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Alopecia areata (AA) is a prevalent autoimmune condition characterized by hair

loss, with the collapse of hair follicle immune privilege being a pivotal event in its

pathogenesis. This collapse involves intricate immunological disturbances,

where CD8+NKG2D+ T cells, driven by inflammatory cytokines like IFN-g,
attack hair follicles. Additionally, various immune cell, including Th1, Th2, Th17

cells, gdT cells, NK cells, and mast cells, contribute to this pathological process.

Defects in the function of Tregs, Bregs, and iNKT cells further compound the

immune imbalance. At the molecular level, the JAK-STAT pathway emerges as a

central regulatory node integrating multiple cytokine signals and presenting itself

as a significant therapeutic target. JAK inhibitors have shown notable

effectiveness in clinical settings, with some agents even gaining FDA approval

for treating moderate-to-severe AA. However, the effectiveness of targeting IL-

17, TNF-a, Th2 cytokines, PDE4, and other molecules remains debated. This

review comprehensively explores the dynamic interactions among immune cell

subsets, cytokine networks, and crucial signaling pathways in AA pathogenesis. It

also summarizes the latest clinical progress and challenges in targeted therapies.

Future studies should delve deeper into AA’s immune regulatory framework and

devise tailored treatment approaches to enhance patient outcomes.
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1 Introduction

Alopecia areata (AA) is a prevalent autoimmune-driven

disorder marked by sudden-onset, non-scarring, and reversible

hair loss. It often accompanies inflammatory or autoimmune

comorbidities, such as atopic dermatitis, psoriasis, vitiligo,

systemic lupus erythematosus, and Hashimoto’s thyroiditis (1, 2).

Global AA incidence has escalated from 20.43 million cases in 1990

to 30.89 million cases in 2021, with notable prevalence in North

America, Southeast Asia, and Australia, particularly affecting

women and individuals aged 30–34 years (3). The clinical course

of AA can exhibit spontaneous remission, recurrence, or

exacerbation, significantly impacting patients’ quality of life and

imposing substantial psychosocial burdens (4, 5).

A thorough understanding of the pathological mechanism of

diseases can help explore more effective treatment methods (6). AA is

characterized by a T cell-mediated autoimmune attack on hair

follicles, leading to abrupt hair loss. Traditional therapies, including

topical, intralesional, or systemic corticosteroids, have had variable

success in suppressing this immune response (7–9), although patients

with long-standing disease often experience high relapse rates (10).

Contact immunotherapy agents like diphenylcyclopropenone offer

safe and well-tolerated treatment options, albeit with limited efficacy

(11, 12). Minoxidil may also be employed (13). Laser/phototherapy

and superficial cryotherapy constitute effective and safe therapeutic

avenues for AA and other diseases management (14–20). For severe

AA patients who do not respond to other treatments or have

contraindications to systemic corticosteroids, immunosuppressants

such as methotrexate and cyclosporine may be considered. However,

these treatments demonstrate suboptimal efficacy, elevated

recurrence rates (21–23), and may cause side effects (24).

Recent research into AA’s pathogenesis has identified immune

dysregulation as the central pathological mechanism. This involves

the collapse of hair follicle immune privilege (HF-IP) and aberrant

immune responses mediated by immune cells surrounding hair

follicles, along with their produced cytokines and dysregulated

Janus kinase-signal transducer and activator of transcription

(JAK-STAT) signaling pathways. These advances have spurred

the development of targeted therapeutic strategies, particularly

JAK inhibitors and cytokine antagonists, showing promising

clinical potential. This article comprehensively reviews recent

progress in the immunological pathogenesis of AA, exploring

emerging immunotherapeutic targets and related pharmacological

agents. It aims to establish theoretical foundations and guide future

research directions for AA treatment.
2 The immunological pathogenesis of
alopecia areata

2.1 Collapse of hair follicle immune
privilege

HF-IP denotes a defensive mechanism that shields hair follicles

from immune detection (25). Under normal physiological
Frontiers in Immunology 02
conditions, hair follicles preserve their immune privilege through

various regulatory mechanisms. The absence of lymphatic vessels,

coupled with the perifollicular connective tissue sheath, forms

physical barriers against immune cell infiltration (26, 27). The

low expression of major histocompatibility complex (MHC)-I/II

molecules helps evade T cell recognition (28, 29). CD200

communicates a ‘no danger’ signal to reduce antigen-presenting

cell (APC) activity and suppress the secretion of pro-inflammatory

cytokines (28, 30–32). The expression of programmed death ligand

1 (PDL1) in hair follicle cells contributes to immune privilege by

directly modulating T cell function (29, 33). Low expression of

major histocompatibility complex class I polypeptide-related

sequence A (MICA) and UL16-binding protein (ULBP) hinders

natural killer (NK) cell activation and natural killer cell group 2D

(NKG2D) receptor-mediated recognition by CD8+ T cells (27).

Additionally, the localized production of immunosuppressive

factors, including a-melanocyte-stimulating hormone (a-MSH),

transforming growth factor (TGF)-b1/2, interleukin (IL)-10,

indoleamine 2,3-dioxygenase (IDO), macrophage migration

inhibitory factor (MIF), calcitonin gene related peptide (CGRP),

insulin-like growth factor-1 (IGF-1), thrombospondin 1 (TSP1), Fas

ligand (FasL), and others, further bolsters follicular protection (29,

34, 35). Perifollicular mast cells, regulatory T cells (Tregs), and

other immune cells may also play a role in maintaining HF-IP in

healthy humans (28, 31, 36).

Genetic predisposition, viral infections or trauma, psychological

stress, and other factors can trigger the breakdown of HF-IP (37,

38). The loss of this privilege is a prerequisite for the development of

AA (39). Interferon (IFN)-g-mediated upregulation of MHC class I

and II antigen-presenting molecules is a key phenotypic change in

HF-IP collapse, especially triggering CD8+ cytotoxic T lymphocytes

cell-mediated autoimmune responses against follicular autoantigens

associated with AA, such as tyrosinase-related protein, trichohyalin,

melanoma antigen, retinol binding protein 4 (31, 40, 41). Enhanced

MICA expression, accompanied by perifollicular infiltration of

NKG2D+ NK cells and CD8+ T cells, decreased CD200

expression (28), reduced expression of immunosuppressive

molecules (27), and multiple immune cells infiltration like mast

cells stimulates immune responses in bodily tissues (36, 42),

resulting in the loss of this protective mechanism. In the

subsequent section, we will further explore the roles of immune

cells and cytokines involved in HF-IP collapse in the development

of AA.
2.2 Immune cells

2.2.1 T cell subsets
2.2.1.1 CD8+ T cells

The infiltration intensity of CD8+ T cells surrounding hair

follicles in AA lesions demonstrates a notable correlation with

disease severity (43). The transplantation of these cells has been

found to induce localized alopecia in various animal models (28,

44). Furthermore, depleting CD8+ T cells in C3H/HeJ mice prevents

and reverses AA, underscoring their essential role in the disease’s
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pathogenesis (45). CD8+ T cells target antigens presented by major

histocompatibility complexes on hair follicles via T cell receptor

(TCR), releasing IFN-g and other pro-inflammatory cytokines that

disrupt the HF-IP (27, 36, 46). Emerging evidence highlights

CD8+NKG2D+ T cells as key regulators in AA pathogenesis.

