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The malignant dialogue between
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and osteosarcoma cells:
microenvironment-mediated
drug resistance and
therapeutic targets
Xiufeng Wang1, Cong Luo1 and Danying Zhang2*
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2Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Naval Medical
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Cancer-associated fibroblasts (CAFs) are pivotal in shaping the

immunosuppressive and chemoresistant tumor microenvironment (TME) of

osteosarcoma (OS). This review explores how CAFs drive OS progression

through paracrine signaling (e.g., TGF-b, IL-6), extracellular matrix (ECM)

remodeling, exosome-mediated crosstalk, and metabolic reprogramming. We

highlight CAF heterogeneity (e.g., myCAFs, iCAFs) and their roles in therapy

resistance, emphasizing emerging strategies such as FAP inhibitors, TGF-b
blockers, and CXCR4 antagonists. Combining these approaches with

immunotherapy or chemotherapy offers promise for overcoming

chemoresistance. Challenges like CAF plasticity and biomarker development

are discussed, alongside future directions for precision targeting in OS.
KEYWORDS

osteosarcoma, cancer-associated fibroblasts, chemoresistance, extracellular matrix,
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1 Introduction

Osteosarcoma (OS) is a highly aggressive and easily metastasizing malignant bone

tumor originating from mesenchymal cells in the bone marrow cavity or bone surface

(1, 2). OS predominantly affects children and adolescents, with a peak incidence between 10

and 19 years of age (3). This age correlation stems from rapid skeletal growth during this

period, where increased bone cell proliferation and differentiation elevate the risk of

malignant transformation (4). OS cells exhibit marked cellular atypia and possess the

unique ability to directly produce osteoid matrix or immature bone tissue, which serves as

the pathological hallmark for diagnosis (5, 6). The treatment of OS typically employs multi-

agent chemotherapy regimens to enhance therapeutic efficacy. Standard chemotherapeutic
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agents include methotrexate, cisplatin, doxorubicin and so on (7).

However, the clinical utility of these drugs is significantly

constrained by the development of chemoresistance and severe

adverse effects (8–10). Indeed, overcoming drug resistance remains

a key challenge in OS research.

The tumor microenvironment (TME) refers to the local milieu

surrounding tumor cells, encompassing not only the malignant cells

themselves but also adjacent stromal cells, extracellular matrix

(ECM), cytokines, chemokines and metabolic byproducts (11–13).

Cancer-associated fibroblasts (CAFs) represent a predominant

cellular component of the TME, exhibiting remarkable functional

and molecular heterogeneity (14). Through the secretion of

cytokines, chemokines, growth factors and extracellular matrix

components, CAFs significantly promote tumor progression and

confer treatment resistance (15). For example, periostin, a CAF-

secreted protein, promoted platinum drug resistance in ovarian

cancer cells through activation of the PI3K/Akt signaling pathway

(16). More importantly, a recent study demonstrated that CAFs

promoted the occurrence of OS through the MIF-CD74 signalling

axis, and their abundance was strongly correlated with the

prognosis of OS patients (17). Recent single-cell RNA sequencing

studies have revealed that CAFs are not a uniform population but

rather consist of multiple functionally distinct subtypes that

differentially influence OS progression and therapy resistance

(18). This heterogeneity manifests through diverse secretory

profiles, metabolic programs, and interactions with tumor cells,

which collect ively shape the immunosuppressive and

chemoresistant TME (19). For instance, inflammatory CAFs

(iCAFs) and myofibroblastic CAFs (myCAFs) exhibit opposing

roles in OS metastasis, with the former promoting immune
Frontiers in Immunology 02
evasion via IL-6/STAT3 signaling and the latter driving ECM

remodeling to impede drug delivery (20). Understanding these

subsets is critical for developing precision therapies targeting

CAF-specific vulnerabilities. Therefore, targeting CAFs has

emerged as a promising strategy for OS treatment (21).

In this review, we comprehensively analyze the contributions of

CAFs to OS chemoresistance, elucidating the underlying molecular

mechanisms by which CAFs regulate chemotherapy sensitivity in OS,

thereby underscoring their potential as innovative therapeutic targets.
2 Communication mechanisms
between CAFs and OS cells

CAFs are a predominant component of the tumor

microenvironment that modulate tumor cell proliferation, therapy

resistance and immune evasion through diverse mechanisms. The

interaction between CAFs and OS cells is summarized

below (Figure 1).
2.1 Paracrine signaling

CAFs secrete diverse cytokines and chemokines that regulate

OS progression, immune responses and drug resistance. These

secretory factors not only shape the composition and function of

immune cells within the tumor microenvironment but also

profoundly influence malignant biological behaviors of cancer cells.

