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The immunomodulatory role 
of tumor-initiating cells in 
digestive system tumors: 
from mechanisms to therapy 
Zun-yue Zhang1,2†, Xin-feng Zhang3†, Cong-hui Xu1,2, 
Kun-hua Wang2* and Fang Huang1* 

1School of Medicine, Yunnan University, Kunming, China, 2Yunnan Technological Innovation Centre of 
Drug Addiction Medicine, Yunnan University, Kunming, China, 3Department of Gastrointestinal and 
Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China 
Targeting tumor-initiating cells (TICs) in digestive system tumors is a feasible 
strategy to boost the effectiveness of cancer immunotherapy. Because of their 
stem cell-like properties, TICs can cause tumor heterogeneity, recurrence, and 
resistance to conventional medicines, which can seriously impair treatment 
outcomes. This review discusses the unique features of TICs inside various 
digestive system tumors, such as colorectal, pancreatic, liver, and gastric 
cancers. We look at the mechanisms that TICs evade immune recognition, 
including altered tumor microenvironment, decreased immunogenicity, and 
immune checkpoint molecule expression. Furthermore, we highlight potential 
strategies for TICs, such as differentiation therapies, inhibiting certain signaling 
pathways,  and  enhancing  immune  recognit ion  through  advanced  
immunotherapeutic approaches. The analysis also examines the potential for 
combination therapy, which include adoptive cell therapies, TIC-targeted 
strategies, and immune checkpoint inhibitors. Lastly, we address the 
challenges presented by TIC heterogeneity and immune escape mechanisms, 
emphasizing the need for more clinical research to back up these innovative 
tactics. All things considered, TIC targeting is a significant method to improve 
immunotherapy’s efficacy in treating digestive system cancers, which will 
ultimately help patients. 
KEYWORDS 

tumor-initiating cells (TICs), digestive system tumors, immunotherapy, tumor 
microenvironment, immune checkpoints, combination therapy, differentiation therapy 
Introduction 

Along with the great majority of non-tumorigenic cells, some tumors have a little 
number of cells that have the ability to self-renew and start new tumors. Tumor-initiating 
cells (TICs), also called cancer stem cells (CSCs) or CSC-like cells, are a group of cells that 
can produce diverse cell populations that closely mimic the original tumor’s makeup (1). 
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TICs, a subset of cells within malignancies, may arise from 
alterations in progenitor or normal stem cells or from genetic 
defects. Because of their similar ability to differentiate into diverse 
lineages, TICs were formerly thought to be produced from normal 
stem cells. Transduction of the MLL-AF9 fusion protein into 
myeloid progenitor cells can generate leukemia in vivo, indicating 
that progenitor cells can develop into leukemic stem cells (2). 
Subsequent research has demonstrated that TICs can be created 
by genetically altering tumor endothelial cells and astrocytes to 
dedifferentiate (3, 4). This suggests that TICs may originate from a 
variety of sources, which could be a major factor in their 
differentiation from healthy stem cells. TICs differ from normal 
stem cells in their phenotypes and capabilities. TICs and normal 
stem cells are two distinct cell types with different characteristics 
and roles. Despite their similarities, they nevertheless differ 
significantly, particularly in terms of behavior, regulation, and 
their effects on health and illness (5). Normal stem cells help 
replace damaged or dying cells and maintain tissue homeostasis. 
TICs are believed to be responsible for tumor genesis, growth, and 
recurrence due to their stem-like properties, which leads to 
intratumor heterogeneity of cancer cells (6). While TICs can self-
renew and manufacture more TICs and differentiated cancer cells, 
normal stem cells can divide and produce identical stem cells and 
differentiated cells. Normal stem cell division is tightly regulated by 
internal mechanisms to prevent excessive proliferation and 
maintain tissue integrity in response to specific stimuli from the 
milieu (the stem cell niche). However, if left untreated, TICs 
multiply, leading to the growth and advancement of malignancies 
(7). Normal stem cells frequently maintain genomic stability, have 
low rates of genetic mutation, and can efficiently repair DNA 
damage, whereas TICs directly contribute to intratumor 
heterogeneity (8, 9). 

Whether TICs represent a distinct group of cancer cells or a 
functional state of some cancer cells is still up for dispute. TICs are 
now widely recognized as being crucial to therapeutic progress due 
to their ability to self-renew, resist chemotherapy, and respond to 
immune checkpoint inhibitors (10–12). The TIC concept has led to 
a reexamination of therapeutic alternatives for cancer cure. The 
issues of cancer recurrence and metastatic spread still require 
attention, even though many malignancies have been adequately 
remitted by a number of popular anti-cancer medicines. Most 
conventional medications are cytotoxic and highly non-selective 
because their aim is to destroy all rapidly proliferating cells. 
Sometimes, this approach can lead to a difference between a good 
clinical response (a significant reduction in tumor size) and an 
inadequate survival response. This could be due to TIC-driven 
recurrence after a significant number of cancer cells are killed 
without totally removing the TICs (13, 14). Digestive system 
tumors offer a fantastic chance to increase the efficacy of cancer 
immunotherapy. TIC is a cell population of extremely drug-
resistant, asymmetrically dividing, tumor-initiating cells that 
arises after early success of tumor radiotherapy or chemotherapy. 
It has a strong correlation with tumor heterogeneity and is essential 
for clinical phenomena such as treatment resistance, tumor 
metastasis, tumor dormancy, and recurrence (12, 15). Digestive 
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system tumors, such as those of the stomach, liver, pancreas, and 
colon, present a challenging issue since they usually exhibit 
resistance to standard therapies. Resistance (16–18), recurrence, 
and metastasis (3, 19) are believed to be influenced by the unique 
features of TICs, including their ability to self-renew, differentiate, 
and evade the immune system. Therefore, if the characteristics of 
TICs are well defined, the reasons for their variability and immune 
evasion mechanisms are investigated, and potential indicators are 
identified, targeting TICs may help cure digestive system cancers. 
TICs in digestive system tumors 

