival Forest (RSF), CoxBoost, and others. The performance
(C-index) was assessed across multiple validation cohorts. (F) Principal component analysis (PCA) plots showing sample distribution before and after
batch effect correction using the sva algorithm, demonstrating improved integration across TCGA and GEO datasets post-correction.
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To construct the DCRS, we systematically applied a panel of

machine learning algorithms—including Lasso-Cox, Random

Survival Forest (RSF), CoxBoost, and Stepwise-Cox—either

individually or in combination. Model performance was evaluated

using repeated cross-validation and C-index in seven external

cohorts. Among all strategies tested, the combination of CoxBoost

with Ridge regularization demonstrated optimal predictive accuracy

and robustness (Figure 4E).

To correct for technical variability across datasets, the sva

algorithm was employed. Principal component analysis revealed

clear batch effects prior to correction, which were largely mitigated

after adjustment, indicating effective normalization and improved

dataset integration (Figure 4F).
3.5 Internal features and risk stratification
of the DCRS signature

To further characterize the distribution of the DCRS signature

across patients, the risk score distribution, survival status, and

expression patterns of DCRS component genes were visualized

(Supplementary Figure 3A). Patients with higher risk scores

exhibited a markedly increased incidence of death events,

concomitant with elevated expression levels of DCRS genes.

Correlation analysis between risk scores and the expression of

individual DCRS genes (Supplementary Figure 3B) revealed

strong positive associations, indicating that these genes

substantially contributed to the risk stratification. Moreover,

analysis of pathological stage distribution between the risk groups

(Supplementary Figure 3C) demonstrated that patients in the high-

risk group were more likely to present with advanced stages (P =

0.001), suggesting that the DCRS signature was associated not only

with poor prognosis but also with disease progression.
3.6 Generalization and clinical
benchmarking of DCRS across multiple
datasets

To comprehensively evaluate the prognostic performance

of DCRS, we compared its C-index with conventional clinical

features—including age, gender, stage, and EGFR mutation status—

across seven independent validation cohorts. As shown in Figure 5A,

DCRS consistently outperformed these clinical variables in most

datasets, demonstrating superior prognostic capability and robustness.

Kaplan–Meier survival analyses across multiple cohorts

confirmed that DCRS effectively stratified patients into high- and

low-risk groups with significantly different survival outcomes

(Figure 5B). Time-dependent ROC analyses further validated

the model’s predictive accuracy at 1-, 3-, and 5-year survival

intervals, with DCRS maintaining high AUC values across all

timepoints (Figure 5C).

Moreover, a systematic comparison was conducted between

DCRS and 114 previously published prognostic signatures based on

mRNA and lncRNA features. DCRS achieved higher C-index values
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across various datasets, underscoring its broad generalizability and

potential for clinical application (Figure 5D).
3.7 Functional and immune pathway
enrichment analysis based on DCRS
stratification

To further explore the functional implications of DCRS, gene set

variation analysis (GSVA) was conducted between high- and low-risk

groups. As shown in Figure 6A, the high-risk group was significantly

enriched in proliferative and metabolic pathways, including

glycolysis, G2M checkpoint, MYC targets, and PI3K/AKT/mTOR

signaling. In contrast, the low-risk group showed marked enrichment

in immune-related pathways, such as interferon responses,

inflammatory signaling, and antiviral immunity.

To validate these findings, GSEA was performed separately in

high-risk (Figure 6B) and low-risk (Figure 6C) subgroups. The results

confirmed the distinct enrichment directions of key immune and

proliferation-related pathways in the two DCRS-defined populations.

Furthermore, ssGSEA was used to calculate immune-related

functional scores for each sample. A correlation network of immune

pathways was constructed (Figure 6D), revealing coordinated

activation of multiple immune processes. Notably, the low-risk

group exhibited higher activation of antigen presentation, T-cell

stimulation, and interferon-related pathways, supporting a more

immunologically active phenotype in this subgroup.
3.8 Immunological heterogeneity of the
tumor microenvironment across DCRS
subgroups

To investigate the association between the dendritic cell-related

signature (DCRS) and the tumor immune microenvironment, we

analyzed immune cell abundance using multiple infiltration

estimation platforms (e.g., TIMER, CIBERSORT, XCELL). As

shown in Figure 7A, the low-risk group exhibited higher levels of

infiltration across key immune cell types, including T cells,

macrophages, and dendritic cells.