CAFs are one of the primary sources of TGF-b (22). Studies

demonstrate that TGF-b influence cellular behavior through both
FIGURE 1

The key mechanisms of CAFs-mediated drug resistance and malignant progression in OS.
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SMAD-dependent and SMAD-independent pathways, inducing

epithelial-mesenchymal transition (EMT) and thereby enhancing

tumor cell migration and invasion (23). In OS, elevated TGF-b
expression is closely associated with tumor metastasis and

recurrence (24). TGF-b also plays a critical role in the

development of tumor drug resistance. It enables a wide range of

tumour cells to resist chemotherapy and radiotherapy by

modulating different signalling pathways (25).

TGF-b derived from CAFs orchestrates a multifaceted resistance

network: (1) Tumor-intrinsically, it activates SMAD4-dependent

transcription of ABCB1 drug efflux pumps while suppressing pro-

apoptotic Bim via HIF1a stabilization (26); (2) Immunologically, TGF-

b polarizes macrophages to M2 phenotypes through SMAD3/IL-10

signaling and recruits Tregs via CCL22/CCR4 axis activation (27); (3)

Stromally, it induces LOXL2-mediated collagen cross-linking that

physically impedes drug penetration (28). This tripartite mechanism

creates a chemoprotective niche, as demonstrated by a 68% reduction

in cisplatin uptake when OS cells are co-cultured with TGF-b-secreting
CAFs (24).

Furthermore, TGF-b establishes an immunosuppressive axis

through: (1) Upregulating PD-L1 on CAFs via p38 MAPK/STAT3

signaling, enabling T-cell exhaustion through PD-1 ligation (29);

(2) Inducing FAS ligand expression that triggers apoptosis

of tumor-infiltrating CD8+ T cells (30); (3) Activating

IDO1/kynurenine pathway in dendritic cells, which expands

myeloid-derived suppressor cells (31). This network is clinically

relevant, as OS patients with high TGF-b activity show 3.2-

fold fewer infiltrating cytotoxic lymphocytes than low-TGF-b
counterparts (32).

This comprehensive network of TGF-b-mediated effects

underscores its central role in both immune evasion and

chemotherapy resistance in osteosarcoma, highlighting the

importance of targeting TGF-b signaling pathways in

therapeutic strategies.

CAFs also secrete IL-6, which promotes tumor cells

proliferation and invasion through multiple mechanisms (33).

Studies showed that IL-6 activates the STAT3 signaling pathway,

thereby enhancing OS cell proliferation and metastasis (34). In

U2OS and MG-63 OS cells, IL-6 promoted cancer stemness and

tumorigenicity by activating the OPN-STAT3 pathway (35).

Besides, irisin reversed IL-6-induced EMT process in OS cells via

the STAT3/Snail signaling pathway, consequently suppressing

cancer cell migration and invasion (36). Additionally, the

inhibition of IL-6 increased cisplatin resistance in human OS cells

(37). In summary, IL-6 played a pivotal role in the initiation,

progression, and drug resistance of OS.

CXCL12 is another important chemokine secreted by CAFs

(38). The interaction between CXCL12 and its receptor CXCR4

promoted the proliferation and invasion of pancreatic cancer cells

(39). In neuroblastoma, SOX17 inhibited cancer cell proliferation

and invasion through the CXCL12/CXCR4 signaling axis (40). In

OS, CXCL12 expression was epigenetically regulated. Studies

demonstrated that CXCL12 expression was downregulated in OS

cells via DNAmethyltransferase 1, thereby regulating the metastasis

and immune response in OS (41).
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2.2 ECM remodeling

CAFs play a pivotal role in the TME of solid tumors such as OS.

CAFs interact with tumor cells through ECM remodeling,

influencing tumor growth, metastasis and therapeutic response

(42). The ECM is a complex network composed of various

macromolecules, including collagen, fibronectin, laminin,

hyaluronic acid and others, which provide structural support and

biochemical signals for cells (43). In the tumor microenvironment,

CAFs are the primary producers and significantly alter composition

and physical properties of ECM (44).

CAFs secrete enzymes such as lysyl oxidase to promote collagen

cross-linking, thereby increasing ECM stiffness and density (28).