There is a subgroup of tumor cells called TICs that share traits 
with stem cells. Because they may self-renew and create the 
heterogeneity of tumor cells, they are important in tumor spread 
and recurrence. The TIC markers and their functions in 
gastrointestinal malignancies, including colorectal, stomach, liver, 
and pancreatic cancers, are listed in Table 1. TICs are often resistant 
to chemotherapy and radiation due to their quiescent nature, 
enhanced DNA repair processes, and ability to evade the immune 
system. They are therefore a crucial target for the efficacy of long­
term treatment. 
Mechanisms of immune evasion by 
TICs 

Immunosuppressive microenvironment 

The tumor microenvironment (TME) is the primary site of 
conflict between tumor cells and the host immune system. 
Numerous studies have examined the relationship between 
immune modulation and cancer, specifically cancer dormancy 
(51). Non-cellular and cellular elements, including immune cells, 
cancer-associated fibroblasts, and other stromal cells, as well as 
secretomes and exosomes generated from these cells, comprise the 
TME. Together, these elements provide an environment that 
suppresses the immune system and promotes tumor growth. The 
TME is essentially a cellular environment based on tumors or TICs 
that significantly encourages the unchecked proliferation of tumor 
cells or TICs, which in turn influences the host system’s capacity to 
develop cancer (52). Immunotherapy stimulates the immune 
system to attack cancer cells in the TME. It aims to boost the 
activity of natural killer (NK) cells and cytotoxic CD8+ T 
lymphocytes (CTLs), as opposed to immunosuppressive cells such 
as mesenchymal-derived suppressor cells (MDSCs), regulatory T 
cells (Tregs), tumor-associated macrophages (TAMs), and cancer-
associated fibroblasts (CAFs) (53). The failure of cancer 
immunotherapy is often due to the fact that TICs can overcome 
anti-tumor immunity (54). TICs can evade tumor immunity by 
changing the TME, and these environmental changes can result in 
TIC phenotypic changes that facilitate tumor immune evasion (55, 
56). For instance, regulatory myeloid cells, such as Tregs and 
MDSCs, are drawn to the TME by TIC-secreted CXCL12 
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TABLE 1 Stem cell biomarkers and functions identified in gastrointestinal tumors. 

Cancers Maker Validation 
method 

Function 

Gastric cancer CD90 (20) in vitro CD90: belongs to the immunoglobulin superfamily and the Thy-1 cell-surface 
antigen (adhesion molecule) family, which is involved in several signal pathways 

CD71 (21) clinical CD71: correlation with GC invasion 

CD44 (22) in vitro 
in vivo 
clinical 

CD44: A glycoprotein involves in cell migration and self-renewal 

CXCR4 (23) in vitro CXCR4:CXCR4+ cells can form spheroid colonies, and they have high metastatic 
ability and chemotherapy resistance in vitro. Moreover, CXCR4+ cells have 
tumorigenicity and TICs generation capacity in immune-deficient mice in vivo. 

CD133 (24) clinical CD133: A transmembrane glycoprotein that maintains lipid composition in 
cell membranes 

LGR5 (25) clinical LGR5: lymph node metastasis associated with GC 

MIST1 (26) in vivo MIST1: related to the proliferation and regeneration of gastric cells 

ALDH1 (27) clinical ALDH1: belongs to the aldehyde dehydrogenase family involves in cell migration 
and self-renewal 

AQP5 (28) clinical AQP5: synergizes with LGR5 

CD24 (29) in vitro CD24: correlation with the advanced stages, invasiveness, and lymph node 
metastasis of GC. 

CD49f (30) clinical CD49f:associated with gastric carcinogenesis and drug resistance 

CD54 (31) clinical CD54: associated with chemotherapy resistance 

Colorectal cancer CD49f (32), CD133 (33) 
CD44 (34), LGR5 (35) 

in vitro 
in vivo 
clinical 

CD200 (36) in vitro CD200: Interactions between CD200 and its receptor CD200R act as an immune 
tolerance signal, which reduces myeloid cell activity and change their 
migration ability 

Ep CAM (35) in vitro 
clinical 

Ep CAM: functions in cell signaling, differentiation, proliferation and migration. 

LGR4 (35) in vitro 
clinical 

LGR4: expression levels of LGR4 was correlated to poor prognosis in 
CRC patients. 

ALDH (37) in vitro 
in vivo 
clinical 

CD166 (37) in vitro 
in vivo 
clinical 

CD166: protect cells against apoptosis and autophagy. 

CD206 (38) clinical CD206: involved in endogenous molecule clearance, antigen presentation, and 
modulation of cellular activity. 

Pancreatic cancer CD133 (39), CD44 in vitro 

CD24 (40) clinical CD24: cell surface protein involved in cell adhesion. 

DCLK1 (41) in vivo DCLK1: induces deregulation of VEGF-inhibitors and leads 
to neovascularization. 

CXCR4 (42),Ep 
CAM (43) 

in vivo 
clinical 

Oct4 (44) in vitro Oct4: the main factor in pluripotency, participating in cell differentiation, 
reprogramming and renewal. 

ABCB1 (45) in vitro ABCB1: involved in the resistance of pancreatic cells. 

(Continued) 
F
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(57).MDSCs, TAMs, and Tregs are the three most prevalent 
immunosuppressive cells in the TME. In their symbiotic 
connections with TICs, they interact and suppress tumor 
immunity. In the next sections, we shall discuss these cells’ 
interactions with TICs in greater detail. This article outlines the 
possible paths of TIC function, their upstream transcription factors, 
and the interaction between TICs and immunosuppressive cells 
in Figure 1. 

