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Amplification of select
autonomous HERV loci and
surrounding host gene
transcription in monocytes
from patients with post-acute
sequelae of COVID-19
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1Department of Genetics, Hugh Kaul Precision Medicine Institute, Heersink School of Medicine
Immunology Institute, University of Alabama at Birmingham, Birmingham, AL, United States,
2Department of Cell, Developmental and Integrative Biology, Hugh Kaul Precision Medicine Institute,
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Background: The human genome contains approximately 3,200 near full-length

autonomous human endogenous retroviral (HERV) genomes distributed across

the 23 chromosomes. These autonomous HERV proviral genomes include long

terminal repeats (LTRs) capable of promoting RNA transcription. In quiescent

cells, most HERV loci remain transcriptionally silent. However, environmental

changes, such as epigenetic remodeling of chromatin, can activate these

silenced loci.

Methods: To study HERV reactivation, we previously analyzed autonomous

HERV expression patterns in monocytes isolated from peripheral blood

mononuclear cells (PBMCs) identified in single-cell RNA sequencing (scRNA-

seq) databases using the Azimuth application. We developed a Window-based

HERV Alignment (WHA) method, which analyzes aligned DNA sequences using

sequential, non-overlapping windows of defined lengths. Samples were scored

as positive (>= 9 good/usable windows) or negative (<= 8 good/usable windows).

Results:UsingWHA, we established a control set from 31 normal individuals, with

fewer than 8 windows at selected HERV loci. We analyzed scRNA-seq data from

three studies of hospitalized COVID-19 patients and found distinct HERV

expression patterns in monocytes. Unique patterns were also found in patients

with influenza, Dengue virus, or sepsis. We next examined HERV expression at

early (<7 days) and late (>14 days) timepoints post COVID-19 recovery and

detected HERV loci in both groups. Analyzing 12 patients with post-acute

sequelae of COVID-19 (PASC), we identified three HERV loci expressed in all

patients. Some loci showed amplified numbers of good/usable windows,

indicating longer transcripts and greater sequence depth. The most amplified

locus was located within an intron of JAKMIP2, which, along with neighboring

host genes, also showed increased transcription.

Conclusion: Previous studies have shown that viral infections, including COVID-

19, influenza, and Dengue virus, as well as sepsis, can induce innate immune
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memory in monocytes through epigenetic remodeling of hematopoietic stem

and myeloid precursor cells. The identification of co-amplified HERV loci and

neighboring host gene transcripts in monocytes from PASC patients suggests

expansion of epigenetically remodeled myeloid progenitors. The identification of

these HERV-host gene patterns provides a foundation needed to understand the

clinical features of patients with PASC.
KEYWORDS

post-acute COVID sequelae, monocytes, epigenetic remodeling, ScRNA-seq, human
endogenous retrovirus (HERV)
Introduction

Studies have established the importance of innate immune cells,

such as monocytes, in the response to various viral and bacterial

pathogens (1–3). Viral infections, including COVID-19, influenza,

and Dengue virus, as well as bacterial infections (sepsis), have been

shown to alter the function of monocytes (4–13). Furthermore,

there is growing recognition of the ability of these viral infections to

induce innate immune memory, that include epigenetic remodeling

of bone marrow-derived hematopoietic stem cells and myeloid

precursor cells (14–20). These epigenetically remodeled myeloid

precursors have a limited capacity for self-renewal, leading to their

expansion following primary viral infection (20–23).

The human genome contains approximately 3,200 near full-

length autonomous human endogenous retroviral (HERV)

genomes, which are distributed across the 23 chromosomes (24,

25). These autonomous HERV proviral genomes contain long

terminal repeats (LTR) capable of promoting RNA transcription

(25, 26). In quiescent, normal cells, only a subset of these

autonomous HERV loci is transcriptionally active, while the most

of the HERV loci are silenced in the resting cell (27–29). In a

previous study, using Single-cell RNA sequencing (scRNA-seq)

databases we analyzed the expression patterns of the autonomous

HERVs in monocytes identified in resting and in vitro stimulated

peripheral blood mononuclear cells (PBMC) (30). We developed a

method called Window-based HERV Alignment (WHA), which

analyzes aligned DNA sequences using sequential, non-overlapping

windows of defined nucleotide lengths. Samples are scored as either

positive (9 or more good/usable windows detected) or negative (8 or

fewer good/usable windows) (30) (See Supplementary Method). We

established a control set consisting of 31 normal individuals

identified from several different scRNA-seq analyses, in which the

numbers of windows were fewer than 8 for selected HERV loci.