These alterations not only provide a physical barrier for OS cells but

also activate intracellular signaling pathways that enhance tumor

cell invasion and metastasis (44). Additionally, CAFs produce

matrix metalloproteinases (MMPs) to degrade ECM components,

creating space for tumor cell migration (45). Meanwhile, CAFs

regulate the deposition and organization of ECM constituents to

guide directional tumor cell movement, further facilitating invasion

and metastasis (42). Moreover, CAFs modify ECM architecture and

mechanical properties through cellular contractile forces,

influencing OS cells behavior (46).
2.3 Exosome-mediated communication

Exosomes are small extracellular vesicles secreted by cells that

serve as critical mediators of intercellular communication between

CAFs and tumor cells. CAFs utilize exosomes to transfer various

bioactive molecules—including miRNAs, lncRNAs, proteins, and

metabolites—to tumor cells (47). These molecules regulate gene

expression in tumor cells, promoting proliferation, migration, and

invasion (48, 49). CAF-derived exosomes induce EMT process,

enhancing tumor cell metastatic potential (50). Exosomes derived

from CAFs modulate other cells in the tumor microenvironment,

such as immune cells and vascular endothelial cells, thereby

promoting angiogenesis and facilitating tumor growth through

inhibiting the activation of immune cells (51). In addition,

exosomes produced by CAFs reduce tumor cell sensitivity to

drugs and support tumor cell survival (50). Interestingly, tumor

cells can also modulate CAFs properties through exosomes. For

example, tumor-derived exosomes activate normal fibroblasts and

induce the transformation from normal fibroblasts to CAFs, thereby

further promoting tumor progression (52).
2.4 Direct cell-cell contact

The interaction between CAFs and OS cells includes direct cell-

to-cell contact. Direct cell-to-cell contact facilitate membrane

surface molecular engagements, such as receptor-ligand binding,

which subsequently activate intracellular signaling pathways (53).

This signal transduction critically influences OS cells proliferation,

migration and invasive capabilities. The physical contact between
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CAFs and OS cells may induce cytoskeletal remodeling, thereby

altering cellular morphology and motility. For instance, CAFs

secrete small extracellular vesicles that mediate collagen cross-

linking and promote EMT process through the p-FAK/p-paxillin/

YAP signaling axis, ultimately enhancing OS cells invasion and

metastasis (54). CAFs transfer metabolic substrates (lactate,

pyruvate and ketone bodies) to OS cells via direct contact,

supporting tumor cell growth and survival (55). This metabolic

coupling enables tumor cells to better adapt to the nutrient-

depr ived and hypoxic condi t ions wi th in the tumor

microenvironment. Additionally, CAFs modulate immune cell

function through direct contact. For example, CAFs directly

suppresses T-cell activation through expressing immune

checkpoint molecules PD-L1 (56).
2.5 CAFs heterogeneity in osteosarcoma

CAFs exhibit significant functional and molecular

heterogeneity, which plays a crucial role in shaping the TME and

influencing OS progression and therapy resistance. This

heterogeneity arises from diverse cellular origins, spatial

distribution within tumors, and dynamic interactions with other

TME components, leading to distinct CAF subpopulations with

varying pro-tumorigenic functions (57)

2.5.1 Origins and subtypes of CAFs in OS
CAFs in OS can originate from multiple precursor cells,

including resident fibroblasts, mesenchymal stem cells (MSCs),

endothelial cells undergoing endothelial-to-mesenchymal

transition (EndMT), and even transdifferentiated osteoblasts (58).

Single-cell RNA sequencing studies have identified at least three

major CAF subtypes in OS: Myofibroblastic CAFs (myCAFs):

Characterized by high expression of a-SMA (ACTA2) and TGF-b
signaling markers, these CAFs are typically located near tumor cells

and contribute to extracellular matrix (ECM) remodeling and

mechanical stiffness (59); Inflammatory CAFs (iCAFs): Enriched

in cytokine secretion (e.g., IL-6, CXCL12) and JAK/STAT signaling,

iCAFs promote immune suppression and angiogenesis (60);

Antigen-presenting CAFs (apCAFs): Express MHC class II

molecules and co-stimulatory proteins, potentially modulating T-

cell responses (59).

2.5.2 Functional implications of CAF
heterogeneity

The spatial distribution of CAF subtypes correlates with distinct

pathological features of OS. For example, myCAFs are predominantly

found in the tumor core, where they drive collagen cross-linking and

create a physical barrier to drug penetration, while iCAFs localize to

the invasive front, facilitating metastasis through immune evasion

(59). Metabolically, CAF subpopulations exhibit divergent behaviors.

Lactate-secreting CAFs (marked by MCT4 overexpression) fuel OS

cell glycolysis, while lipid-rich CAFs promote chemoresistance by

transferring fatty acids to tumor cells via direct contact or exosomes

(61). This metabolic coupling is further regulated by hypoxia, with
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peri-necrotic CAFs showing upregulated HIF-1a signaling and

enhanced secretion of pro-angiogenic factors like VEGF (62).

Single-cell studies identify COL11A1+ CAFs as a chemoresistance-

driving subtype in OS, activating IGF-1R/Akt signaling to promote

cancer stemness (42). Conversely, CD10+ CAFs recruit tumor-

associated neutrophils (TANs) via CCL2 secretion, accelerating

lung metastasis (63). These findings underscore the need for

subtype-specific targeting, such as COL11A1-neutralizing antibodies.