TICs and MDSCs 
MDSCs are one of the most discussed biological entities in 

immunology. Despite differences in their classification and history, 
MDSCs are most commonly used to describe cells produced during 
chronic inflammation, particularly in late malignancy, and they 
contain T-cell immunosuppressive capabilities (58). MDSCs are 
composed of a heterogeneous population of myeloid cells, among 
Frontiers in Immunology 04
which granulocytic or polymorphonuclear cells (PMN-MDSCs) 
and mononuclear cells (M-MDSCs) constitute subpopulations 
(59). PMN-MDSCs comprise over 80% of all MDSCs, whereas 
M-MDSCs can differentiate into TAMs (60). MDSCs are the 
primary organizers of inflammation associated with cancer 
because of their dynamic expression of several polarized 
inflammatory programs that promote tumor growth, including 
tumor angiogenesis, immunosuppression, tissue remodeling, and 
the maintenance of TIC stemness (61). The development of cancer 
is aided by MDSCs’ promotion of angiogenesis, invasion, 
metastasis, and cancer cell survival (58, 62). According to 
research, MDSCs regulate the phenotypic transition in TICs. By 
upregulating the expression of microRNAs (miRNAs), which are 
short (~22 nt) non-coding endogenous RNAs that post­
transcriptionally influence gene expression in cancer cells (63), 
MDSCs contribute to the TIC phenotype (64). In particular, 
TABLE 1 Continued 

Cancers Maker Validation 
method 

Function 

Hepatocellular carcinoma CD90 (46) clinical CD90: involved in cell-cell and cell-matrix interactions. 

EpCAM (47), CD24 (48) clinical 
clinical 

CD44 (49), CD133 (49) in vitro 

CD13 (50) in vivo CD13: associated with chemotherapy resistance 
 

FIGURE 1 

Tumor-initiating cells (TICs) orchestrate an immunosuppressive microenvironment. By releasing several soluble factors, TICs create an 
immunosuppressive environment that attracts MDSCs, TAMs, and Tregs to the tumor microenvironment. By encouraging tumor angiogenesis, 
chemoresistance, and tumor spreading, these immunosuppressive cells create an immunosuppressive environment. More significantly, they preserve 
the stemness and functionality of TICs. These immunosuppressive cells promote TIC self-renewal, stemness, metastasis, and therapy resistance, 
primarily through PI3K/AKT/mTOR signaling (MDSCs) and PI3K/AKT/NF-kB signaling (M2 TAMs). Key signaling pathways (Notch, Hedgehog, STAT3, 
NF-kB, Wnt/b-catenin) active within TICs regulate their core properties. 
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MDSCs promote TIC-associated gene expression, spheroid 
formation, and cancer spread while suppressing T-cell activation. 
MDSCs cause cancer cells to express miRNA-101. The corepressor 
gene C-terminal binding protein-2 (CtBP2), which specifically 
targets stemness core genes, is then suppressed by miRNA-101. 
higher tumorigenicity, higher metastatic potential, and increased 
stemness of cancer cells are the results of this suppression. 
Interestingly, poor survival is independently predicted by both 
increased tumor miRNA-101 expression and greater MDSC 
infiltration. These components function independently of one 
another, and a lower prognosis is also associated with decreased 
CtBP2 expression in malignancies (64). MDSCs can stimulate 
mesenchymal development and TIC proliferation (65). The 
method through which MDSCs promote TIC stemness depends 
on STAT3. Reprogramming brought on by STAT3 phosphorylation 
can give monocytes a pro-tumor immunosuppressive phenotype. 
By blocking STAT3, MDSC’s ability to produce TICs in vitro can be 
completely eradicated (65). Additionally, MDSCs can promote 
stemness in TICs and upregulate PD-L1 by activating the PI3K/ 
AKT/mTOR pathway (66). On the other hand, TICs draw in and 
encourage MDSC infiltration, development, and activation via 
secreting soluble chemicals and exosomes specific to different

cancer types. These consist of granulocyte-macrophage colony-
stimulating factor (GM-CSF), TGF-b, IL-8, and macrophage 
migration inhibitory factor (MIF) (67–69). Additionally, 
interaction between MDSCs and macrophages has been shown in 
other investigations to polarize macrophages toward an M2 
phenotype (70). 

TICs and TAMs 
TAMs are incredibly flexible cells that undergo many forms of 

functional activation in response to a range of stimuli. Infiltrating 
macrophages, whose activity is influenced by inflammatory and 
stress signals within the TME, can mediate tumor immune evasion 
(71). TAMs suppress anti-tumor immune responses by preventing 
CD8+ T lymphocytes from entering tumor sites or by decreasing 
their cytotoxic activity (72). The two primary populations of TAMs 
are M1 macrophages, which repress the tumor, and M2 
macrophages, which promote growth (73). By secreting CXCL8, 
which in turn activates NF-kB and PI3K/AKT signaling, TICs may 
maintain their survival, proliferation, and self-renewal through cell-
intrinsic pathways. Simultaneously, CXCL8 induces activation in 
TAMs via the CXCR2-JAK2/STAT3 axis, promoting an M2-like 
TAM phenotype through paracrine, cell-extrinsic pathways (74). 
TICs in liver cancer generate IL-34, a gene that p53 transcriptionally 
suppresses, as a result of p53 depletion. By increasing CD36­
mediated fatty acid oxidation metabolism, IL-34 promotes M2­

like polarization of TAMs. These IL-34-coordinated TAMs 
promote immunological evasion by inhibiting CD8+T cell-
mediated anti-tumor immunity (75). Using soluble mediators 
including IL-6, TGF-b, WNT ligands, and pleiotrophic trophic 
proteins, or juxtacrine signaling discovered in co-culture 
experiments, TAMs can, on the one hand, cause phenotypic 
alterations and maintain stemness in TICs (76–80). Through the 
activation of nuclear factor-kB (NF-kB), AKT, and  signal
Frontiers in Immunology 05 
transducer and activator of transcription 3 (STAT3), TAMs 
promote self-renewal by signaling to TICs via ephrin type-A 
receptor 4 (EPHA4) and receptor-type tyrosine-protein 
phosphatase z (PTPRZ1) (78, 79). Pancreatic tumors respond 
better to chemotherapy and have fewer TICs when TAMs are 
targeted (81). In conclusion, factors, exosomes, or metabolites 
produced by TICs attract and polarize TAMs (82, 83). However, 
the promotion of TICs stemness and phenotypic alterations 
depends on TAM-derived paracrine substances or the physical 
interactions between TAMs and TICs (84, 85). 