Using this analysis, we found positive HERV loci expression

patterns in monocytes by analyzing scRNA-seq datasets from

PBMCs obtained from individuals with trauma or COVID-19,

both of which are known to stimulate in vivo monocyte

transcription. Since HERV expression is sensitive to gene

silencing, our system provides a useful tool for assessing the
02
impact of different pathological conditions that lead to the in vivo

expression of previously silenced HERV loci in innate immune cells,

such as the monocyte (31, 32).

In the current study, we used these 31 individual data sets as a

pangenome control to compare the autonomous HERV loci

transcriptomes in monocytes from patients with different diseases.

WHA analysis revealed that the monocyte populations from acutely

infected patients with COVID-19, influenza, Dengue virus, or sepsis

exhibited distinct patterns of autonomous HERV loci transcriptome

expression compared to the 31-pangenome controls. Additionally,

using a dataset from patients with post-acute sequelae of severe

acute COVID-19 (PASC) at 8 months post-acute infection, we

identified a common set of HERV loci in monocytes present in all

12 patients. A subset of these HERV loci exhibited an increased

number of good/usable windows (i.e., sequence length) and greater

sequence depth compared to the same loci found in hospitalized

patients with acute COVID-19 infections, who tested positive by

antigen or RT-PCR. The most amplified HERV loci transcriptome

was in the first intron of a cellular gene, JAKMIP2. Further analysis

revealed the JAKMIP2, along with other nearby host genes in

Chromosome 5 also had significantly increased expression. The

patterns of co-amplified HERV loci with surrounding host gene

transcripts in monocytes in patients with PASC are consistent with

the establishment of trained innate immunity that is characterized

by localized epigenetic remodeling of myeloid precursors (20, 33).
Results

In a previous study, we described Window-based HERV

Alignment (WHA), in which DNA from scRNA-seq analysis is

aligned to the 3,200 autonomous HERV loci in non-overlapping

windows of defined nucleotide lengths (30). Usable windows are

defined as those with a read depth of 3 or greater and must have a

minimum of 9 good/usable windows, corresponding to an extended

(i.e., longer) expression of HERV transcripts. In contrast, those

HERV loci designated as negative (8 or less windows) do not meet

the necessary sequence read depth or number of good/usable

windows as determined by WHA. We used the WHA to develop
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a pangenome control that consisted of scRNA-seq datasets from 31

normal individuals taken frommultiple studies. The WHA data was

then filtered to eliminate any of the 3,200 HERV loci that had at

least one positive (i.e., WHA of greater than 9 windows) in the 31-

pangenome samples (30) (See Supplementary Method).
HERV loci expression in monocytes from
COVID-19 exposed, infected with no
symptoms and acutely infected
hospitalized patients

In the first analysis, we used three scRNA-seq datasets from

hospitalized acute COVID-19 patients, along with an scRNA-seq

dataset from individuals exposed to or infected with COVID-19

who showed no symptoms (7, 13, 34, 35). Each of these scRNA-seq

datasets, along with the pangenome datasets, was first reanalyzed

using Azimuth with the specific reference sequences used for PBMC

(36, 37). We analyzed the PBMCs from the patients for monocytes

and used the WHA to identify positive HERV loci. We then filtered

these HERV loci against the normal individual controls for each

study to identify those that were positive in the patients but negative

in the controls. Using the comparison, we found no positive HERV

loci in the individuals who were exposed to, or showed no COVID-

19 symptoms (34) (Figure 1).

In contrast, we found positive HERV loci in monocytes from

three independent studies of acutely infected, hospitalized COVID-

19 patients. The patients in Lee et al. (herein referred to as Acute 1

group) and Unterman et al. (herein referred to as the Acute 2

group) recovered after hospitalization. In contrast, in Amrute et al.