CAFs directly modulate immune cell function through multiple

mechanisms. For instance, PD-L1 overexpression on CAFs inhibits

CD8+ T cell activation by binding to PD-1, facilitating immune

evasion (56). Additionally, CAF-secreted IL-6 and TGF-b polarize

macrophages toward an M2 phenotype, which further suppresses

antitumor immunity (35). Single-cell RNA sequencing reveals that

COL11A1+ CAFs correlate with T cell exhaustion markers in OS,

suggesting subtype-specific immunosuppressive roles (57). Single-cell

studies also identify COL11A1+ CAFs as a chemoresistance-driving

subtype in OS, activating IGF-1R/Akt signaling to promote cancer

stemness (58). Conversely, CD10+ CAFs recruit tumor-associated

neutrophils (TANs) via CCL2 secretion, accelerating lung metastasis

(18). These findings underscore the need for subtype-specific

targeting, such as COL11A1-neutralizing antibodies.
3 Therapeutic strategies targeting
CAFs to overcome OS resistance

Targeting CAFs has emerged as a crucial strategy to overcome

OS drug resistance. Below are the primary CAF-targeting

approaches and their research advancements (Figure 2).
3.1 Direct targeting of CAFs

3.1.1 Fibroblast activation protein inhibitors
FAP is a specific marker on the surface of CAFs, and its high

expression in CAFs makes it an ideal target for targeting these cells

(64). FAP inhibitors work by suppressing the activity of FAP,

thereby reducing the pro-tumor effects of CAFs and enhancing

the sensitivity of tumors to chemotherapy and immunotherapy

(65). For example, studies have shown that Talabostat (an oral FAP

inhibitor) significantly reduces the activity of CAFs, thereby

inhibiting OS growth and invasion (66). Moreover, Talabostat

exhibits synergistic effects when combined with other anticancer

agents. A phase II clinical trial evaluated the antitumor activity of

Talabostat in combination with pembrolizumab (an anti-PD-1

antibody) in patients with advanced solid tumors, and the results

revealed that the development of tumor was notably suppressed

(67). Recent phase I trials have shown promising safety and

preliminary efficacy of FAP-targeted therapies in solid tumors.

For example, FAP-2286, a novel radioligand therapy,

demonstrated favorable tumor uptake in a phase I study

(NCT04939610) for advanced solid tumors (68, 69). However,

OS-specific clinical data remain limited, partly due to

heterogeneous FAP expression across CAF subtypes in
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osteosarcoma, potentially leading to variable responses.

Additionally, on-target/off-tumor effects in normal tissues (e.g.,

healing wounds, fibrotic lesions) necessitate careful monitoring.

Ongoing trials combining FAP inhibitors with immune checkpoint

blockade (e.g., NCT05552703) may offer insights for OS treatment

strategies (68).

3.1.2 TGF-b neutralizing antibodies
TGF-b is a multifunctional cytokine, playing a crucial role in

various biological processes, including cell growth, differentiation,

and immune regulation. In the context of cancer, TGF-b has a dual

role: it can act as a tumor suppressor in the early stages of

tumorigenesis but often promotes tumor progression, metastasis,

and immune evasion in advanced stages (31). The TGF-b signaling

pathway is a crucial regulator of CAF phenotype and function.

Blocking TGF-b can inhibit the transformation of normal

fibroblasts into CAFs, reduce the expression of markers such as

a-SMA, and thereby diminish the tumor-promoting activity of

CAFs (70). Additionally, CAFs promote collagen cross-linking and

EMT process through the release of sEVs, and inhibiting TGF-b
affects this process (54). CAFs can influence the recruitment and

differentiation of immune cells through various pathways, thereby

impacting tumor immune evasion. The inhibition of TGF-b can

alter the immunomodulatory function of CAFs, promoting immune
Frontiers in Immunology 05
cell infiltration and antitumor immune responses (30).

Fresolimumab is a humanized monoclonal antibody that exerts its

therapeutic effects by specifically neutralizing TGF-b. It displays
significant potential in modulating the TME and regulating CAFs

activity (71). In mouse models of breast cancer and pancreatic

cancer, Fresolimumab treatment significantly reduced CAF

activation and decreased ECM deposition, thereby inhibiting the

formation of physical barriers and promoting drug delivery and

immune cell infiltration (72). Fresolimumab treatment also

improved the immune microenvironment of the TME, increasing

the infiltration of cytotoxic T cells and reducing the levels of

immunosuppressive cells such as regulatory T cells and myeloid-

derived suppressor cells, thereby alleviating immune suppression

and enhancing the antitumor activity of cytotoxic T cells (73, 74).