To further investigate functional differences, we performed

pathway enrichment analysis using the GSEA algorithm based on

KEGG pathway gene sets. As shown in Figure 6B, the high-DCRS

group exhibited significant enrichment in proliferation- and

metabolism-related pathways, such as glycolysis, G2M checkpoint,

MYC targets, and PI3K/AKT/mTOR signaling. Conversely, the low-

DCRS group showed increased enrichment in immune-related

pathways including antigen processing and presentation, interferon-a
and -g responses, and T cell receptor signaling (Figure 6C). These

findings underscore the functional divergence between the two risk

groups and suggest that the low-DCRS subgroup possesses a more

immunologically active tumor phenotype.

Functionally, ssGSEA revealed that samples in the low-risk

group displayed higher activation of immune processes such as

antigen presentation, Type I interferon response, and T cell co-
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FIGURE 5

Performance evaluation and benchmarking of the prognostic model. (A) C-index comparison of the proposed model with common clinical variables
(e.g., Age, Gender, Stage, EGFR status) across multiple external validation datasets. The model consistently outperformed clinical features in
prognostic prediction. (B) Kaplan–Meier survival analyses demonstrating the model’s ability to stratify patients into high- and low-risk groups with
significantly different survival outcomes in various cohorts. (C) Time-dependent ROC curves evaluating the model’s predictive performance for
1-, 3-, and 5-year overall survival (OS). The area under the curve (AUC) values indicate robust prognostic accuracy. (D) Systematic comparison of the
proposed model against 114 previously published mRNA- and lncRNA-based prognostic signatures using C-index across seven datasets. The model
exhibited superior or comparable performance, highlighting its generalizability and robustness.
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stimulation (Figure 7D). Additionally, the low-risk group showed

greater infiltration by CD8+ T cells, follicular helper T cells, and

dendritic cells (Figure 7E), consistent with an immunologically

active tumor phenotype.
3.9 Association of DCRS with genomic
instability features (CNA and TMB)

To evaluate the association between the DCRS and genomic

instability, we analyzed copy number alterations (CNAs) across the

genome in both high- and low-DCRS groups. As illustrated in

Figures 8A, B, the high-DCRS group showed extensive chromosomal

amplifications and deletions, whereas the low-DCRS group exhibited

relatively stable genomic profiles, suggesting that elevated DCRS is

linked to increased chromosomal instability.

We next compared tumor mutation burden (TMB) between

groups. The high-DCRS group displayed significantly higher TMB

levels than the low-DCRS group (Figure 8D), and correlation analysis

confirmed a positive relationship between DCRS riskScore and TMB

(R = 0.22, p < 0.001) (Figure 8E), indicating that DCRS may reflect

mutation accumulation. Figure 8C presents the mutation landscape

sorted by DCRS classification. Driver genes such as TP53, KRAS,

KEAP1, and STK11 were more frequently mutated in the high-DCRS

group, and these cases were also enriched for chromosomal gains and

losses. Mutation type analysis revealed that missense and nonsense

mutations were predominant in the high-DCRS group, highlighting its

association with elevated genomic instability.

Joint stratification based on TMB and DCRS revealed a

synergistic effect on survival outcomes (Figure 8F). Patients in the

TMB-low + DCRS-low group exhibited the most favorable

prognosis, whereas those in the TMB-high + DCRS-high group

had the poorest outcomes. These findings suggest that DCRS

provides additional prognostic resolution beyond TMB alone and

may assist in refining risk stratification in clinical practice.
3.10 Predictive value of DCRS for immune
escape and therapeutic responsiveness

To explore the predictive potential of DCRS in immunotherapy

and drug response, we first analyzed the expression of immune

checkpoint genes across risk groups. Most inhibitory molecules—

including PDCD1, CTLA4, TIGIT, and HAVCR2—were

significantly upregulated in the high-DCRS group (Figure 9A),

indicating enhanced immunosuppressive signaling. Expression

correlation analysis showed stronger co-expression patterns

among checkpoint genes in the high-DCRS group (Figure 9B),

suggesting a more unified immunoregulatory profile. Additionally,

the high-DCRS group exhibited higher TIDE scores (Figure 9C),

reflecting a greater potential for immune evasion, as well as elevated

exclusion scores (Figure 9D), indicative of increased T cell exclusion

within the tumor microenvironment. The immunophenoscore

(IPS) was used to estimate potential responsiveness to checkpoint

blockade therapy. Across multiple immunotherapy scenarios (anti-
Frontiers in Immunology 12
PD1, anti-CTLA4, or both), the low-DCRS group consistently

showed higher IPS values (Figure 9E), supporting its association

with greater immunogenicity and potential responsiveness.