(herein referred to as the Acute 3 group), one set of patients
Frontiers in Immunology 03
recovered after hospitalization, while another set did not recover

and died (Supplementary Table 1) (7, 13, 35). Analysis of

autonomous HERV loci expression revealed that all three studies

had different numbers of positive HERV loci. However, no

individual HERV locus was found in all samples of a particular

group and no HERV locus shared across all three acute datasets.

Nonetheless, in several instances, we found HERV loci shared

between individuals within the same dataset (Figure 1,

Supplementary Table 2). Furthermore, in the Acute 3 samples set,

13 pairs of samples from patients taken on day 0 and day 7

contained the same positive HERV loci, indicating sustained

expression of these specific HERV loci in these individuals. Thus,

consistent with our previous study, the patterns of HERV loci

expression in the three sets of hospitalized acute COVID-19

patients are individual-specific and vary in the number of positive

HERV loci (30).
Analysis of HERV loci expression in
monocytes obtained from patients with
different disease or vaccinated normal
individuals

We next expanded the analysis to include scRNA-seq datasets

from hospitalized patients with severe influenza, acute respiratory

sepsis, and Dengue virus (Figure 2, Supplementary Table 3) (6, 35,

38). We identified positive HERV loci in 4 of the 5 hospitalized

patients with severe influenza, with one patient having 16 positive

HERV loci. In contrast, we found positive HERV loci in only 4 of

the 7 sepsis patients and 3 of the 19 patients with dengue virus. To

determine whether viral infection was necessary, we analyzed a
FIGURE 1

Distribution of positive HERV loci found in exposed, infected and three datasets of acutely infected COVID-19 patients. The positive HERV loci for
the data sets for the exposed, infected and acutely infected patients is depicted in a vertical column. HERV loci that were accessed were depicted in
a horizontal column. To identify the positive HERV loci in these datasets, we compared them with the pangenome control dataset consisting of 31
normal individuals, as previously described (30). Positive HERV loci in the PBMC datasets were identified through comparison with the normal
pangenome control set. Red boxes indicate positive HERV loci, while yellow boxes indicate negative HERV loci below cut-off values for depth and
windows count. Numbers of individuals per each group; 3 exposed COVID-19 individuals, 10 infected COVID-19 individuals, Acute 1: 11 patients;
Acute 2: 10 patients; Acute 3: 12 patients. Note some samples contained multiple time points – see Supplementary Table 2 for detailed information
on identity of each HERV locus.
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dataset of COVID-19 immunized individuals. We found HERV loci

expression in individuals who had received the COVID-19 vaccine

(Figure 3, Supplementary Table 4). In this case, 6 individuals were

given the vaccine, and their PBMCs were analyzed using scRNA-seq

(39). We found that 4 of the 6 individuals exhibited HERV loci

expression at various times post-vaccination. Interestingly, two

patients also had HERV loci expression at time 0, suggesting they

might have had prior exposure to COVID-19. As with the acute

samples, the patterns of HERV loci expression in these 4 individuals

varied with respect to timing after vaccination. Thus, the results

from the vaccine analysis indicate that infection per se is not

necessary to stimulate the expression of certain HERV loci,

although viral respiratory infections such as COVID-19 and

influenza result in more extensive HERV loci expression.
Analysis of HERV loci expression in patients
post acute COVID-19 infection

We next analyzed a scRNA-seq dataset from patients at early

times post-acute COVID-19 infection. In the first dataset, two

patient groups were analyzed for HERV loci expression: an early

group that became RT-PCR negative at or before 7 days and a late

group that became RT-PCR negative at 14 days or later (40)

(Figure 4, Supplementary Table 5). In both groups, we found

positive HERV loci with a sporadic pattern of HERV expression
Frontiers in Immunology 04
in both early and late infections. However, several HERV sites were

common to both groups. The most frequently shared HERV locus

HERV-021, which was positive in all 5 early samples and 3 of 5 late

samples. The second most common, HERV-089, was found in 4 of

the 5 early samples but was 0 in all of the 5 late samples (Figure 4,

Supplementary Table 5).