Although Fresolimumab has potential, it is important to note that

TGF-b may play a dual role in different tumor types and disease

stages. In some cases, TGF-b may suppress early tumor

development, while in advanced stages, it may promote tumor

progression. Therefore, the use of TGF-b inhibitors such as

Fresolimumab requires careful evaluation and should be

combined with personalized treatment based on the specific

conditions of the patient. Fresolimumab, a TGF-b neutralizing

antibody, has shown mixed results in clinical trials. As of

September 2023, TGF-b neutralizing antibodies are under clinical
FIGURE 2

Several therapeutic strategies targeting CAFs to overcome OS resistance via: (1) Direct inhibition (FAP/TGF-b blockers); (2) Disrupting crosstalk
(CXCR4/IL-6 inhibitors); (3) ECM modulation (LOXL2/hyaluronidase).
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invest igat ion for osteosarcoma, often combined with

immunotherapy. For example, TQB2858, an anti-PD-L1/TGF-b
bispecific antibody, is being explored in clinical settings (75).

Preclinical studies indicate that TGF-b promotes chemoresistance

and tumor progression, prompting trials testing its blockade to

overcome resistance. Early approaches, such as combining anti-

TGF-b with dendritic cell therapy, show antitumor potential. Given

the dismal <30% 5-year survival rate in metastatic osteosarcoma

(76), targeting TGF-b—a key mediator of bone metastasis—

represents a promising strategy to improve outcomes.
3.2 Disruption of CAFs-tumor cells
interactions

CAFs play a critical role in tumor progression and drug

resistance through their interactions with tumor cells. CAFs

support tumor cell growth, invasion, and drug resistance via

multiple mechanisms, including the secretion of cytokines,

chemokines, growth factors, and ECM components. Therefore,

disrupting CAF-tumor cell interactions has become an important

strategy to overcome tumor drug resistance.

3.2.1 CXCR4 antagonists
CXCR4 (C-X-C chemokine receptor type 4) is a G protein-

coupled receptor (GPCR), and its ligand CXCL12 (also known as

stromal cell-derived factor-1, SDF-1) plays important roles in

various physiological and pathological processes. The CXCL12/

CXCR4 axis is involved in multiple critical processes, including

cell proliferation, survival, migration, invasion and metastasis, and

is associated with more than 20 different types of cancer (77). Upon

binding of CXCL12 to CXCR4, multiple downstream signaling

pathways are activated, including G proteins, PI3K/AKT, MAPK

and RhoA/ROCK2 pathways (78). After G protein activation, it

further regulates adenylate cyclase, phospholipase C, and others,

generating second messengers such as cAMP, IP3, and DAG,

thereby influencing cellular functions (79). The CXCL12/CXCR4

axis also plays a crucial role in guiding cell migration, particularly in

immune cell homing, hematopoietic stem cell mobilization and

tumor metastasis (80). The high expression of CXCL12 in the bone

marrow directs leukemia stem cells expressing CXCR4 to localize

within the bone marrow microenvironment, maintaining LSC

quiescence and protecting them from chemotherapy (80). Tumor

cells, by expressing CXCR4, respond to CXCL12 secreted by

metastatic target organs (such as lymph nodes, lungs, liver and

bone marrow), thereby promoting directional migration of tumor

cells (81). The CXCL12/CXCR4 axis is involved in various

inflammatory and immune responses. In a rat model of vascular

dementia, inhibition of the CXCL12/CXCR4 axis alleviates

neuroinflammation and cognitive dysfunction (82). Plerixafor was

initially developed as an anti-HIV drug and later identified as a

potent CXCR4 antagonist , subsequently approved for

hematopoietic stem cell mobilization in autologous stem cell

transplantation (83). Currently, plerixafor has demonstrated

promising antitumor effects in various tumor models, particularly
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in overcoming drug resistance, with applications in both

hematologic malignancies and solid tumors (84). The mechanism

of action of plerixafor primarily revolves around the inhibition of

the CXCL12/CXCR4 axis, exerting multiple effects in cancer

therapy (85). In preclinical models of breast cancer and

pancreatic cancer, plerixafor combined with chemotherapeutic

agents (such as paclitaxel) significantly reduces tumor burden and

improves survival rates (86). Additionally, plerixafor has been

explored for enhancing the efficacy of immunotherapy by

improving immune cell infiltration and augmenting antitumor

immune responses. In p53-related therapies, CXCR4 can serve as

a target in combination with anti-PD1 therapy (87). Although

plerixafor has shown potential in both preclinical and clinical

studies, its application in cancer treatment still faces challenges.

For instance, some studies indicate that in Ewing sarcoma cell lines,

plerixafor may instead promote cell proliferation and activate

receptor tyrosine kinase signaling (88). Overall, as a CXCR4

antagonist, plerixafor influences tumor cells and the tumor

microenvironment through multifaceted mechanisms, holding

broad clinical prospects in OS applications.