TICs and T cell 
IL-17, which is released by T-helper 17 (Th17) cells, promotes 

TIC self-renewal and stemness maintenance. Both IL-17 
stimulation and IL-17 introduction significantly enhance the 
growth of cancer and the ability to form spheroid in a dose-
dependent manner. Furthermore, nude mice with higher levels of 
IL-17 gene expression are more carcinogenic (86). An important 
component of the TME, regulatory T cells (Tregs) can enhance 
carcinogenesis, metastasis, and chemotherapeutic drug resistance in 
cancer cells, as well as stimulate tumor angiogenesis and reduce 
anti-tumor immunity (87). There may be a connection between 
Tregs and TICs since, whereas TICs can draw Tregs into the TME, 
regs also support TIC stemness (87). Higher Th1 CD4+ T cell and/ 
or CTL densities are associated with longer overall survival (88). 
These T-cell populations produce high quantities of the 
proinflammatory cytokine interferon-gamma (IFNg), which is 
crucial for both local and systemic immunity (89). With its 
cytotoxic impact, immunostimulatory properties, and cell 
proliferation inhibitory effects, IFNg is one of the primary 
mediators of anti-tumor immunity (90). However, studies have 
demonstrated that T-cell-derived IFNg induces TICs to display 
certain functional traits, including as spheroid formation and 
resistance to chemotherapy or radiation, in addition to increasing 
stem cell markers (91). On the other hand, by upregulating 
programmed death-1 (PD-1) on CD8+ T-cells, TIC-produced 
PD-L1 can encourage CD8+ T-cell exhaustion (92). 
Checkpoint molecule expression 

TIC-secreted exosomes trigger the STAT3 pathway, which 
raises PD-L1 in TAMs (83). MDSCs can promote the stemness of 
TICs and raise PD-L1 by activating the PI3K/AKT/mTOR pathway 
(66).By stimulating the ITGB4/SNAI1/SIRT3 signaling pathway, 
PD-L1 can encourage tumor growth and metastasis, suggesting yet 
another potential mechanism for these pathways to work in concert 
(93). Prior studies have shown that the TIC-like population of 
malignancies, including colorectal cancer, has higher levels of PD­
L1 (94). Through a STT3-dependent mechanism, PD-L1 
preferentially expresses on TICs and aids in their immune 
evasion (95). This finding suggests a possible way that TICs evade 
immune surveillance. These results demonstrate the therapeutic 
potential of employing immune checkpoint inhibitors to target 
TICs. One intriguing approach to creating novel therapies that 
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cause cancer patients’ tumors to partially or completely recede is 
immune checkpoint inhibition (96). Research suggests that 
checkpoint blockade therapy is highly effective in treating 
immunogenic malignancies with high levels of CTL infiltration 
(97). In particular, T-cell activation and proliferation potential can 
be restored by anti-PD-1 or anti-PD-L1 antibodies, which will allow 
immune cells to detect and eradicate cancerous cells more efficiently 
(98). Patients with PD-L1-positive tumors have much greater 
response rates to PD-1/PD-L1 blocking therapy than patients 
without PD-L1 expression, according to clinical evidence (99). 
Importantly, preclinical studies demonstrate that PD-1/PD-L1 
blockade synergistically enhances the antitumor efficacy of TIC-
targeted vaccines in murine cancer models (100). 
Low immunogenicity 

TICs surviving persistent immune pressure must circumvent 
genomic alterations that might induce novel innate and adaptive 
immune responses, ultimately manifesting an immunogenically 
attenuated phenotype (101). Comprehensive characterization of TIC-
associated immune profiles represents a fundamental prerequisite for 
developing successful TIC-targeted immunotherapies. These 
immunological attributes - encompassing antigen processing/ 
presentation machinery (including MHC complexes encoded by 
HLA genes), costimulatory/inhibitory signaling molecules, tumor-

associated antigens (TAAs), and cytokine networks - represent 
critical determinants for effective immunotherapy development. The 
diminished MHC I expression observed in TICs may promote their 
survival through impaired T-cell recognition (102). TICs displaying 
attenuated MHC I presentation or deficient natural killer cell-activating 
ligand expression demonstrate impaired immune recognition, 
potentially conferring dual resistance to chemotherapy and immune-

mediated elimination (103). Moreover, TICs exhibit systemic 
downregulation of antigen processing components including 
transporter associated with antigen processing (TAP), low molecular 
weight proteasome subunits (LMP), and b2-microglobulin (104). 
Immune profiling studies have identified distinct expression patterns 
of costimulatory (e.g., CD80/CD86) and coinhibitory (e.g., CTLA-4, 
PD-1/PD-L1, B7-H2/H3) molecules in TICs, revealing a predominant 
inhibitory signature with costimulatory molecule deficiency (105). This 
immunological tolerance is compounded by the weak immunogenicity 
of TAAs derived from TICs, which exhibit heterogeneous expression 
patterns within tumor masses due to immune selection pressures (106). 
Consequently, identifying novel tumor-specific neoantigens that stably 
associate with malignant progression and evade host immune editing 
remains a central challenge in immunotherapy development. Notably, 
soluble mediators in the TIC secretome warrant particular attention. 
Cytokines  including  CCL-2, IL-6,  IL-8, IL-10,  IL-13, and  TNF-a show 
tumor-specific secretion profiles, with experimental evidence 
demonstrating TIC-derived cytokines mediate immune evasion 
through recruitment and activation of MDSCs and TAMs (107). 
Frontiers in Immunology 06
Strategies to target TICs 