NKG2D, expressed on both CD8+ T cells and NK cells, functions

as an activating receptor (30). Aberrant upregulation of NKG2D

ligands, such as ULBP3/6 and MICA on keratinocytes facilitates the

recruitment and activation of NKG2D+ CD8+ cytotoxic T cells (42).

NKG2D interaction with its ligands can also enhance MHC

expression (30). Studies have revealed that CD8+ T cells attack

hair follicles via cytotoxic molecules, including granzyme B

(GZMB) and perforin, produced by their cellular effector

mechanisms (47, 48).

Additionally, virtual memory T (TVM) cells, a subset exhibiting

a memory phenotype without prior foreign antigen exposure, have

been implicated in AA. Recent research identifies CD44super-

highCD49dloCD8+ T cells as a novel subset derived from TVM

cells. These cells can be induced through stimulation of

conventional TVM cells with IL-12, IL-15, and IL-18. Their

pathogenic activity relies on NKG2D receptor activation, which is

further potentiated by IL-15 stimulation, ultimately leading to the

onset of AA (49).

2.2.1.2 CD4+ T cells

CD4+ T cells occupy a pivotal role in the development of AA,

with imbalances and dysfunctional subsets collectively propelling

disease advancement. A key histopathological hallmark of AA is the

perifollicular infiltration of CD4+ T cells. Notably, elevated levels of

NKG2D+ CD4+ T cells have been observed in the peripheral blood

of AA patients (50). Animal models further underscore their

pathogenic significance. In the C3H mouse model, the temporary

depletion of CD4+ T cells triggers partial hair regrowth (29),

whereas the adoptive transfer of CD4+CD25- T cells from AA

mouse skin draining lymph nodes (SDLNs) to healthy mice induces

systemic alopecia (29, 51), highlighting the critical role of CD4+ T

cell helper functions in AA pathogenesis (29).

In AA, T helper (Th)1, Th2, and Th17 cells all contribute to

inflammatory reactions. Skin biopsy tissues reveal an augmented

infiltration of C-C motif chemokine receptor (CCR) 5+ Th1 cells,

while peripheral blood mononuclear cells (PBMCs) show elevated

frequencies of CCR4+ Th2 cells (29). The increased population of

skin-homing cutaneous lymphocyte-associated antigen (CLA)+ Th2

cells correlates with disease activity (37, 52), albeit the precise

mechanisms remain elusive. CCR6+ Th17 cells not only circulate

more but also densely infiltrate the hair bulb and peribulbar areas,

exhibiting a more pronounced infiltration compared to CCR5+ Th1

cells (53, 54). Patients in active disease phases display significantly

elevated Th17 levels, which inversely correlate with disease duration

but bear no association with disease severity (55, 56). Th17 cells

collaborate synergistically with Th1 cells to mediate inflammatory

responses in AA. Moreover, as AA progresses, the balance between

Th17 cells and Tregs becomes disrupted (57). AA patients in the

active disease phase exhibit a higher proportion of Th17 cells
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predominance of pro-inflammatory responses. However, this

trend reverses in severe AA patients, where Treg cell counts

surpass those of Th17 cells, potentially reflecting the body’s

compensatory mechanism to quell excessive immune responses in

advanced disease stages (47).

Although Treg cells are crucial for maintaining hair follicle

immune tolerance, AA patients exhibit reduced Treg populations

accompanied by significant functional impairments. Specifically,

AA patients showed notably lower percentages of forkhead box

protein 3 (FoxP3)+CD4+ T lymphocytes in peripheral blood and

decreased infiltration ratios of FoxP3+ lymphocytes in scalp tissues

compared to healthy controls (29, 58). Paradoxically, the percentage

of FoxP3+ cells in mild AA patients was even lower than in severe

AA patients (29, 55). Selective depletion of Tregs in murine models

exacerbates AA, affirming their protective role (45, 59).

Nevertheless, merely expanding Tregs in AA mouse models fails

to suppress CD8+ T cells and treat AA (60). Tregs primarily

suppress Th1/Th2-mediated inflammatory responses via TGF-b
and IL-10 secretion (61), and can directly regulate the activation

of hair follicle stem cells (28). The functional defects of Tregs in AA

patients may involve multiple mechanisms. Firstly, IL-6 and IL-1b
in the inflammatory microenvironment hinder Treg differentiation

and may drive Treg conversion to Th17 or cause a loss of their

suppressive function (62). Secondly, AA patients display reduced

expression of vital inhibitory molecules CD39 and human leukocyte

antigen-DR (HLA-DR) on Treg surfaces (63). Additionally, genetic

factors might contribute as Foxp3 gene polymorphisms could

undermine Treg stability by decreasing mRNA expression (62).

In summary, the dysregulation of CD4+ T cell subsets, including

the hyperactivation of Th1/Th2/Th17 and defects in both the

quantity and function of Tregs, collectively undermines the HF-

IP, thereby driving the pathogenesis and progression of AA.

2.2.1.3 gdT cells

In skin affected by AA, gdT cells are present in both the bulbar

and suprabulbar epithelia, with their numbers significantly elevated

compared to healthy skin. When co-cultured with autologous

stressed hair follicles overexpressing CD1d, C-X-C motif

chemokine ligand (CXCL) 12, or MICA in vitro, gdT cells from

healthy human scalp skin show induced expression of NKG2D and

IFN-g, leading to the development of AA-like pathological

characteristics (64). Research has shown that most gdT cells

encircling healthy hair follicles are non-activated gd1+ T cells,

bearing receptors such as C-X-C motif chemokine receptor

(CXCR) 3, CXCR4, and CCR2. In AA-affected skin, however,

these gd1+ T cells adopt a pro-inflammatory phenotype, marked

by elevated NKG2D and IFN-g expression, coupled with reduced

CD200 receptor (CD200R) levels. It’s noteworthy that IFN-g-
producing gdT cells are fewer in lesional skin than in non-lesional

skin (65). In the C3H/HeJ mouse model of AA, depleting gdT cells

did not halt or revert the progression of AA (45), suggesting that

although gdT cells are involved in AA pathogenesis, they are not the

major causative factor.
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2.2.1.4 Invariant natural killer T cells

The current consensus recognizes the protective role of

invariant natural killer T (iNKT) cells in the pathogenesis of AA.