In p53-mutant OS, CXCR4 inhibition has emerged as a

promising strategy to enhance immunotherapeutic responses,

especially when combined with anti-PD1 therapy. This approach

leverages the role of CXCR4 in shaping the TME and modulating

immune cell infiltration. Inhibiting CXCR4 can reduce tumor

growth and potentially restore or enhance the efficacy of immune

checkpoint inhibitors. This strategy aligns with broader efforts to

convert “cold” tumors into “hot” ones by enhancing tumor

immunogenicity and improving responses to immune checkpoint

blockade (ICB) (89). For instance, in pancreatic cancer, inhibiting

tumor-associated neutrophils (TANs) enhances the effectiveness of

anti-PD-1 therapy (90). Similar strategies could be applied to OS,

considering the immunosuppressive features associated with p53

mutations. Mechanistically, p53 mutations often lead to immune

evasion and resistance to apoptosis, which can be countered by

strategies that induce ferroptosis or modulate immune cell

infiltration (91, 92).

3.2.2 IL-6/JAK inhibitors
IL-6 is a pleiotropic cytokine that plays a critical role in various

physiological and pathological processes, particularly in the tumor

microenvironment, where it promotes tumorigenesis and

progression by activating the JAK/STAT3 signaling pathway (93).

Upon activation of the IL-6/JAK/STAT3 signaling pathway, the

expression of genes such as Cyclin D1 and Bcl-2 is upregulated,

promoting tumor cell cycle progression and inhibiting apoptosis,

thereby enhancing tumor cell proliferation and survival (94).

Activated STAT3 can induce the expression of EMT-related

transcription factors, including Snail, ZEB1, and Twist,

downregulate E-cadherin expression, and upregulate N-cadherin

expression, thereby promoting the EMT process in tumor cells and

enhancing their invasive and metastatic capabilities (94, 95). The

activation of the IL-6/STAT3 pathway is associated with resistance

to multiple chemotherapeutic drugs. STAT3 activation reduce

tumor cell sensitivity to chemotherapy by regulating the
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expression of drug transporters, enhancing DNA repair capacity, or

influencing apoptosis pathways (96, 97). Ruxolitinib is a JAK1/2

inhibitor that exerts anti-inflammatory and anti-tumor effects by

inhibiting the JAK-STAT signaling pathway. Numerous studies

have demonstrated its potential therapeutic value in various

cancers, as it can influence tumor cell biology through multiple

mechanisms. In renal cell carcinoma, Ruxolitinib suppresses tumor

cell proliferation and survival by inhibiting the IL-6/JAK/STAT

signaling pathway and downregulating PIM1 expression (98). In

head and neck squamous cell carcinoma, Ruxolitinib overcomes

EGFR-TKI resistance by blocking IL-6/STAT3 signaling, thereby

improving therapeutic efficacy (99). Similarly, in NSCLC cells,

Ruxolitinib reverses cisplatin resistance by inhibiting the JAK/

STAT pathway (100). Additionally, Ruxolitinib suppresses

pancreatic cancer progression by attenuating the pro-tumor

effects of tumor-associated macrophages through inhibition of the

STAT3 signaling pathway (101). In glioma cells, Ruxolitinib

exhibits a dose-dependent inhibitory effect on interferon g-
dependent JAK/STAT signaling, thereby impairing tumor cell

invasion and tumorigenesis (102). Recent research has shown that

targeting the IL-6/JAK/STAT3 signaling pathway can significantly

inhibit osteosarcoma growth and metastasis by reducing tumor self-

seeding and enhancing antitumor immunity (103). For instance, a

study demonstrated that the STAT3 inhibitor cryptotanshinone

effectively reduced tumor progression and improved survival rates

in osteosarcoma models by inhibiting IL-6 signaling (103).

Additionally, JAK inhibitors are being explored in combination

with other therapies to enhance treatment efficacy, as seen in

preclinical and early-phase clinical trials (104). These findings

suggest that IL-6/JAK inhibitors hold promise for improving

outcomes in osteosarcoma patients, although further clinical trials

are needed to confirm their safety and efficacy (105).
3.3 ECM modulation

ECM is a critical component of the tumor microenvironment,

providing structural support and regulating cellular behavior (106).

Abnormal ECM remodeling can contribute to tumor progression,

metastasis, and drug resistance. Modulating ECM components

disrupt these supportive interactions and enhance the efficacy of

cancer therapies.
3.3.1 LOXL2 inhibitors
Lysyl oxidase-like 2 (LOXL2) is an enzyme that catalyzes the cross-

linking of collagen fibers, contributing to the stiffness and rigidity of the

ECM (107). Elevated LOXL2 activity in the tumor microenvironment

can promote tumor cell invasion and resistance to therapy (108).