Drug sensitivity analysis using the oncoPredict framework

revealed that patients in the low-DCRS group exhibited

significantly lower predicted IC50 values for various

chemotherapy and targeted agents (e.g., cisplatin, docetaxel,

gemcitabine, erlotinib) (Figure 9F). These findings suggest

enhanced drug sensitivity in the low-DCRS subgroup, with

potential implications for precision therapy selection.
3.11 PLEK2 identified as a functional risk
gene and validated as a promoter of LUAD
progression

Univariate Cox regression analysis of the DCRS component

genes revealed that LDHA and PLEK2 were the most significant risk

factors associated with poor prognosis. Given that the role of LDHA

in LUAD has been extensively studied, we selected PLEK2 for

further validation and functional characterization.

To examine its expression landscape, we performed a pan-

cancer analysis using TCGA datasets. As shown in Figure 10A,

PLEK2 was significantly upregulated in multiple tumor types,

including LUAD. To confirm this observation in clinical

specimens, we assessed PLEK2 expression in paired tumor and

adjacent normal tissues from LUAD patients who underwent

surgical resection at Tianjin Chest Hospital. qRT-PCR analysis

confirmed that PLEK2 was significantly overexpressed in tumor

tissues (Figures 10B, C). We then evaluated the prognostic

significance of PLEK2 across human cancers using univariate Cox

regression. As shown in Figure 10D, high PLEK2 expression was

associated with worse overall survival (OS), disease-free survival

(DFS), disease-specific survival (DSS), and progression-free survival

(PFS) in several tumor types, including LUAD.

To determine the functional role of PLEK2 in LUAD, we

conducted a series of in vitro assays. Transwell invasion assays

showed that PLEK2 knockdown via two independent siRNAs

significantly reduced the invasive capacity of A549 and H1299 cells

(Figure 10E). Colony formation assays demonstrated that PLEK2

silencing suppressed long-term proliferative ability in both cell lines

(Figure 10F). Consistently, CCK-8 assays revealed that PLEK2

knockdown inhibited cell viability in a time-dependent manner

(Figures 10G, H). Collectively, these findings indicate that PLEK2 not

only correlates with poor clinical outcomes but also plays a functional

role in promoting LUAD cell proliferation and invasiveness.
4 Discussion

LUAD remains a major contributor to global cancer mortality.

Although targeted therapies and ICIs have significantly improved

patient outcomes, durable clinical benefit is only achieved in a limited

subset of patients. This disparity is largely attributed to the complex

immunosuppressive TME, profound intertumoral heterogeneity, and
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FIGURE 6

Pathway enrichment analyses of high- and low-risk groups. (A) GSVA (Gene Set Variation Analysis) was performed to assess pathway activity across
samples. The t-values represent differences in pathway scores between high- and low-risk groups. (B) GSEA (Gene Set Enrichment Analysis) was
conducted specifically in high-risk patients. Enrichment plots for representative pathways are shown. (C) GSEA was similarly applied to low-risk
patients, with corresponding enrichment curves displayed. (D) ssGSEA (single-sample GSEA) was used to calculate immune pathway activity scores
per sample. The left panel shows a network plot of immune-related signatures, while the right panel presents a correlation heatmap among these
immune pathways.
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FIGURE 7

Tumor microenvironment and immune landscape analysis. (A) Heatmap illustrating immune cell infiltration scores between high- and low-risk
groups across multiple algorithms and databases, including TIMER, CIBERSORT, XCELL, EPIC, MCPcounter, and ssGSEA. (B) ESTIMATE algorithm was
used to evaluate TME-related indices of tumor samples, including stromal score, immune score, ESTIMATE score, and tumor purity, with
comparisons made between risk groups; (C) Correlation plots showing the relationship between risk score and each tumor microenvironment index.
(D) Radar chart depicting immune-related functional differences between groups based on ssGSEA, including antigen-presenting cell activity, type I/
II IFN response, and immune co-stimulatory pathways. (E) Immune cell infiltration levels for various immune cell subsets (e.g., CD8+ T cells, B cells,
macrophages, dendritic cells) between high- and low-risk groups. Variables shown in red font indicate statistical significance (P < 0.05).
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FIGURE 8

Somatic mutation profiles and association with tumor mutation burden (TMB). (A) Genome-wide copy number variation (CNV) landscape in the
high-risk group, showing amplifications (Amp) and deletions (Del) across chromosomes. (B) CNV landscape in the low-risk group for comparative
visualization against the high-risk group. (C) Overview of somatic mutation landscape, including TMB scores, significantly mutated genes (MutSig),
and frequently mutated genes across high- and low-risk samples. (D) Violin plot comparing log2-transformed TMB values between high- and
low-risk groups. (E) Correlation analysis between risk score and TMB, presented as a scatter plot with linear regression. (F) Kaplan–Meier survival
analysis based on combined stratification of patients by TMB level and risk score, revealing prognostic differences across four subgroups.
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FIGURE 9