Studies show that injecting iNKT cell activator, alpha-

Galactosylceramide (a-GalCer) -stimulated natural killer T

(NKT) cells or direct injection of a-GalCer into transplanted

healthy human scalp skin in mice prevents the development of

alopecia. However, when IL-10 is blocked in these skin grafts, NKT

cells are unable to prevent alopecia, indicating that their protective

effect on hair loss is dependent on IL-10. Furthermore, in AA, there

is a notable numerical expansion of IL-10-producing iNKT cells,

which have the capacity to suppress the proliferation and activity of

NKG2D+CD8+ T cells (29, 66). This suppression may underlie the

mechanism by which iNKT cells confer protection in AA.

2.2.2 Natural killer cells
The precise role of NK cells in AA remains a topic of debate.

Low MICA and NKG2D expression, coupled with high expression

of killer immunoglobulin-like receptor (KIR) and MIF in hair

follicles, effectively hinder the accumulation and assault of NK

cells within and around these follicles (67). Lesional skin of AA

patients shows an increased infiltration of CD56+NKG2D+ NK cells

(50), which coincides with upregulated MICA and downregulated

MIF expression in the follicles (68). Furthermore, patients

experiencing complete alopecia have significantly higher

proportions of CD57-CD16+ NK cells in their peripheral blood

(69). These pathological shifts implicate NK cells in the

autoimmune processes underlying AA. However, animal studies

have surprisingly revealed that depleting NK cells can accelerate AA

progression (29). Additional investigations have uncovered that this

depletion results in a significant surge of CD49b+ T cell subsets

within the lesional skin, subsets that exhibit pathogenic roles during

early disease stages (70). These apparently conflicting observations

suggest that NK cells may have subset-specific functions in AA.

Specific NK cell subsets may exert protective effects on hair follicles

via inhibitory signals such as KIR and MICA, while expressing

NKG2D+ activated subsets are involved in autoimmune attacks.

Overall, NK cells play a dual and complex role in AA, with their

ultimate impact likely determined by a dynamic balance between

surface receptor expression and microenvironmental factors.
2.2.3 Dendritic cells
Multiple subsets of dendritic cells (DCs), including CD11c+

myeloid DCs, plasmacytoid DCs (pDCs), and CD1a+ Langerhans

cells, are found around hair follicles in patients with AA (29, 40, 71).

Subcutaneous injection of CD11c+ cells isolated from SDLNs of AA

model mice into healthy C3H mice does not trigger disease onset in

the recipients (51). Conversely, intradermal injection of pDCs

effectively induces AA lesions (72). Activated pDCs producing

IFN-a are detected in lesional skin and adjacent tissues of both

AA patients and C3H/HeJ mouse models (72, 73). Studies on the

underlying mechanisms reveal that activation of Toll-like receptors

7/9 (TLR7/9) on pDC surfaces stimulates potent IFN-a/b
production, which then leads to the activation of CD4+ T cells,

CD8+ T cells, and NK cells. This immune cascade initiates abnormal
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attacks on hair follicles, ultimately inhibiting hair growth (72).

Furthermore, pDCs not only cause apoptosis of hair follicle

epithelial cells but also boost the production of Th1/type 1

cytotoxic T cell (Tc1) chemokines such as CXCL10, attracting

Th1/Tc1 cells and initiating autoimmune responses (72, 73).

However, the precise mechanisms responsible for the recruitment

of pDCs to hair follicles remain elusive (74, 75).

2.2.4 Mast cells
The role of mast cells in the pathogenesis of AA has been

increasingly clarified. Notably, significant mast cell infiltration

occurs in lesional areas, both in patients with AA and in the C3H

mouse model (29, 71). Furthermore, these cells undergo substantial

functional changes, including a reduced immunosuppressive

capacity due to decreased TGFb1 expression (28) and heightened

pro-inflammatory activity, as evidenced by elevated tryptase

expression and degranulation (76). Crucially, activated mast cells

engage in close interactions with autoreactive CD8+ T cells through

the upregulation of co-stimulatory molecules like OX40 ligand

(OX40L), CD30 ligand (CD30L), 4-1BB ligand (4-1BBL), and

intercellular adhesion molecule 1 (ICAM1) (76), thereby

contributing to the breakdown of immune privilege and

facilitating antigen presentation mechanisms (42). However,

research suggests no correlation between the course or activity of

AA and peribulbar mast cell infiltration (77).

2.2.5 Type 1 innate lymphoid cells
Type 1 innate lymphoid cells (ILC1) show a marked increase

around lesional and non-lesional hair follicles in AA patients. Both

in vivo and in vitro investigations reveal that IFN-g-producing
NKG2D+ ILC1 cells have the capacity to trigger distinct AA

lesions and disrupt the HF-IP (78).

2.2.6 Regulatory B cells
During the progression of AA, regulatory B cells (Bregs) that

produce IL-10 might exert a protective function. Research indicates

a notable decrease in the count of IL-10-producing Breg cells among

PBMCs of AA patients. These Breg cells, specifically the

CD19+CD24hiCD38hi subtype, have the capacity to down-regulate

NKG2D+CD8+ T cells and IFN-g secretion, ultimately damping

down exaggerated immune reactions. Nevertheless, certain

investigations have detected elevated IL-10 levels in the B cells of

AA patients relative to healthy controls. This apparent

contradiction could stem from augmented compensatory negative

feedback loops operating within the diseased state (79).
2.3 Cytokines and related signaling
pathways

2.3.1 Related cytokines and chemokines
The pathogenesis of AA involves a complex network of

cytokines, with Th1-type immune responses and common gamma

chain (gc) cytokines playing pivotal roles. As a key cytokine in Th1

responses, IFN-g shows marked elevation in the serum of AA
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patients, correlating closely with disease activity and clinical course

duration (30, 58). Produced not only by Th1 cells but also by ILC1,

NK cells, NKT cells, and gdT cells (36), IFN-g induces MHC class I

molecule expression, MICA expression, and the production of

CXCR3 ligands CXCL9/10/11 (28, 38, 48, 80, 81). This

recruitment of CXCR3+ Th1 cells, CD8+ T cells, NK cells (61) is

accompanied by stimulation of IL-2 and IL-15 production, further

activating CD8+ T cells (82–84). These immune cells activation

leads to a persistent production of additional IFN-g, establishing a

positive feedback loop (47, 81) that directly contributes to the

collapse of HF-IP (29, 40). Tumor necrosis factor (TNF)-a
expression is elevated in AA patients’ serum (85, 86) promoting

inflammation through upregulation of MHCI protein expression in

dermal papilla cells (87).

Within the gc cytokine family, IL-2, secreted by DCs, NK cells,

CD4+, and CD8+ T cells (28), promotes the infiltration of CD4+,

and CD8+ T cells into hair follicles (88). IL-2 also participates in

Treg cell homeostasis, with low-dose IL-2 promoting Treg cell

proliferation and restoring the Th17/Treg cell balance. However,

the limited efficacy of low-dose IL-2 injection therapy in severe AA

suggests its primary pro-inflammatory role in this context (89).