Numerous studies have described patients with post-acute

sequelae of COVID-19 (PASC), also known as long-term

COVID-19 (16, 17, 41–46). We analyzed 12 samples from PASC

patients taken 8 months post-acute COVID-19 as part of the larger,

well-characterized Long-term Impact of Infection with Novel

Coronavirus (LIINC) study (46). The patients were adults (greater

than 18 years old) with greater than 2 weeks past onset of COVID-

19 symptoms or, if the patients were asymptomatic, the first positive

diagnostic test. During the post-acute phase, the patients had

multiple symptoms associated with PASC including fatigue,

shortness of breath, concentration problems, headaches and

trouble sleeping that were most common through the 8 months

of observation (41, 42, 46) (Supplementary Table 1). For our

analysis, PBMCs from these 12 patients were analyzed by scRNA-

seq (46). Notably, three HERV loci (HERV 001, 002, and 003) were

positive in all 12 patients, while 11 of the 12 patients had positive

HERV loci (HERV 011, 012, and 018). In a second analysis, we used

a scRNA-seq dataset from a different study that examined PASC

patients at 4 months, 8 months, and 2 years (47). In this study, most

participants had their first visit between 2 and 3 months after their
FIGURE 3

Distribution of positive HERV loci found in individuals who were administered either the influenza or COVID-19 vaccines. The positive HERV loci
found in PBMCs from patients who were administered either the influenza or COVID-19 vaccine is depicted in a vertical column. HERV loci that
were accessed were depicted in a horizontal column. Red box indicates a positive HERV loci, yellow indicates a negative HERV loci below cut-off
values for depth and windows. Number of individuals per each group; Flu vaccine: 1, COVID vaccine 6. Note some samples contained multiple time
points – see Supplementary Table 4 for detailed information on identity of HERV loci.
FIGURE 2

Distribution of positive HERV loci found in patients infected with influenza, dengue virus or sepsis. The positive HERV loci found in PBMCs from
patients infected with influenza, Dengue virus or sepsis is depicted in a vertical column. HERV loci that were accessed were depicted in a horizontal
column. Red box indicates a positive HERV loci, yellow indicates a negative HERV loci below cut-off values for depth and windows. Numbers of
patients per each group; Flu: 5, Dengue virus: 15, Sepsis: 4. Note some samples contained multiple time points – see Supplementary Table 3 for
detailed information on identity of HERV loci.
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initial diagnosis, with follow-ups at month 4, month 8, and year 2.

PASC individuals were identified based on the presence of at least

one of three major symptoms (fatigue, dyspnea or chest pain) at

month 4 (Figure 4, Supplementary Table 5). An additional

challenge in the scRNA-seq analysis was that control samples

from normal individuals in this study and PASC samples at 4

months, 8 months, and 2 years were combined at a 1:1 ratio. From

our analysis, we identified a few positive HERV loci at the 4- and 8-

month time points and found no patients with positive HERV loci

at 24 months. Thus, despite the complication of mixing of control

and experimental samples, we still detected positive HERV loci a 4

and 8 months but none at 24 months.

In summary, we found that the three acute COVID-19 sample

sets (totaling 51 samples) and the 12 samples from PASC patients

had the highest number of unique HERV loci sites (Supplementary

Table 6). A comparison between acute COVID-19 and PASC

samples revealed 69 unique HERV loci in the acute samples and

52 unique loci in the PASC samples. Additionally, 51 positive

HERV loci were identified in both acute and PASC samples,

however, no single HERV locus was found in all acute and

PASC patients.

To highlight the differences between acute, the early/late

recovered (ERS/LRS), and the PASC samples, we analyzed the

number of good/usable windows identified for each positive
Frontiers in Immunology 05
HERV locus (Figure 5, Supplementary Table 7). Overall, there

was a clear difference in the distribution of HERV loci, with

PASC samples exhibiting a higher number of good/usable

windows compared to acute or early/late samples. The difference

was most evident in HERV loci 001-017. In the acute samples, we

identified one individual (251-0) with a cluster of HERV loci

(HERV 114-121) showing a high number of good/usable

windows, such as HERV-118 with HERV-339 good/usable

windows. Interestingly, this elevated number of good/usable

windows was not observed in the same individual 7 days later

(251-7). To quantify these differences, we compared the number of

good/usable windows in acute versus PASC samples. We identified

5 HERV loci present only in PASC patients (Figure 6A). The

average number of good/usable windows for these 5 HERV loci

ranged from 10 to 25. Additionally, we identified 6 HERV loci

(HERV001, 004, 006, 012, 015, and 020) where the number of good/

usable windows in PASC samples was significantly greater than in

acute sample (Figure 6B, Supplementary Figure 1).