Inhibiting LOXL2 can reduce ECM stiffness and disrupt the pro-tumor

effects of CAFs. Simtuzumab is a humanized monoclonal antibody that

specifically targets LOXL2. By binding to LOXL2, Simtuzumab inhibits

its enzymatic activity, thereby reducing collagen cross-linking and

ECM stiffness. Preclinical studies have shown that Simtuzumab can

decrease tumor-associated fibrosis and improve the efficacy of

chemotherapy and immunotherapy (109). In clinical trials,
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Simtuzumab has demonstrated promising results in reducing tumor

stiffness and enhancing drug delivery to tumor cells (109).

3.3.2 Hyaluronidase
Hyaluronic acid (HA) is a major component of the ECM,

contributing to its viscoelastic properties and influencing cellular

behavior. High levels of HA in the tumor microenvironment can

create a dense and impenetrable ECM, limiting drug delivery and

promoting tumor progression (108). Hyaluronidase is an enzyme that

degrades HA, thereby reducing ECM density and enhancing drug

penetration. Hyaluronidase can be administered systemically or locally

to degradeHA in the tumormicroenvironment. By reducingHA levels,

hyaluronidase can enhance the permeability of the ECM, allowing

better penetration of chemotherapy drugs and immune cells.

Preclinical studies have shown that combining hyaluronidase with

chemotherapy or immunotherapy can significantly improve treatment

outcomes (110). For example, PEGPH20 (a pegylated form of

hyaluronidase) has been shown to reduce tumor interstitial pressure

and enhance drug delivery in various cancer models (111).
3.4 Combination strategies

Combination therapies are becoming increasingly important in the

treatment of cancer, as they leverage the synergistic effects of multiple

treatment modalities to enhance efficacy and overcome resistance

mechanisms. By integrating different therapeutic approaches,

combination therapies can target multiple pathways involved in

tumor progression and resistance, leading to improved

patient outcomes.

3.4.1 Chemotherapy + immune checkpoint
inhibitors

Combining chemotherapy with immune checkpoint inhibitors has

emerged as a powerful strategy to enhance anti-tumor effects by

leveraging the cytotoxic effects of chemotherapy and the immune-

boosting effects of checkpoint inhibitors (112). Nivolumab is a

humanized monoclonal antibody that targets the PD-1 receptor,

thereby blocking the inhibitory signals that cancer cells use to evade

the immune system (113). By combining Nivolumab with CAF-

targeting agents, such as TGF-b inhibitors or FAP inhibitors, the

therapy can simultaneously reduce the immunosuppressive effects of

CAFs and enhance the immune response against tumor cells (114).

Preclinical studies have shown that this combination can significantly

increase the number of tumor-infiltrating lymphocytes (TILs) and

improve overall survival rates in various cancer models (115).

3.4.2 Metabolic intervention + radiotherapy
Metabolic interventions aim to disrupt the altered metabolism of

cancer cells, making them more susceptible to other treatments.

Combining metabolic interventions with radiotherapy can enhance

the efficacy of radiation by targeting metabolic pathways that contribute

to radioresistance. Monocarboxylate transporter 4 is involved in the

transport of lactate and other monocarboxylates, contributing to the

acidic tumor microenvironment and promoting radioresistance (116).
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AZD3965 is a selective MCT4 inhibitor that blocks the transport of

lactate, thereby reducing the acidic environment and enhancing the

sensitivity of tumor cells to radiation (117). Studies have shown that

AZD3965 can significantly enhance the efficacy of radiotherapy by

normalizing the tumor microenvironment and reducing hypoxia (118).

This combination has demonstrated promising results in improving

local control and survival rates in various cancer models, including

those resistant to conventional radiotherapy.
4 Challenges and future perspectives

CAFs significantly contribute to drug resistance in OS, a highly

aggressive bone malignancy. These cells foster tumor progression

and resilience to treatment through diverse mechanisms, such as

secreting cytokines, chemokines, and extracellular matrix

components. However, targeting CAFs to surmount drug

resistance in OS faces several challenges. The heterogeneity of

CAFs, with their varied phenotypes and functions, complicates

the identification of specific targets and the development of

effective therapies. Moreover, CAFs’ complex interactions with

other cells in the tumor microenvironment, including tumor cells,

immune cells, and endothelial cells, require a comprehensive

understanding of the involved signaling pathways and potential

compensatory mechanisms. Additionally, resistance to CAF-

targeting therapies can emerge through genetic mutations,

epigenetic changes, and adaptive responses within the tumor

microenvironment. The lack of well-defined biomarkers to

predict response to CAF-targeting therapies further hampers the

development and application of personalized treatment strategies.