Inhibition of both IFN-g and IL-2 can halt disease progression (47,

68, 90). Skin biopsy tissue from AA patients exhibits significantly

higher numbers of IL-15+ T cells around hair follicles compared to

healthy controls (29), while IL-15, interleukin-15 receptor (IL-15R)

a, and IL-15Rg protein expression within the hair bulbs of AA

lesions is downregulated (91). IL-15 exacerbates tissue damage by

activating NKG2D+CD8+ T cells and NKG2D+ NK cells, while

simultaneously impairing Treg functionality (28, 29). Inhibition of

IL-15Rb can prevent disease progression (47, 68).Recent studies

reveal that recombinant human IL-15 significantly downregulates

MICA expression in the hair bulb, promotes a-MSH production,

protect iNKT10 cells from IFN-g-induced apoptosis, and facilitates

hair regeneration through IL-15Ra-dependent signaling (91).

Selective activation of the local IL-15Ra signaling pathway in hair

follicles may become a new strategy for the treatment of AA. Other

gc cytokines such as IL-7 may also be involved in the pathogenesis

of AA (92).

Th2-related cytokines, including IL-4, IL-5, IL-13, and

associated chemokines such as C-C motif chemokine ligand

(CCL) 13, CCL17, and CCL26, are elevated in AA patients (29,

37, 40, 93, 94). Additionally, the expression of type 2-related

biomarkers CCL18, thymic stromal lymphopoietin (TSLP), and

IL-9 was increased in the skin lesions, and serum IL-6,

immunoglobulin E, and eosinophils were elevated (38, 95, 96).

CCL17 can serve as a biomarker for disease activity and treatment

response (97). The roles of these cytokines and chemokines in AA

are still being investigated. Elevated levels of Th17-related cytokines

IL-17 and IL-22 have been observed in serum and tissues of AA

patients (38, 57, 98–100), and the Th17 pathway may interact

synergistically with the Th1 pathway to promote disease

progression (61, 101). IL-12 and IL-23 are cytokines produced by

DC, which respectively induce the differentiation of Th1 and Th17.

Although the expression of the common subunit p40 of IL-12/23 in

AA lesions was increased compared with that in normal skin and
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non-lesions (29). However, studies have shown that neutralization

of the shared IL-12/23 p40 subunit with specific antibodies failed to

prevent AA development in the C3H/HeJ mouse model (29, 54),

and IL-12/23 inhibitors for psoriasis even induce AA (102, 103),

suggesting that the classical Th17 differentiation pathway mediated

by IL-12/23 may not be the primary driver in AA pathogenesis.

Other factors, such as elevated expression of tumor necrosis

factor superfamily members like tumor necrosis factor-related weak

inducer of apoptosis (TWEAK) (104) and a possible association

between interleukin-1 receptor type 1 (IL-1R1) and AA

development and disease activity (105), indicate potential

involvement of additional inflammatory pathways. Recent studies

also suggest CXCL12 as a potential therapeutic target for AA, as

humanized CXCL12 neutralizing antibody delayed disease onset

through reducing the infiltration of T cells, DC and macrophages,

down-regulating IFN-g pathway-related genes such as IFN-g, CD8a,
and CCR5, and inhibiting the abnormal activation of the JAK/STAT

pathway and CXCR4 signaling pathway in murine AA

models (106).

Inhibitory cytokines such as IL-10, TGF-b, and IL-35, primarily

secreted by Breg and Treg cells, maintain immune tolerance

homeostasis through multiple immunosuppressive pathways. IL-

10 can down-regulate the expression of MHC Class II molecules on

the surface of APCs and weaken their antigen-presenting ability

(62). TGF-b can not only down-regulate the expression of MHC-I,

inhibit T cell activation and APCs activity, but also maintain the

expression of Foxp3 in Treg cells (28, 62). IL-35 regulates the

immune response by restricting T cell proliferation (62). The

synergistic action of these cytokines constitutes a crucial

molecular basis for suppressing autoimmune attacks.

In conclusion, the immune dysregulation observed in AA

exhibits mixed characteristics, predominantly featuring IFN-g-
driven Th1 polarization. Further investigation is needed to

elucidate the roles of other cytokines and chemokines in AA

pathogenesis, and targeted interventions addressing key cytokines

may offer promising therapeutic avenues.

2.3.2 JAK-STAT signaling pathway
The JAK-STAT pathway occupies a central position in the

pathogenesis of AA, emerging as a potential therapeutic target

(107). Pro-inflammatory cytokines linked to AA, such as IFN-g,
IL-2, IL-15, IL-7, and IL-21, interact with their cognate receptors,

triggering the JAK-STAT signaling cascade and disrupting the hair

follicles’ growth cycle (46, 108, 109). The JAK family, consisting of

JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2), operates as

cytoplasmic tyrosine kinases critical for signal transduction in

both type 1 and type 2 cytokine receptors (110). Upon cytokine

binding, receptor dimerization occurs, leading to JAK protein

transphosphorylation, followed by STAT protein (including

STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6)

phosphorylation and dimerization. These activated STAT proteins

then migrate to the nucleus, binding to specific DNA sequences and

regulating the expression of downstream genes, thus influencing the

immune environment of hair follicles. The downstream effects of

cytokines signaling through the JAK/STAT pathway are determined
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by both the specific ligand activating the pathway and the unique

combinations of JAK kinase subtypes associated with the receptors.

Distinct cytokine-receptor complexes recruit particular JAK kinase

combinations, activating specific STAT proteins that drive unique

gene expression patterns and biological outcomes. For instance,

when IFN-g binds to its receptors on hair follicle epithelial cells, it

stimulates IL-15 production via the JAK1/2-STAT pathway. IL-15

subsequently activates CD8+ T cells through the JAK1/3-STAT

pathway, promoting further IFN-g release and creating a positive

feedback loop that intensifies inflammatory damage to hair follicles

(83, 111). IL-7 exerts its effects through JAK1/JAK3 (92). Cytokines

such as IFN-a, IFN-g, IL12/23, IL-6, and IL-10 mediate regulatory

roles via TYK2 (111). JAK3 specifically partners with common g-
chain receptors (111). Clinical studies have shown that inhibiting

the JAK/STAT signaling pathway can alleviate alopecia symptoms

and foster hair regrowth (112).
2.3.3 Phosphodiesterase 4-mediated
immunoregulatory functions

Study have discovered that phosphodiesterase 4B is among the

differentially expressed genes found in both lesional and non-

lesional areas of AA patients, as well as in healthy controls. This

finding provides initial evidence suggesting phosphodiesterase 4

(PDE4)’s potential involvement in the development of AA. PDE4

enzymes are known to break down cyclic adenosine

monophosphate (cAMP), a signaling molecule regulating

inflammatory reactions within cells. By inhibiting PDE4,

intracellular cAMP concentrations rise, leading to a reduction in

the production of inflammatory cytokines such as TNF-a, IL-23,
and IFN-g, which is crucial for maintaining healthy hair follicles.