One of the most striking results was found from the analysis of

HERV001, which was detected in all 12 PASC patients with good/

usable window counts ranging from 172 to 332 that were all

significantly different than that found in patients with acute

COVID-19. In contrast, we found 5 HERV loci (HERV025, 054,

057, 097, and 106) that exhibited similar numbers of good/usable
FIGURE 5

Distribution of positive windows found from analysis of samples from acute patients, early or late recovery patients and PASC patients. The number
of the positive HERV loci for each locus were compiled and presented in a heatmap. The 8-month PASC patient sample set contained the greatest
number of positive HERV loci. See Supplementary Table 7 for detailed information on identity of HERV loci.
FIGURE 4

Distribution of positive HERV loci found in individuals with early or late recovery, or those identified as PASC. The positive HERV loci found in PBMCs
from patients post COVID-19 infection, categorized as early, late, or identified as PASC is depicted in a vertical column. HERV loci that were
accessed were depicted in a horizontal column. Red box indicates a positive HERV loci, yellow indicates a negative HERV loci below cut-off values
for depth and windows. Number of patients per each group; ERS: 5, LRS: 5, PASC 1 (8m): 12, PASC 2: 2. Note some samples contained multiple time
points – see Supplementary Table 5 for detailed information on identity of HERV loci.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1621657
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Koo and Morrow 10.3389/fimmu.2025.1621657
windows between acute and PASC samples, with no significant p-

value observed (Supplementary Figure 2A). Additionally, 5 HERV

loci (HERV083, 067, 087, 065, and 114) were detected only in the

remaining COVID-19 patient samples and not in the PASC sample

(Supplementary Figure 2B).

We next examined the sequencing read depth of positive HERV

loci samples. We found that 2 HERV loci (HERV001 and 015) had

significantly higher read depth in PASC samples compared to acute

COVID-19 samples (Figure 7). In contrast, no significant difference

in read depth was observed between acute and PASC samples for

HERV020 and HERV012 (Figure 7, Supplementary Figure 3).

These findings suggest two distinct patterns of HERV expression

when comparing acute and PASC sample sets: (1) a pattern in

which both the number of good/usable windows and sequencing
Frontiers in Immunology 06
depth are significantly greater in PASC samples compared to acute

samples, and (2) a pattern in which PASC samples have

significantly more good/usable windows than acute samples but

without a significant difference in sequencing read depth.

We next mapped the HERV loci identified in Figures 6A, B to

the 23 chromosomes (Supplementary Figure 4). Overall, we did not

observe clustering of the identified HERV loci; instead, they were in

regions of the chromosomes that were not devoid of HERV loci.