Prediction of immunotherapy response and drug sensitivity analysis. (A) Differential expression analysis of immune checkpoint-related genes
(e.g., PDCD1, CTLA4, LAG3) between high- and low-risk groups shown as boxplots. (B) Correlation matrix of immune checkpoint genes presented
as a bubble plot, indicating Pearson correlation coefficients and statistical significance. (C) Tumor Immune Dysfunction and Exclusion (TIDE) scores
compared between risk groups to assess predicted immunotherapy response. (D) Distribution of TIDE exclusion scores between high- and low-risk
groups, including density and boxplot visualization. (E) Immunophenoscore (IPS) comparison across immune checkpoint subgroups (e.g., CTLA4+/PD1+)
in high- and low-risk groups. (F) Drug sensitivity predictions derived from the oncoPredict package, showing estimated response to various anticancer
drugs across risk groups *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 10

PLEK2 expression patterns and functional validation in LUAD. (A) Pan-cancer analysis of PLEK2 expression across multiple tumor types based on
TCGA datasets. (B, C) Relative expression of PLEK2 in paired tumor and adjacent normal tissues from surgical specimens of LUAD patients collected
at Tianjin Chest Hospital, assessed by quantitative PCR. (D) Univariate Cox regression analysis of PLEK2 expression and its prognostic impact (overall
survival [OS], disease-free survival [DFS], disease-specific survival [DSS], and progression-free survival [PFS]) across various cancers. (E) Transwell
invasion assay evaluating the invasive capacity of A549 and H1299 cells following PLEK2 knockdown using two independent siRNAs. Representative
images and quantification are shown. (F) Colony formation assay assessing the long-term proliferative ability of A549 and H1299 cells upon
PLEK2 silencing. CCK-8 assay showing time-dependent cell viability in A549 (G) and H1299 (H) cells after PLEK2 knockdown. p < 0.05; *p < 0.01;
**p < 0.001;***P < 0.001; **** P < 0.0001.
Frontiers in Immunology frontiersin.org17

https://doi.org/10.3389/fimmu.2025.1621370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1621370
immune evasion mechanisms that remain poorly understood (8, 9).

One of the underexplored yet critical components of the LUAD

immune landscape is the DC compartment (33).

DCs play a pivotal role in initiating and shaping adaptive immune

responses by capturing, processing, and presenting antigens to T cells

(34). However, emerging studies have highlighted the extensive

heterogeneity within DC populations, including conventional DC1

(cDC1), cDC2, plasmacytoid DCs (pDCs), and monocyte-derived DCs

(MoDCs) (35). Each subtype exhibits distinct ontogeny, transcriptional

programs, and immunological functions. In LUAD, cDC1 are often

depleted or functionally impaired, compromising CD8+ T cell priming

(36); cDC2 may either support Th responses or acquire suppressive

properties (37); pDCs secrete type I interferons but may paradoxically

promote immune evasion; and MoDCs often contribute to chronic

inflammation and immunosuppression. Dysfunctional differentiation,

reduced migration, and impaired maturation of DCs collectively

contribute to immune escape and resistance to immunotherapy (35).

Compared with traditional transcriptomic approaches, scRNA-

seq provides an unprecedented opportunity to dissect the cellular and

functional diversity of tumor-infiltrating DCs (38). Unlike previous

studies that primarily relied on bulk transcriptomic data, our

approach leverages single-cell resolution to unravel the phenotypic

and functional heterogeneity of DCs in LUAD with higher precision.

It enables fine-grained delineation of rare subsets, developmental

trajectories, and functional states at the single-cell level (39). In

particular, integrating scRNA-seq with pseudotime inference and

hdWGCNA allows for the systematic mapping of transcriptional

modules associated with DC heterogeneity and immunological

dysfunction. This framework not only advances our understanding

of DC biology but also facilitates the development of clinically

relevant prognostic models grounded in biological context. In this

study, we established a comprehensive DC landscape in LUAD using

scRNA-seq and identified two transcriptionally and functionally

distinct DC clusters. One cluster was enriched in immune-

activating pathways (e.g., IFN-a, TNF/NF-kB), while the other

exhibited signatures associated with proliferation and cell cycle.