Although PDE4 has emerged as a potential therapeutic target for

new drug development in AA, current clinical trials have not shown

promising results, indicating that the precise role of PDE4 in the

pathogenesis of alopecia areata remains uncertain (95).

2.3.4 TEC family kinases-mediated
immunoregulatory functions

The TEC kinase family belongs to the class of non-receptor

tyrosine kinases and includes five members: TEC, Bruton’s tyrosine

kinase (BTK), IL-2-inducible T-cell kinase (ITK), resting

lymphocyte kinase (RLK, also known as TXK), and bone marrow

tyrosine kinase on chromosome X (BMX) (113). The role of ITK in

AA has been extensively studied. Upon TCR recognition of antigens

and subsequent activation, ITK kinase joins the signaling complex,

undergoing phosphorylation and activation. Once activated, ITK

phosphorylates phospholipase Cg1 (PLCg1), enabling it to gain

catalytic activity. PLCg1 then hydrolyzes phosphatidylinositol 4,5-

bisphosphate (PIP2) on the cell membrane, producing two essential

second messenger molecules: inositol trisphosphate (IP3) and

diacylglycerol (DAG). Together, IP3 and DAG stimulate calcium

influx and aid in the nuclear translocation of transcription factors,

enhancing the transcriptional expression of inflammatory cytokines

like IFN-g and IL-17, ultimately triggering the immune

response (114).
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2.3.5 Aire-mediated immunoregulatory functions
Aire, a transcriptional regulatory protein, plays a pivotal role in

maintaining immune tolerance. Research indicates that mice

lacking Aire (Aire-/-) spontaneously exhibit persistent AA-like

lesions, which are accompanied by a disruption of HP-IP.

Notably, significant infiltration of CD8+ T cells, CD4+ T cells,

CD68+ macrophages, and mast cells is observed in the vicinity of

these lesional hair follicles. On a molecular level, Aire deficiency

results in the upregulation of MHC molecules, downregulation of

a-MSH, and induces excessive expression of IFN-g and its

downstream chemokines, such as CCL5 and CXCL9/10/11.

Additionally, this deficiency triggers the hyperactivation of JAK-

STAT signaling (115).

2.3.6 Other signaling
The nuclear factor-kappa B (NF-kB) pathway and NOD-like

receptor family pyrin domain containing 3 (NLRP3) inflammasome

activation are involved in the pathogenesis of AA. MCC950, an

NLRP3 inhibitor, has been found to hinder AA development in

murine models and stimulate hair regrowth (116, 117).

Additionally, the serine/threonine kinase, PTEN induced kinase 1

(PINK1)-mediated mitophagy, mitigates inflammatory responses

by suppressing NLRP3 inflammasome activation (118).

Additionally, receptor-interacting protein kinase 1 (RIPK1) plays

a part in AA pathogenesis through immune cell regulation, with

increased expression observed in DCs and CD8+ T cells in AA

mouse models. Inhibitors of RIPK1 can postpone AA onset and

decrease the infiltration of these cells in the skin (119).

Furthermore, the zinc finger transcription factor Ikaros

demonstrates elevated expression in AA patients, and transgenic

mouse experiments have shown that Ikaros overexpression induces

phenotypes similar to AA, implying its role in the disease’s

pathogenesis (120, 121). Sirtuin 1 (SIRT1) expression is notably

decreased in AA-affected scalp tissue. Inhibition of SIRT1

suppresses MICA and ULBP3, while promoting the production of

inflammatory cytokines, such as IFN-g, TNF-a, CXCL9, CXCL10,
and enhancing T cell migration. Conversely, activating SIRT1

suppresses autoreactive inflammatory responses (122). Other

signaling pathways, including wingless-integrated/beta-catenin

(Wnt/b-catenin), mitogen-activated protein kinase (MAPK), and

Ras, may also be implicated in the pathogenesis of AA (123–125).

The summary of AA pathogenesis discussed in this article is

schematically illustrated in Figure 1.
3 Novel strategies in immune-targeted
therapy

3.1 JAK inhibitors

JAK inhibitors, small molecules targeting Janus kinases to

disrupt signaling, have become a pivotal research focus in AA

therapy. The U.S. Food and Drug Administration (FDA) has

approved three such inhibitors: baricitinib, deuruxolitinib (CTP-
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543), and ritlecitinib, for the treatment of this condition (111, 126,

127). Baricitinib and deuruxolitinib, primarily JAK1/2 inhibitors,

are indicated for severe AA in adults. Baricitinib also exhibits JAK3

inhibitory activity and has proven long-term efficacy and safety in

several studies (128, 129). Its therapeutic effect surpasses

conventional treatments (130). Baricitinib also shows promise in

patients aged 65 and above (131). A phase 3 double-blind RCT

(NCT05723198) evaluating baricitinib in children aged 6 to 18 years

with AA is actively recruiting participants. Besides, A Phase 2

prospective open-label study (NCT06797310) to evaluate the

effectiveness and tolerance of baricitinib in acute AA with active

hair shedding is planned. Deuruxolitinib effectively reduces AA

severity (132). Phase 3 randomized controlled trials (RCTs)

revealed that 41.5% of adult severe patients receiving

deuruxolitinib achieved a Severity of Alopecia Tool (SALT) score

of 20 or less (133). Ritlecitinib, a selective dual inhibitor targeting

JAK3 and TEC kinases, is indicated for severe AA in patients aged

12 and older (134–137). Its safety and efficacy have been confirmed

in numerous trials (135, 138–140). Recently, a phase 3 randomized

study (NCT06873945) with a dose-up strategy for non-responders

to evaluate the safety and efficacy of ritlecitinib 50 mg and 100 mg

once daily in participants aged ≥12 years with severe AA is

underway. Two phase 3 clinical trials (NCT07029711,

NCT07029828) will soon assess ritlecitinib for the treatment of

severe AA in children aged between 6–12 and 6–14

years, respectively.

Tofacitinib and ATI-501, JAK1/3 inhibitors, demonstrate

effectiveness and tolerability in AA treatment, as evidenced by

multiple cohort studies and RCTs (141–147). Tofacitinib achieved

a 33.8% complete response rate after 24 weeks (148). Among

pediatric patients unresponsive to previous therapies, an 87%

efficacy rate was observed (149). ATI-501 showed a 30.4%

improvement in SALT score at 24 weeks in a phase 2 RCT (150).

Ruxolitinib, JAK1/2 inhibitors, also show promise. In an open-label

trial, ruxolitinib achieved a 92% mean hair regrowth rate (151).

Additionally, KL130008, a novel selective inhibitor of JAK 1/2, is

under investigation in a phase 2 multicenter, double-blind, RCT

(NCT05496426), though its current status remains unknown.