Chromosome 1 contained the highest number of HERV loci (2),

while Chromosomes 2, 3, 5, 6, 7, 12, and X each contained a single

HERV loci. HERV001 was mapped to chromosome 5 within an

intron 1–2 of the janus kinase and microtubule interacting protein 2

(JAKMIP2) gene (Figure 8). In contrast, HERV015 was mapped to

Chromosome 2 in an independent region that was near the Mer
FIGURE 6

Comparison of the number of positive windows obtained from PASC patients and those found in the remaining datasets (acute, vaccinated, sepsis,
influenza, Dengue virus, influenza virus and 24-month post-COVID). The number of positive windows for Individual HERV loci in the sample set
from 8-month PASC patients was compared with the combined number of positives for the same loci from the remaining datasets. (A) Positive
HERV loci identified at specific loci in the 8-month PASC samples with no positive HERV loci detected in any other datasets. The average number of
good/usable windows, along with the standard deviation, observed in the PASC samples is shown in the figure. (B) Positive HERV loci identified at
specific loci in the 8-month PASC samples compared to those detected at the same loci in the remaining datasets. The average number of good/
usable windows for the top HERV loci in the PASC group was used to perform a t-test against the acute group. The number of positive windows for
1) HERV001 loci in PASC samples versus those found in the other samples 163-7 (Acute 3, Amrute et al.), TS4-A (Acute 2, Unterman et al.), 2)
HERV015 loci in PASC samples versus those found in the other samples 80-0, 80-7, 154-0, 163-0, 163-7, 251-0, 251-7 (Acute 3, Amrute et al.), 3)
HERV012 loci in PASC samples versus those found in the other samples S1-nCOV1, S12-nCOV6 (Acute 1, Lee et al.) and NS-1A, TP-6A, TP-7A, TP9-
B, TS-4A, 4) HERV020 loci in PASC samples versus those found in the other samples 145-0, 163-0, 163-7,272-0, 272-7 (Acute 3, Amrute et al.). "**"
= p-value < 0.05, "***" = p-value < 0.001.
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proto-oncogene tyrosine kinase (MERTK) which is highly

expressed in macrophages, monocytes, and progenitor cells (48).

HERV012 was mapped to chromosome 6, located 5’ of the solute

carrier family 16-member 10 (SLC16A10), while HER020 was

mapped to Chromosome X within an intron of the gene proline-

rich and glia domain 1 (PRRG1) gene (Supplementary Table 8).

Since the HERV-001 locus was the most amplified, we next

compared the expression of JAKMIP2 and the neighboring genes:
Frontiers in Immunology 07
STK32A, DPYSL3, SPINK1, and SCGB3A2. Using ANOVA

followed by Tukey’s HSD test, we compared the following groups:

control, acute3, PASC, ERS-LRS, and PASC-upto24m (Figure 9).

From this analysis, we identified 3 genes (DPYSL3, JAKMIP2, and

SPINK1) with significantly higher good/usable window numbers in

PASC group. Additionally, 2 genes (SPINK1 and JAKMIP2)

exhibited significantly higher read depth in the PASC group

(Figure 10). In contrast, the host genes at a greater distance from
FIGURE 7

Comparison of the sequence read depths of PASC patients at the same HERV loci in the remaining datasets. Comparison of the read depths for four
HERV loci between the PASC dataset and the acute, vaccinated, sepsis, influenza and Dengue virus datasets using t-test (Supplementary Table 7).
Any statistically significant p-value (p < 0.05) are shown in the figure (‘ns’ indicates not significant). (A) The sequence read depth for HERV001 loci in
PASC samples versus those found in the acute sample 163-7 (Acute 3, Amrute et al.) and TS4A (Acute 2, Unterman et al.). (B) The sequence read
depth for HERV015 loci in PASC samples versus those found in samples 80-0, 80-7, 154-0, 163-0, 163-7, 251-0, 251-7 (Acute 3, Amrute et al.) and
LRS1 (ERS/LRS, Wen et al.). (C) The sequence read depth for HERV020 loci in PASC samples versus 145-0, 163-0, 163-7,272-0, 272-7 (Acute 3,
Amrute et al) and ERS5 (ERS/LRS, Wen et al.). (D) The sequence read depth for HERV012 loci in PASC samples versus samples S1-nCOV1, S12-
nCOV6 (Acute 1, Lee et al.) and NS-1A, TP-6A, TP-7A, TP9-B, TS-4A (Acute 2, Unterman et al.). "**" = p-value < 0.001, "ns"= not significant.
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JAKMIP2 and SPINK1, the expression as determined by number of

windows and read depth of STK32A, DPYSL3 and SCGB3A2 were

not different between control, acute 3 PASC, ERS-LRS and PASC-

upto24m (Figure 9, Supplementary Table 9). Collectively, these
Frontiers in Immunology 08
results establish a pattern of co-amplified transcription of select