Inhibition of TIC-specific pathways 

Numerous pluripotency-associated transcription factors, such 
as OCT4, SOX2, NANOG, KLF4, and MYC, regulate TICs. 
Experimental evidence indicates that TIC-derived cytokines 
mediate immune evasion through recruitment and activation of 
MDSCs and TAMs. Cytokines, such as CCL-2, IL-6, IL-8, IL-10, IL­
13, and TNF-a, exhibit tumor-specific secretion profiles (108). 
Important signaling pathways, including Notch, Hedgehog (Hh), 
Wnt/b-catenin, FGF/FGFR, EGF/EGFR, NF-kB, MAPK, PTEN/ 
PI3K, HER2, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD, and 
PPAR pathways, are also commonly dysregulated in TICs (108– 
111). Activation of the STAT3 and Notch3/mTOR pathways 
promotes higher PD-L1 expression in TICs than in non-TICs, 
especially in colorectal cancer, gastric cancer, and other 
gastrointestinal cancers. While STAT3 suppression has been 
demonstrated  to  restore  T-cell  function  (112),  PD-L1  
overexpression increases TIC stemness through a self-sustaining 
positive feedback loop (113, 114). By successfully removing lung 
cancer TICs, lowering metastasis, and extending patient survival, 
napabacusin, a STAT3 inhibitor, has shown strong efficacy in 
clinical trials (115). One important mediator of TIC-TME 
interactions is NF-kB, whose suppression significantly lowers the 
expression of cancer stem cell markers (116). The transcription 
factor SOX2 orchestrates transcriptional networks that sustain 
cellular stemness (117) and confer anti-apoptotic capabilities 
(118). and it plays essential roles in maintaining both embryonic 
stem cell features and TIC characteristics (119–121). Numerous 
cancer types have been shown to have SOX2 as an oncogenic driver 
that is enhanced during carcinogenesis, metastasis, and recurrence 
(122, 123). In vivo, tumor growth and chemoresistance are greatly 
reduced when SOX2 is suppressed (123). By working in tandem 
with SOX2, the Wnt/b-catenin pathway plays a vital role in 
maintaining cancer stemness. SOX2 improves b-catenin’s nuclear 
localization and transcriptional activity by directly interacting with 
it (123, 124). An almost universal characteristic of sporadic 
colorectal cancers is aberrant Wnt/b-catenin signaling, which is 
mostly caused by APC mutations. Nuclear b-catenin levels rise as a 
result of pathway activation, which promotes the development of 
the T-cell factor/lymphoid enhancer factor complex and the 
subsequent upregulation of target genes such as AXIN2, SOX2, 
TCF7, c-MYC, and MMP7 (125, 126). By inducing TIC apoptosis, 
therapeutic blocking of this mechanism significantly lowers tumor 
recurrence (127–129). Numerous cancers have been shown to have 
deregulation of JAK/STAT signaling in TICs (130–132). By 
inhibiting STAT1 activation, clinical intervention with FDA-
approved JAK1/2 inhibitor ruxolitinib or anti-IFNg antibodies 
successfully stops IFNg-mediated TIC production (91). Together, 
these results highlight the therapeutic potential of focusing on TICs’ 
aberrant signaling pathways to enhance clinical results. 
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Differentiation therapy 

TICs exhibit characteristic stem cell characteristics, such as the 
ability to self-renew and the potential for multi-lineage differentiation, 
as a unique subpopulation within tumor heterogeneity. These cells 
promote the development of primary tumors, mediate resistance to 
treatment, and aid in distant metastases and tumor recurrence (133). 
According to new data, TICs are malleable cells that can switch 
between quiescent and proliferative states in both directions (134). 
By using pharmaceutical intervention to reroute tumor 
reprogramming toward terminal differentiation or death while 
reducing proliferative potential, differentiation treatment takes 
advantage of the reversible differentiation abnormalities seen in 
malignant cells (135, 136). The goal of the TIC differentiation 
therapeutic paradigm is to either cause TICs to mature terminally or 
transform them into therapy-sensitive non-mesenchymal equivalents. 
This approach seeks to reduce invasive potential and malignant 
development by converting aggressive, undifferentiated tumors into 
differentiated cell populations with reduced tumorigenicity. In the end, 
these differentiation-based strategies might eliminate tumors and 
exhaust the TIC reservoir (137). Genetically defined models provide 
mechanistic insights, but translational hurdles in solid tumors continue 
because of sample heterogeneity and constraints in in vitro culture. 
Targeted inhibition of this oncogenic chimeric protein with functional 
antibodies causes TIC differentiation and functional ablation in 
PTPRK-RSPO3 fusion-driven colon cancers, which is a noteworthy 
example (138).This proof-of-concept illustrates how differentiation 
treatment may be used to treat specific solid gastrointestinal cancers 
with distinct driver changes. 
 