Brepocitinib, a TYK2/JAK1 inhibitor, significantly improved

SALT and Alopecia Areata Symptom Impact Scale (AASIS) scores

compared to placebo in RCTs (136, 152, 153). Deucravacitinib, a

selective TYK2 inhibitor, showed hair regrowth in two severe AA

case reports (154, 155). While, a phase 2 study (NCT05556265) to

evaluate its efficacy and safety in AA participants was terminated

due to change in business objectives. Ivarmacitinib (SHR0302), a

selective JAK1 inhibitor, demonstrated higher responder rates of

absolute SALT20 (47.8%) than placebo (20.8%) in treating

moderate-to-severe AA at week 24 in a phase 2 double-blind

RCT (156). The confirmatory phase 3 trial (NCT05470413) is

currently in the Not Yet Recruiting status. Case reports suggest

that highly selective JAK1 inhibitors, including upadacitinib,

abrocitinib, and filgotinib, may also be beneficial (157–163). Two

phase 3 double-blind, RCTs (NCT07023302, NCT06012240) is

currently underway to evaluate the safety and efficacy of
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upadacitinib oral tablets in adult and adolescent participants with

AA. A single-center, real-world study (NCT06573593) is

investigating the efficacy and safety of JAK inhibitors including

abrocitinib in treating AA patients. Additionally, a phase 2 RCT

(NCT06562894) focusing on the use of SYHX1901, JAK 1/2/3 and

TYK2 inhibitors, for the treatment of severe AA is anticipated to

commence soon.

Topical JAK inhibitors show limited efficacy (111, 150, 164).

However, combining topical JAK inhibitors like tofacitinib with

minoxidil demonstrates synergistic potential by modulating the

IFN-g/IL-4 ratio (165).

For patients with severe AA alone, JAK inhibitors should be

prioritized as first treatment strategy over other immune-targeted

agents, particularly utilizing FDA-approved agents such as

baricitinib, ritlecitinib, or deuruxolitinib.
3.2 Th2 cytokine inhibitors

Dupilumab, a monoclonal antibody that targets IL-4Ra, exerts
its therapeutic effects by blocking both IL-4 and IL-13 signaling

pathways. While current clinical studies on dupilumab’s efficacy in

treating AA have yielded mixed results, there have been reports of

dupilumab-induced AA cases (166, 167). Nevertheless, a few studies

and case reports have also shown dupilumab to be effective in

treating AA. In a phase 2 randomized controlled trial, after 48 weeks

of treatment with dupilumab, 32.5%, 22.5%, and 15% of patients

met the improvement criteria for SALT30, SALT50, and SALT75,

respectively (168). A phase 2 double-blind RCT (NCT05866562)

evaluating dupilumab in pediatric AA patients aged 6–17 years, is

currently recruiting. Notably, more pronounced therapeutic effects

were observed in patients with atopic AA (169, 170). However, for

AA patients without atopic comorbidities, dupilumab’s therapeutic

efficacy was limited. This limitation may be due to its

downregulation of the Th2 immune response, which relatively

enhances Th1 immune reactivity, potentially triggering or

worsening AA (166). Similarly, while a case report indicated that

the anti-IL-13 monoclonal antibody tralokinumab demonstrated

efficacy in resolving both atopic dermatitis and AA in a patient with

concurrent disease (171), a phase 2 randomized placebo-controlled

pilot study (NCT02684097) of tralokinumab in moderate-to-severe

AA showed high treatment discontinuation (13/15 patients) due to

lack of efficacy, with neither of the two completing patients

achieving SALT50. These findings suggest that the therapeutic

efficacy of Th2-targeted biologics in AA may be influenced by the

patient’s baseline immune status, specifically the balance between

Th1 and Th2 immune responses. Consequently, Th2-targeted

therapies should primarily be considered for AA patients with

coexisting atopic diseases, whereas alternative approaches may be

more appropriate for isolated AA cases. Future clinical trials

focusing on patients with pure AA (without concurrent atopic

diseases) are needed to elucidate the role of the Th2 immune

response in AA pathogenesis and to more precisely define the

therapeutic value of these biologics across different AA subtypes.
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3.3 IL-12/IL-23 inhibitors

Although the specific role of IL-12/IL-23 in the development of

AA is not fully understood, several case reports have highlighted the

potential of IL-12/IL-23 inhibitors as a therapeutic approach. In
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particular, ustekinumab, which targets the IL-12/IL-23 p40 subunit,

has been reported to induce hair regrowth in all of the six patients

with AA (172, 173). These findings suggest that ustekinumab could

be a viable treatment option for those who have not responded to

conventional therapies. Additionally, tildrakizumab, a specific IL-23
FIGURE 1

Schematic illustration depicting the intricate interplay among immune cells, cytokines, chemokines and signaling pathways in the development of AA.
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p19 inhibitor, has been investigated in a pilot study for the

treatment of moderate-to-severe AA. However, the study

observed partial hair regrowth in only two out of nine patients

(174), indicating that its efficacy may be more limited. Given the

limited clinical evidence for IL-12/IL-23 inhibitors, these agents

require cautious use in pure AA cases. Ustekinumab represents a

potential option for AA patients unresponsive to conventional

therapies or those with concurrent moderate-to-severe plaque

psoriasis, active psoriatic arthritis, or moderate-to-severe active

Crohn’s or ulcerative colitis. Further research is needed to

determine the most effective agents and treatment strategies for

different subpopulations.
3.4 IL-17 inhibitors

IL-17 inhibitors, which are monoclonal antibodies targeting IL-

17A or its receptor, have shown remarkable effectiveness in the

treatment of psoriasis. Nevertheless, recent research reveals that

certain psoriasis patients developed AA symptoms between 2 to 13

months after commencing treatment with IL-17 inhibitors like

brodalumab, secukinumab, and ixekizumab (175). This

observation suggests a possible link to the drugs’ mode of action:

by potentially disturbing the delicate Th1/Th17 immune balance,

these inhibitors might trigger an abnormal upregulation of the Th1

pathway. This, in turn, could induce perifollicular inflammatory

reactions, thus facilitating the development of AA (175).

Disappointingly, despite attempts to clinically apply anti-IL-17

agents in the treatment of AA, significant therapeutic benefits

have yet to be demonstrated (176). The use of these medications

is avoided in patients with pure AA or AA comorbid with

conditions for which these drugs are already indicated, such as

psoriasis, psoriatic arthritis, or ankylosing spondylitis.
3.5 TNF-a inhibitors

Etanercept, a TNF-a inhibitor, has demonstrated restricted

therapeutic effectiveness in the treatment of AA during clinical

trials. A prospective investigation assessing 17 individuals with

moderate-to-severe AA who received etanercept therapy revealed

that none of them attained SALT score improvements surpassing

10%. In fact, certain patients observed disease progression (177).