These clusters demonstrated significant prognostic value, reflecting

the dual roles of DCs in immune activation and immunosuppression.

Based on these findings, we constructed a DCRS by integrating

marker genes from key DC clusters and co-expression modules with

machine learning algorithms. The DCRS model demonstrated robust

prognostic performance across seven independent validation cohorts,

consistently outperforming traditional clinical features and previously

published LUAD signatures. This advantage is largely attributed to the

biologically informed model design, which integrates DC-specific

markers derived from co-expression networks rather than relying

solely on statistical associations. In addition to predicting survival,

DCRS stratified immune infiltration patterns, chromosomal instability,

and therapeutic response profiles. These results highlight DCRS as a

biologically informed and technically rigorous tool for immune-based

stratification in LUAD.

Among the genes incorporated in DCRS, PLEK2 was identified

as a hub gene with both prognostic and functional significance.

PLEK2 encodes pleckstrin-2, a protein involved in cytoskeletal

remodeling and cellular motility (40). While PLEK2 has been
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implicated in EMT and metastasis in several cancers, its role in

LUAD has been less explored (41–43). In our study, PLEK2 was

significantly overexpressed in tumor tissues and promoted

proliferation, migration, and colony formation in LUAD cell

lines. These findings suggest that PLEK2 may function as an

oncogenic effector in LUAD. Furthermore, given its role in actin

dynamics, PLEK2 may influence DC mobility and antigen-

presenting capacity, warranting further investigation into its

immunological functions.

Despite these strengths, several limitations must be acknowledged.

First, our model was constructed and validated using retrospective

datasets; prospective, multicenter validation is necessary to confirm its

clinical utility. Second, although we demonstrated the oncogenic role of

PLEK2 in LUAD cells, its precise impact on dendritic cell biology and

immune regulation remains undefined. Third, the spatial organization

of DC subsets within the TME, such as their distribution in tertiary

lymphoid structures or invasive margins, was not addressed due to the

lack of spatial transcriptomics data.

Future studies should aim to integrate spatially resolved

technologies to explore the localization and intercellular

interactions of DCs in LUAD. Functional dissection of PLEK2 in

specific DC subsets, using in vitro co-culture systems and in vivo

models, may also uncover novel regulatory pathways involved in

immune evasion. Additionally, DCRS holds promise not only as a

prognostic tool but also as a potential predictor of immunotherapy

response and a guide for DC-targeted therapeutic strategies.

In conclusion, our study proposes a novel dendritic cell–related

signature that captures the complexity of DC heterogeneity and

provides mechanistic insights into LUAD progression and immune

modulation. The identification of PLEK2 as a functional driver further

strengthens the translational relevance of the model. These findings

contribute to the growing interest in myeloid-targeted immunotherapy

and offer a roadmap for DC-centered personalized medicine in LUAD.
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SUPPLEMENTARY FIGURE 1

Quality control and preprocessing of single-cell RNA-sequencing data. (A)
Violin plots showing the distribution of RNA features (nFeature_RNA), total

UMI counts (nCount_RNA), and mitochondrial gene percentage (pMT) across
all cells before quality control. (B) Violin plots of the samemetrics after quality

control filtering. Cells with extreme feature counts or high mitochondrial

content were removed. (C) Principal component analysis (PCA) plot before
cell cycle correction, colored by cell cycle phase (G1, S, and G2M). (D) PCA
plot after regressing out cell cycle effects using the ScaleData function in
Seurat, showing reduced separation driven by cell cycle-related variance.

Distribution of cells from different samples before (E) and after (F) batch effect
correction using the Harmony algorithm, visualized by UMAP. Cells from

distinct samples exhibit better integration following batch correction.

SUPPLEMENTARY FIGURE 2

Seven co-expression modules (M1–M7) were identified using the hdWGCNA

framework and are depicted in different colors. Each node represents an
individual gene, and edges denote co-expression relationships

between genes.

SUPPLEMENTARY FIGURE 3

Comprehensive Evaluation of Risk Stratification, Molecular Interactions, and

Clinical Stage Patterns. (A) Risk score distribution and overall survival status of
patients based on the DCRS signature. The upper panel displays the

distribution of individual risk scores, stratifying patients into high- and low-

risk groups. The middle panel shows the corresponding survival time and
status. The bottom heatmap visualizes the expression profiles of genes

comprising the DCRS signature across patients. (B) Correlation matrix
depicting the associations between risk scores and individual gene

expressions within the DCRS signature. Positive and negative correlations
are indicated by the color gradient. (C) Distribution of pathological stages

between high- and low-risk groups.
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