Enhancing immune recognition 

TIC-specific antigens or surface markers, including as CD44, 
CD133, and EpCAM, can be targeted by vaccines and adoptive cell 
treatments (such CAR-T cells). Using embryonic stem cells as 
universal preventive cancer vaccines is a unique treatment 
approach made possible by the antigenic similarities between 
TICs and these cells. Anti-embryonic antigens can induce anti-
tumor immune responses through cross-reactive immunity (139), 
as prior studies have confirmed that tumor-embryonic antigens 
(such as carcinoembryonic antigen) are co-expressed in both TICs 
and embryonic stem cells (140). In addition to being a rich source of 
TIC-specific antigens, embryonic stem cells have the ability to 
imitate embryonic niche conditions in their conditioned medium, 
which can aid in differentiation-based cancer therapy. As preventive 
measures against lung cancer (141),CRC (142) and ovarian cancer 
(143), inactivated embryonic stem cell-derived vaccines have been 
created with success and have shown effectiveness in inhibiting the 
growth and spread of tumors in animal models. In addition to 
inducing strong TIC-specific CTL responses, therapeutic cancer 
vaccines that target TICs have shown strong antitumor activity 
against SCC7 squamous cell carcinoma and D5 melanoma in mouse 
models (144). Targeting self-renewing TICs is one area in which 
chimeric antigen receptor (CAR)-T cell therapy, a novel 
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immunotherapy strategy that involves genetically modifying T 
cells to express cancer-specific CARs (145), shows promise (146). 
In both syngeneic and xenograft murine models, preclinical 
research has shown that CAR-T cell therapy can completely 
eradicate established solid tumors and metastatic lesions in a 
variety of cancer types, including colon, breast, melanoma, and 
pancreatic cancer (147). Prior research has shown that Claudin18.2­
targeted CAR-T cell therapy is remarkably effective in treating 
gastroesophageal junction cancer. With a median overall survival 
of 8.8 months and a disease control rate of 91.8%, the results of a 
phase II clinical trial (NCT04581473) revealed that some patients 
even experienced long-term remission (148). With a 6-month 
overall survival rate of 81.2%, Claudin18.2-targeted CAR-T cell 
treatment achieved an objective response rate of 57.1% and a disease 
control rate of 75.0% in patients with gastric cancer. According to 
these early findings, CAR-T cell treatment shows encouraging 
efficacy and tolerable safety in cancer patients (149). 
Overcoming immunosuppression 

Even though tumors have an immunosuppressive environment 
where cancer cells can inhibit the activation of immune cells 
through a variety of mechanisms, including the recruitment of 
TAMs, MDSCs, and Tregs, the attenuation of MHC class I 
expression, and the use of the PD-1/PD-L1 axis, the immune 
response against TICs can be strengthened by modulating the 
TME by using inhibitors of immune checkpoint molecules or 
reducing the recruitment of immunosuppressive cells. Many 
drugs that target immune checkpoint receptors, such as CTLA-4, 
PD-1 (cemiplimab (150)) and PD-L1(avelumab (151), durvalumab 
(152)). The use of the antibody ipilimumab, which targets cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4), was authorized in 
2011. Additionally, tremelimumab (CP-675206), a fully human 
monoclonal antibody, binds to the CTLA-4 molecule expressed 
on the surface of activated T lymphocytes and T regulatory cells. 
Tremelimumab prevents CTLA4 from binding to its target ligands 
(B7–1 and B7-2) by inhibiting the negative regulatory signal that 
CTLA4 sends on T cell priming (153). 2014 also saw the approval of 
pembrolizumab and  nivolumab,  two antibodies that block

programmed cell death protein 1 (anti-PD-1) and its ligand 1 
(anti-PD-L1) (154). Blocking CTLA4, PD-1, and PD-L1 
inhibitory effects can promote and enable effective immune 
responses against tumor cells. Tregs, a vital part of the immune 
system, are important targets for treatment and can be used to 
predict the course and prognosis of cancer (155). Tregs have been 
shown to directly kill NK cells via b-galactoside-binding protein, 
which promotes lung metastasis (156). To stop cancer cells from 
spreading to the lungs, it is enough to target Treg cells (157). 
MDSCs, recognized as one of the main cellular components in the 
tumor microenvironment, promote tumor growth by carrying out 
immunosuppressive functions. They are now significant 
modulators of the cancer immune response and targets for cancer 
therapy (158). Modifying the TAM response may enhance 
immunotherapy. Many strategies to reduce TAMs have been 
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studied in laboratory settings and are thought to be effective 
therapeutic interventions at this time (159). By inhibiting M­

MDSC and TAM survival, some anti-CSF1R drugs that are being 
studied in cancer patients have demonstrated promising anticancer 
potential (160). Immunoevasion linked to TICs may be caused by a 
variety of extrinsic stimuli in addition to immunosuppressive cell 
activity. Because of their resistance to degradation, persistent 
organic pollutants like perfluorooctanoic acid (PFOA) and 
perfluorooctanesulfonic acid (PFOS), which are widely used in 
industrial applications like firefighting foams and water-reactive 
materials, have become common environmental contaminants, 
raising concerns about their possible health effects. Per- and 
polyfluoroalkyl substances (PFAS) may facilitate immune evasion 
by altering tumor-associated gene expression, controlling immune 
cell function, and improving TIC properties, according to earlier 
research using network toxicology, single-cell sequencing, spatial 
transcriptomics, and molecular simulation technologies (161, 162). 
 

Combination therapies 

Checkpoint inhibitors + TIC targeting 

Checkpoint inhibitor monotherapy has demonstrated the most 
significant activity in tumor types with high PD-L1 expression and/or 
high microsatellite instability or mismatch repair deficiency, though 
this is limited to no more than one-third of cancer patients authorized 
for checkpoint inhibitor treatment (163). Because CTLA-4 and PD-1 
antagonists are more effective when used jointly than when used alone, 
a combined immunotherapy regimen was recently approved (164). 
While PD-1 inhibitors target peripheral T cell activation, especially in 
the tumor context, CTLA-4 antagonists affect T cell priming (165). The 
robust immune responses shown in in vivo studies when both targets 
are blocked have strengthened the theoretical foundation for combined 
ICB (166). In conclusion, if CD8+ T cells are absent from the tumor 
microenvironment, blocking the PD-1/PD-L1 pathway will not work. 
Combining this tactic with CTLA-4 blockage may increase the quantity 
of activated CD8+ T cells (167). However, combining two ICBs will 
unavoidably cause more side effects, and their clinical application might 
be challenging (168). For tumors with low immunogenicity or stromal 
fibrosis, where the effect of checkpoint inhibition as a monotherapy is 
minimal or nonexistent, combining checkpoint inhibition with other 
treatments may result in a synergistic response (169). Some researchers 
suggest combining TIC targeting with immune checkpoint blocking to 
improve treatment outcomes. As was previously known, TICs are 
commonly accompanied by aberrant route changes. By combining 
ICB with targeting these pathways, treatment resistance can be 
reduced and patient outcomes can be greatly enhanced. Using 
methods like organoids, transcriptomics, genomic sequencing, and 
immunohistochemistry, suitable individuals should be identified and 
monitored both before and during treatment (170). Research has 
demonstrated that blocking oncogenic Myc signaling using 
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epigenetic strategies (like JQ1) significantly reduces PD-L1 
expression, which is why anti-PD-1 antibodies and JQ1 produce a 
synergistic immune response (171). These results suggest that 
combining immune checkpoint blockade with TIC targeting can 
significantly improve the efficacy of immunotherapy for malignancies. 
Chemotherapy + immunotherapy/targeted 
therapy 