Etanercept should not be used to treat AA alone, but it may be

appropriate when AA occurs alongside rheumatoid arthritis,

ankylosing spondylitis, psoriatic arthritis or plaque psoriasis,

where TNF-a plays a central role in disease pathogenesis.
3.6 PDE4 inhibitors

Studies have demonstrated that apremilast, a PDE4 inhibitor,

hinders the development of AA in humanized mouse models (178).

Clinical trial findings, however, have been not consistent. While

several reports suggest that apremilast has limited effectiveness in
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treating AA (179–181), a retrospective analysis revealed notable

results. Specifically, out of 15 patients with refractory AA who did

not respond to standard treatments, 13 experienced over 50% hair

regeneration after receiving apremilast (182). Additional case

reports also bolster its therapeutic potential (183). Nevertheless,

more clinical trials are necessary to confirm its efficacy.

Furthermore, a completed randomized early Phase 1 clinical trial

(NCT06527729) evaluated a novel sildenafil (PDE5 inhibitors)-

loaded nanocarrier formulation for AA, though study results

remain unpublished. For patients with refractory AA

unresponsive to conventional therapies like JAK inhibitors, or

those presenting with comorbid plaque psoriasis or psoriatic

arthritis, apremilast represents a viable alternative.
3.7 Other strategies in immune-targeted
therapy

Two randomized, double-blind, placebo-controlled clinical

trials (including study NCT00167102) investigating alefacept, a T-

cell biologic inhibitor, for the treatment of severe AA found it

ineffective (184). In a phase 2 open-label, single-arm clinical trial

(NCT02018042) of abatacept, a CD80/CD86 inhibitor that blocks T

cell co-stimulation, administered to 15 patients with moderate-to-

severe patchy AA, alopecia totalis, or alopecia universalis, one

patient achieved the primary endpoint of >50% hair regrowth.

The phase 2 double-blind RCT (NCT05205070) evaluating

rosnilimab (ANB030), PD-1 agonists, in moderate-to-severe AA

currently has unknown study status. Etrasimod, an oral selective

sphingosine 1-phosphate (S1P) receptor modulator approved for

ulcerative colitis, failed to meet primary and secondary efficacy

endpoints in a Phase 2 multicenter, double-blind RCT

(NCT04556734) in adults with moderate-to-severe AA, where the

mechanistic role of S1P signaling remains poorly characterized.

Another S1P receptor modulator NXC-736, is currently undergoing

a phase 2a RCT (NCT06104839). In the phase 2a open-label proof-

of-concept trial (NCT05368103) evaluating daxdilimab, an anti-IL-

2 receptor b chain (CD122) monoclonal antibody, for moderate- to-

severe AA, 20% of patients achieved SALT50 at 24 weeks.

Some novel agents are under investigation in AA clinical trials:

HCW9302 (IL-2 fusion protein, NCT07049328), rezpegaldesleukin

(Treg-selective IL-2 receptor agonist, NCT06340360), IMG-007

(OX40 inhibitor, NCT06060977), amlitelimab (OX40L inhibitor,

NCT06444451), farudodstat (pyrimidine biosynthesis inhibitor,

NCT05865041) , and bempikibar t ( IL-7Ra inh ib i tor ,

NCT06018428), DR-01 (NCT06602232), VIS171 (NCT06799520)

and ALD-102 solution (NCT06826196).

Novel immune-targeted therapeutic strategies for AA are

summarized in Table 1.
4 Conclusions

Alopecia areata, an autoimmune disease characterized by hair

loss, is rooted in the breakdown of the HP-IP. Its pathogenesis
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TABLE 1 Novel strategies in immune-targeted therapy.

Targeted
therapy

Management
options

Targets Current clinical trials

JAK inhibitors

Baricitinib JAK1/2/3
FDA-approved for severe AA in adults

Phase 3 double-blind RCT (NCT05723198): for children aged 6 - 18 years with AA (ongoing)
Phase 2 open-label (NCT06797310): for acute AA with active hair shedding (ongoing)

Deuruxolitinib JAK1/2 FDA-approved for severe AA in adults

Ritlecitinib JAK3, TEC

FDA-approved for severe AA in patients aged ≥12 years
Phase 3 RCT (NCT06873945): dose-up in severe AA ≥12 years (ongoing)

Phase 3 Trials in children with severe AA: 6–12 years (NCT07029711); 6–14 years
(NCT07029828) (ongoing)

Tofacitinib JAK1/3 Shows effectiveness in RCT, multiple cohort studies and case reports (141–149)

ATI-501 JAK1/3 Shows a 30.4% improvement in SALT score in a phase 2 RCT (150)

Ruxolitinib JAK1/2 Shows high mean hair regrowth rate in an open-label trial (151)

Brepocitinib TYK2, JAK1 Shows effectiveness in RCTs (136, 152, 153)

Deucravacitinib TYK2
Shows hair regrowth in two severe AA case reports (154, 155)

Phase 2 study (NCT05556265): for AA participants (terminated due to change in
business objectives)

Ivarmacitinib JAK1
Shows beneficial impact in a phase 2 RCT (156)

Phase 3 RCT (NCT05470413): for adults with severe AA (ongoing)

Upadacitinib JAK1
Shows effectiveness in a cohort study and case reports (157–160)

Phase 3 RCTs (NCT07023302, NCT06012240): oral tabs for AA in adults/
adolescents (ongoing)

Abrocitinib JAK1
Shows effectiveness in two case reports (161, 162)

Real-world study (NCT06573593): for patients with AA (ongoing)

Filgotinib JAK1 Shows effectiveness in a case report (163)

Delgocitinib JAK1/2/3, TYK2
A small-scale RCT demonstrates no significant efficacy of topical therapy in moderate-to-

severe patients (164)

KL130008 JAK1/2 Phase 2 double-blind, RCT (NCT05496426): for adults with severe AA (unknown status)

SYHX1901 JAK1/2/3, TYK2 Phase 2 double-blind RCT (NCT06562894): for severe AA (ongoing)

Th2 cytokine inhibitors

Dupilumab IL-4Ra
With conflicting evidence (166–170)

Phase 2 double-blind RCT (NCT05866562): for pediatric AA patients aged 6–17
years (ongoing)

Tralokinumab IL-13
Phase 2 randomized placebo-controlled pilot study (NCT02684097) demonstrates lack of

efficacy in moderate-to-severe AA

IL-12/IL-23 inhibitors
Ustekinumab

IL-12/IL-23
p40 subunit

Induce hair regrowth in case reports (172, 173)

Tildrakizumab IL-23 p19 subunit Partial hair regrowth in two out of nine patients (174)

IL-17 inhibitors

Brodalumab IL-17RA AA develops after treatment in psoriasis patients (175)

Secukinumab IL-17A
Demonstrates no significant benefits in a double-blinded, randomized prospective pilot

study (176)

Ixekizumab IL-17A AA develops after treatment in psoriasis patients (175)