Despite these challenges, the future outlook for targeting CAFs in

osteosarcoma is promising. Developing targeted therapies that

specifically inhibit CAFs’ pro-tumor effects, such as TGF-b inhibitors,

FAP inhibitors, and CXCR4 antagonists, holds potential for overcoming

drug resistance. These therapies can be used alone or in combination

with existing treatments to enhance efficacy. Combining CAF-targeting

agents with chemotherapy, immunotherapy, or targeted therapies may

provide synergistic effects, overcome multiple resistance mechanisms

and improving patient outcomes. Advances in genomics, proteomics,

and imaging technologies offer the potential for personalized medicine

approaches. Identifying patients who are most likely to benefit from

CAF-targeting therapies based on their tumor and CAF characteristics

can improve treatment outcomes and reduce unnecessary side effects.

Given CAFs’ immunosuppressive effects, combining CAF-targeting

therapies with immunomodulatory agents may enhance anti-tumor

immune responses, potentially overcome immune evasion mechanisms

and improve the efficacy of immunotherapy in OS.

Long-term preclinical and clinical studies are essential to

understand the chronic effects of CAF-targeting therapies and to

identify potential late-onset resistance mechanisms. Future research

should focus on elucidating the molecular mechanisms of CAF

heterogeneity, developing biomarkers for CAF-targeted therapies,

investigating the role of CAFs in immune modulation, and

optimizing combination therapies. Specifically, further studies are

needed to uncover the molecular pathways that drive the
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involve single-cell sequencing technologies to identify novel CAF

subtypes and their unique signaling pathways. Identifying reliable

biomarkers that predict response to CAF-targeted therapies is crucial,

and this could involve exploring the expression of specific proteins,

miRNAs, or metabolic signatures in CAFs that correlate with treatment

response. Understanding how CAFs interact with immune cells in the

TME and identifying strategies to enhance immune surveillance by

targeting these interactions could lead to more effective combination

therapies. Preclinical studies should focus on optimizing the sequence

and timing of CAF-targeted therapies with other treatments, such as

chemotherapy or immunotherapy, to maximize therapeutic efficacy

and minimize resistance. Conducting translational studies that

incorporate patient-derived models and clinical trials will be essential

to validate the efficacy of CAF-targeted therapies in OS and to identify

potential challenges in clinical application.

In summary, while targeting CAFs in OS presents significant

challenges, ongoing research and future studies hold promise for

developing novel therapeutic strategies that can overcome drug

resistance and improve patient outcomes. A multidisciplinary

approach that integrates basic research, translational studies, and

clinical trials will be critical in advancing this field. By addressing the

heterogeneity of CAFs, understanding their complex interactions, and

developing personalized combination therapies, we can pave the way

for more effective treatments for osteosarcoma patients.
Author contributions

XW: Writing – original draft. CL: Writing – original draft. DZ:

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1621521
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1621521
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 09
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Hu T, Wang G, Wang D, Deng Y, Wang W. m6A methylation modification:
Potential pathways to suppress osteosarcoma metastasis. Int Immunopharmacol.
(2025) 145:113759. doi: 10.1016/j.intimp.2024.113759

2. Zhang Y, Xu Y, Bao Y, Luo Y, Qiu G, He M, et al. N6-methyladenosine (m6A)
modification in osteosarcoma: expression, function and interaction with noncoding
RNAs - an updated review. Epigenetics. (2023) 18:2260213. doi: 10.1080/
15592294.2023.2260213

3. Nie Z, Peng H. Osteosarcoma in patients below 25 years of age: An observational
study of incidence, metastasis, treatment and outcomes. Oncol Lett. (2018) 16:6502–14.
doi: 10.3892/ol.2018.9453
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et al. RAS-PI3K pathway in CAFs shapes physicochemical properties of tumor ECM to
impact tumor progression. bioRxiv. (2025). doi: 10.1101/2025.01.20.633776

29. Konen JM, Wu H, Gibbons DL. Immune checkpoint blockade resistance in lung
cancer: emerging mechanisms and therapeutic opportunities. Trends Pharmacol Sci.
(2024) 45:520–36. doi: 10.1016/j.tips.2024.04.006

30. Dauer P, Zhao X, Gupta VK, Sharma N, Kesh K, Gnamlin P, et al. Inactivation of
cancer-associated-fibroblasts disrupts oncogenic signaling in pancreatic cancer cells
and promotes its regression. Cancer Res. (2018) 78:1321–33. doi: 10.1158/0008-
5472.CAN-17-2320

31. Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth
factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev
Dyn. (2022) 251:105–24. doi: 10.1002/dvdy.339

32. Kawano M, Itonaga I, Iwasaki T, Tsuchiya H, Tsumura H. Anti-TGF-b antibody
combined with dendritic cells produce antitumor effects in osteosarcoma. Clin Orthop
Relat Res. (2012) 470:2288–94. doi: 10.1007/s11999-012-2299-2
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