Given the immunomodulatory and adjuvant effects of classical 
chemotherapy and its widespread clinical usage, combining 
immunotherapy with chemotherapy presents an enticing option to 
boost immunotherapy’s efficacy across a larger patient population 
(172). In particular, TIC-targeted chemotherapy seeks to either use 
surface receptors to transport chemotherapeutic drugs directly into 
TICs for efficient removal or disrupt basic intracellular pathways in 
TICs. The immunosuppressive TME is essential for preserving TICs’ 
stem-like characteristics. As a result, some immunotherapies that can 
rewire the TME have also shown promise in eliminating TICs (173). 
The use of combined treatment techniques is encouraged by the 
possibility for chemotherapy and immunotherapy medications to 
complement each other mechanistically, even though only a small 
number of patients benefit from either medication alone. Combining 
immunomodulators, like immune checkpoint inhibitors, can improve 
the antitumor immune response triggered by chemotherapeutic drugs 
while suppressing or even eliminating tumor growth and metastasis. 
Consequently, immunotherapy in combination with chemotherapy 
has recently been identified as a highly promising approach to improve 
these medications’ efficacy (172, 174). Pancreatic cancer (175), gastric 
cancer (176), CRC (177), and hepatocellular carcinoma (178) are

among the gastrointestinal malignancies for which standard 
chemotherapy and immunotherapy have been shown to have 
beneficial therapeutic effects (179, 180). Intracellular proteins that are 
essential for the growth, development, or metabolism of TICs can be 
inhibited by chemotherapy drugs. For example, it has been 
demonstrated that ALDH1 inhibitors cause apoptosis in TICs and 
block the production of markers linked to stemness (181). Additionally, 
CD44-positive breast cancer TICs can be precisely targeted by 
gemcitabine-conjugated nanoparticles functionalized with CD44 
antibodies, improving overall therapeutic efficacy (182). Glioblastoma 
TICs have been successfully eradicated by NK cell therapy in the field 
of immunotherapy (183). Furthermore, surface receptors on TICs have  
been used for targeted delivery of immunomodulators, much like 
chemotherapeutic medications and radioisotopes (184). There are 
intrinsic disadvantages to immunotherapy and chemotherapy, 
despite their notable clinical benefits. Chemotherapy drugs have the 
ability to directly destroy or inactivate dendritic cells and other immune 
cells (185). High-dose chemotherapy often results in a decrease in B 
cells, T cells, and NK cells (186). These cells possess every functional 
characteristic needed to expose effector T cells to antigens linked to 
tumors, hence stopping the formation of tumors in the host (187). The 
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TABLE 2 TICs-directed immunotherapy in ongoing clinical trials. 

Disease Trial description Enrollment (Estimated) Phase NCT Number Current status 

Gastric cancer CAR-T 24 I NCT06010862 Recruiting 

EpCAM- CAR-T 19 II NCT02725125 Unknown status 

CAR-T 60 I NCT05396300 Active, not recruiting 

IM92 CAR-T 6 Early I NCT05275062 Unknown status 

CAR-T 60 I/II NCT06006390 Recruiting 

CAR-T 50 I NCT06821048 Recruiting 

CAR-T 60 I NCT06126406 Recruiting 

EpCAM- CAR-T 60 I/II NCT03013712 Unknown status 

CDH17 CAR T-cell 135 I/II NCT06055439 Recruiting 

EpCAM- CAR-T 30 I NCT02915445 Active, not recruiting 

CAR-T 24 Not Applicable NCT03159819 Unknown status 

Colorectal cancer aPD1-MSLN-CAR-T 10 Early I NCT04503980 Unknown status 

IM96 CAR-T 9 I NCT06718738 Recruiting 

CAR-T 30 Early I NCT06675513 not yet recruiting 

NKG2D CAR-T 9 Early I NCT05248048 Unknown status 

CAR-T 18 Early I NCT04513431 Unknown status 

CAR-T 40 Not Applicable NCT05401318 Recruiting 

GCC19 CAR-T 30 I NCT05319314 Recruiting 

Pancreatic cancer CAR-T 27 I NCT06158139 Recruiting 

CAR-T 10 Early I NCT03267173 Unknown status 

EX02 CAR-T 6 Early I NCT06196658 not yet recruiting 

U87 CAR-T 12 I NCT05605197 Recruiting 

CD276 CAR-T 10 I/II NCT05143151 Unknown status 

CAR-T 80 Not Applicable NCT04203459 Unknown status 

CAR-T 18 I NCT03323944 Recruiting 

Hepatocellular 
carcinoma 

CAR-T 20 I NCT04121273 Unknown status 

GPC3 CAR-T 15 I NCT06461624 Recruiting 

GPC3-CAR T 30 I/II NCT06641453 not yet recruiting 

CD19 CAR-T 12 I NCT06676982 not yet recruiting 

CAR-T 50 Early I NCT03672305 Unknown status 

B7H3 CAR-T 15 I/II NCT05323201 Recruiting 

GPC3 CAR-T 38 I NCT05003895 Recruiting 

GPC3 CAR-T 60 Early I NCT06653023 Recruiting 

GPC3 CAR-T 12 Not Applicable NCT05926726 Recruiting 

GPC3 CAR-T 30 I/II NCT02715362 Unknown status 

CAR-T 3 I NCT05131763 Unknown status 

GPC3 CAR-T 20 Not Applicable NCT05620706 Recruiting 
F
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immunosuppression caused by the death of these cells may be a 
significant factor in decreased efficacy and tumor recurrence when 
immunotherapy and chemotherapy are used in combination. 
Clinical trials 