TNF-a inhibitors Etanercept TNF-a Shows restricted therapeutic effectiveness in a small prospective investigation (177)

PDE4 inhibitors Apremilast PDE4 With conflicting evidence (179–183)

PDE5 inhibitors Sildenafil PDE5
Early Phase 1 randomized trial (NCT06527729): Sildenafil -loaded nanocarrier formulation for

AA (completed)

Other strategies

Alefacept CD2 T-cell receptor Shows ineffectiveness in 2 RCTs (NCT00167102) (184)

Abatacept CD80/CD86
Phase 2 open-label trial (NCT02018042) reported that 1 patient achieved >50% hair regrowth

among 15 patients with moderate-to-severe AA

(Continued)
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involves a complex dysregulation of the immune system, wherein

CD8+NKG2D+ T cells, driven by pro-inflammatory cytokines like

IFN-g, attack the hair follicles. This immune dysregulation is further

compounded by the dominant polarization of Th1/Th17 cells and

functional impairments in Treg/Breg cells. Immunotherapy for AA

has evolved from a period of broad immunosuppression to a new

era focused on targeted immune remodeling. The JAK-STAT

signaling pathway, which integrates various cytokine signals, has

emerged as a key therapeutic target due to its central regulatory role.

Although JAK inhibitors have shown significant clinical

effectiveness, therapeutic strategies aiming at specific pathways,

such as IL-17 and TNF-a, remain debatable. Future studies

should delve deeper into the dynamic interactions among

immune cell subsets, investigate combined targeted therapies, and

identify more precise biomarkers to tailor personalized treatments.

The ultimate aspiration is to attain curative immune tolerance,

surpassing mere symptomatic relief.
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TABLE 1 Continued

Targeted
therapy

Management
options

Targets Current clinical trials

Rosnilimab PD-1 agonist Phase 2 RCT (NCT05205070): for moderate-to-severe AA (unknown status)

Etrasimod S1P
Primary and secondary efficacy endpoints are not met in a phase 2 RCT (NCT04556734) in

adults with moderate-to-severe AA

NXC-736 S1P Phase 2a RCT (NCT06104839): for adult participants with moderate-to-severe AA (ongoing)

Daxdilimab
IL-2 receptor b
chain (CD122)

20% of patients with moderate-to-severe AA achieved SALT50 in the phase 2a open-label
proof-of-concept trial (NCT05368103)

HCW9302 (IL-2
fusion protein)

IL-2 Phase 1, open-label, and dose-escalation study (NCT07049328): for AA subjects (ongoing)

Rezpegaldesleukin
Treg-selective IL-2
receptor agonist

Phase 2b, double-blind, parallel group, RCT (NCT06340360): for severe to very severe AA
adults (ongoing)

IMG-007 OX40 Phase 1b/2a open label study (NCT06060977): for adults with severe AA (completed)

Amlitelimab OX40L
Phase 2 double-blind, parallel group, 3-arm, proof-of-concept RCT (NCT06444451): for adult

with severe AA (ongoing)

Farudodstat
Pyrimidine
biosynthesis

Phase 2a, double-blind, two-arm study (NCT05865041): for adult AA (ongoing)

Bempikibart IL-7Ra Phase 2a RCT (NCT06018428): for the treatment of severe AA (ongoing)

DR-01 / Phase 1b pilot study (NCT06602232): for subjects with AA (ongoing)

VIS171 / Phase 1 open-label trial (NCT06799520): for AA participants (ongoing)

ALD-102 solution / Phase 1b/2a double-blind, intraindividual RCT (NCT06826196): for AA subjects (ongoing)
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CC, et al. Resident human dermal gdt-cells operate as stress-sentinels: Lessons from the
hair follicle. J Autoimmun. (2021) 124:102711. doi: 10.1016/j.jaut.2021.102711

65. Uchida Y, Gherardini J, Schulte-Mecklenbeck A, Alam M, Chéret J, Rossi A,
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4-1BBL 4-1BB ligand
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Bregs regulatory B cells
BTK Bruton&rsquo;s tyrosine kinase
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cAMP cyclic adenosine monophosphate
CCL C-C motif chemokine ligand
CCR C-C motif chemokine receptor
CD200R CD200 receptor
CD30L CD30 ligand
CGRP calcitonin gene related peptide
CLA cutaneous lymphocyte-associated antigen
CXCL C-X-C motif chemokine ligand
CXCR C-X-C motif chemokine receptor
DAG diacylglycerol
DCs dendritic cells
FasL Fas ligand
FDA Food and Drug Administration
FoxP3 forkhead box protein 3
a-GalCer alpha-Galactosylceramide
GZMB granzyme B
HF-IP hair follicle immune privilege
HLA-DR human leukocyte antigen-DR
ICAM1 intercellular adhesion molecule 1
IDO indoleamine 2,3-dioxygenase
IFN interferon
IGF-1 insulin-like growth factor-1
IL interleukin
ILC1 type 1 innate lymphoid cells
IL-1R1 interleukin-1 receptor type 1
IL-15R interleukin-15 receptor
IL-17RA interleukin-17 receptor A
iNKT invariant natural killer T
IP3 inositol trisphosphate
ITK IL-2-inducible T-cell kinase
JAK janus kinase
KIRs killer immunoglobulin-like receptors
MAPK mitogen-activated protein kinase
ogy 16
MHC major histocompatibility complex
MICA major histocompatibility complex class I polypeptide-related

sequence A
MIF macrophage migration inhibitory factor
a-MSH a-melanocyte-stimulating hormone
NF-kB nuclear factor-kappa B
NK natural killer
NKG2D natural killer cell group 2D
NKT natural killer T
NLRP3 NOD-like receptor family pyrin domain containing 3
OX40L OX40 ligand
PBMCs peripheral blood mononuclear cells
pDCs Plasmacytoid dendritic cells
PDE4 phosphodiesterase 4
PD-1 programmed cell death-1
PDL1 programmed death ligand 1
PINK1 PTEN induced kinase 1
PIP2 phosphatidylinositol 4,5-bisphosphate
PLCg1 phospholipase Cg1
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RIPK1 receptor-interacting protein kinase 1
RLK resting lymphocyte kinase, also known as TXK
S1P sphingosine-1-phosphate
SALT Severity of Alopecia Tool
SDLNs skin draining lymph nodes
SIRT1 Sirtuin 1
STAT signal transducer and activator of transcription
Tc1 type 1 cytotoxic T cell
TCR T cell receptor
TGF transforming growth factor
Th T helper
TLR7/9 Toll-like receptors 7/9
TNF tumor necrosis factor
Tregs regulatory T cells
TSLP thymic stromal lymphopoietin
TSP1 thrombospondin 1
TVM virtual memory T
TWEAK tumor necrosis factor-related weak inducer of apoptosis
TYK2 tyrosine kinase 2
ULBP UL16-binding protein
Wnt/b-catenin wingless-integrated/beta-catenin
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