Clinical studies of medications that target surface indicators linked 
to CSCs Monoclonal antibodies (mAbs) that target surface indicators 
unique to CSCs have become a cutting-edge cancer treatment tool. 
Future and ongoing clinical trials that combine immunotherapy with 
TIC-targeted medicines for malignancies of the digestive system will 
yield vital information to improve these strategies. Targeted treatments 
have shown considerable promise in treating TICs, particularly solid 
tumors, as seen by recent developments in clinical research. To 
overcome tumor heterogeneity, improve safety even more, and 
investigate earlier clinical applications, more research is required. 
Targeted treatments for TICs have advanced from proof-of-concept 
to clinical translation, notwithstanding the lingering obstacles. In order 
to get from “prolonged survival” to “cure of recurrence,” future 
research must optimize current therapies through interdisciplinary 
collaboration (immunology, AI, materials science) and investigate 
early interventions. In Table 2, we provide an overview of some of 
the current clinical research on GI cancers. 
 

 

Challenges and future directions 

Many patients continue to get ineffective therapy despite 
advancements in cancer treatment, which results in disease 
progression, recurrence, and a worse overall survival rate. Limitations 
in basic research and obstacles in clinical trials are the two primary 
categories of current challenges. While clinical trials challenges 
primarily include unclear therapeutic targets, low clinical trial success 
rates, and a lack of specific biomarkers, basic research challenges 
primarily include a lack of knowledge about TIC heterogeneity, 
immune evasion mechanisms, and the limitations of current models. 

One of the most crucial things to keep in mind is tumor 
heterogeneity. The identification of several clones with different DNA 
sequences within the same tumor has led to the widespread recognition 
of cancer as a heterogeneous illness (188). Intra-tumoral heterogeneity 
is increasingly understood to play a role in treatment failure and the 
advancement of disease (189).  Such  heterogeneity is regarded as a

significant barrier to precision cancer therapy (190)and also results in 
reduced immune responses against cancer (191). Both genetic 
determinants (primarily involving developmental pathways through 
gene mutations and tumor microenvironment alterations) and non-
genetic factors, such as epigenetic modifications like DNA methylation, 
histone modifications, chromatin accessibility, microRNAs, and other 
non-coding RNAs, are strongly implicated in functional heterogeneity 
(192–194). Furthermore, TIC-mediated immune evasion continues to 
be a major contributing factor to immunotherapy failure. TICs may 
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generate more immune escape mechanisms as they mature. To 
comprehend these mechanisms and learn how to combat them, 
more research is required. Finally, few molecular targets have been 
effectively converted into clinical care, and clinical trials continue to 
have high failure rates, despite a great deal of attention being paid to 
identifying key molecular targets as possible avenues for therapeutic 
intervention against TIC activities. 

Reliable biomarkers are still lacking in clinical research. Despite 
the development of certain TIC-associated indicators, their 
specificity is typically lacking. It is obvious that in order to target 
this cell population efficiently, a thorough understanding of TIC 
indicators is necessary. Further research is still required to assess 
and validate TIC markers. Furthermore, it might be necessary to 
create treatments that can eradicate TICs with a variety of genetic 
alterations and phenotypic traits (195).Immunotherapy failure may 
be caused by unclear treatment targets, and clinical translation is 
hampered by poor clinical trial success rates taken together. 

In order to improve our knowledge of TIC-associated immune 
microenvironments and particular indicators to direct future study, 
future studies should concentrate on using single-cell and spatial 
transcriptomic technologies to map the immune microenvironment 
of TICs (196, 197). To overcome drug resistance and increase the 
effectiveness of immunotherapy for tumors of the digestive system like 
colorectal cancer, Hong et al., for example, proposed an integrative 
genomics and single-cell analysis framework to identify immune-

related and potential drug targets in TIC-enriched populations (198). 
In order to define liver cancer heterogeneity and create risk 
stratification models, Yang et al. used multi-region sequencing in 
conjunction with spatial transcriptomics, offering mechanistic 
insights into clinical difficulties driven by TICs (199).Yang’s group

recently created a computational pipeline that combines five statistical 
inference techniques and is named SiLi (Statistical Inference-based 
Synthetic Lethality Identification). Through SiLi analysis of large-scale 
sequencing datasets, they methodically discovered synthetic lethal 
interactions in liver cancer, providing possible approaches for 
creating analogous algorithms to create TIC-targeted synthetic lethal 
combination treatments that address metastasis and recurrence. Last 
but not least, researchers can trace the origins of tumor-initiating cells 
and pinpoint important regulatory pathways to guide future targeted 
therapies by fusing lineage tracing with CRISPR gene editing 
technology (200). Integrating multi-omics data to forecast treatment 
responses or immune evasion patterns across several tumors from 
intricate databases has become possible with the development of 
machine learning (201). 
Conclusion 

Targeting tumor-initiating cells in tumors of the digestive 
system is a promising way to improve cancer immunotherapy. By 
addressing the challenges posed by TICs, such as immune evasion 
and treatment resistance, therapies can improve patient outcomes 
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and reduce tumor recurrence. Combination techniques, especially 
those that combine immune control and direct TIC targeting, are 
likely to determine the future of cancer treatment. 
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