HERV loci and neighboring host genes, consistent with localized

epigenetic remodeling known to occur following COVID-19

infection (20, 49).
FIGURE 9

Analysis of host gene expression in control, acute, early/late, PASC 24 month and 8 month PASC. For each host gene, the number of good/usable
windows observed in each patient group was compared to the Control group using ANOVA followed by Tukey’s HSD test. Any statistically significant
p-value (p < 0.05) are shown in the figure (‘ns’ indicates not significant). From this analysis, we identified 3 genes (DPYSL3, JAKMIP2, and SPINK1)
with significantly higher numbers of good/usable windows in the PASC group.
FIGURE 8

Location of Host of HERV-001 and surrounding genes on Chromosome 5. (A) Chromosome 5 is shown with the subregion 5q32 indicated. A red
box highlights the genomic region containing HERV-001 and its neighboring host genes. (B) An expanded view of this 772 kb region includes the
host genes JAKMIP2, DPYSL3, SPINK1, STK32A, and SCGB3A2 (highlighted in red). HERV-001, located within intron 1–2 of JAKMIP2, is marked with a
blue box and annotated as HERV-001 (intron of JAKMIP2). The bolded JAKMIP2-HERV001-SPINK1 reflects the localized amplification of the
expression of these genes in the monocytes from the PASC.
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Discussion

In this study, we used our previously described WHA to

characterize the expression of HERV loci in monocytes from

healthy individuals and patients with infections, including

COVID-19, influenza, sepsis and Dengue virus. We identified

HERV loci that were expressed in infected patients compared to

normal individuals and those who were exposed but did not develop

an infection. We also analyzed post COVID-19 infection and found

extensive positive HERV loci in monocytes from patients after

infection and patients with PASC 8 months after acute COVID-19.

Distinct patterns of HERV loci expression, determined by the

number of good/usable windows and sequence depth, were

observed when comparing acute COVID-19 and PASC patients.

Finally, in these PASC patients, we demonstrate that the presence of

localized transcription where both host genes and HERV loci were

co-amplified due to localized epigenetic modification known to

occur because of the expansion of myeloid precursors following

COVID-19 infection.

In a previous study, we analyzed a scRNA-seq dataset taken

from PBMC that had been stimulated in vitro with LPS, a known

activator of innate immune cells such as monocytes (50–52). Using

the WHA, we identified numerous HERV loci that were positive

only in the monocytes from LPS-stimulated PBMC, but not in
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resting PBMC (30). We then used theWHA with scRNA seq PBMC

datasets from a panel of healthy individuals to establish a

pangenome control set with negative HERV loci (30). Comparing

patients with acute COVID-19 or trauma to this pangenome

control revealed positive HERV loci expression in monocytes

from individuals with acute COVID-19 and those who had

experienced individuals that had physical trauma. In the current

study, we expanded our WHA analysis to include two additional

scRNA-seq datasets from individuals with infections caused by

acute COVID-19, influenza, Dengue virus, and sepsis. For each

disease, we identified HERV loci that were positive in patients but

negative in the 31-pangenome controls. We observed differences in

the numbers of positive HERV loci from examination of individuals

with the different diseases. A possible explanation for this variation

could be the timing of sample collection. Given the short half-life of

circulating monocytes, the interaction between the pathogen and

the immune system at different time points could influence the

extent of innate immune activation (53). Although we found

considerable variation in the number of positive HERV across

samples, the highest numbers were observed in patients with

respiratory viral infections, specifically COVID-19 and influenza.

Previous studies have demonstrated that respiratory viral infections

are particularly effective at stimulating the innate immune system

(5, 54, 55). Even the COVID-19 and influenza vaccines led to the
FIGURE 10

Analysis of host gene expression in control, acute, early/late, PASC 24 month and 8-month PASC. For each host gene, the sequence depth observed
in each patient group was compared to the Control group using ANOVA followed by Tukey’s HSD test. Any statistically significant p-value (p value <
0.05) are shown in the figure (‘ns’ indicates not significant). Two genes (SPINK1 and JAKMIP2) exhibited significantly higher read depth in the PASC
group.
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expression of positive HERV loci, suggesting that these viral

proteins in the absence of active respiratory infection can activate

innate immunity, although the effect may also be influenced by the

adjuvants co-administered with these vaccines that can also

stimulate innate immunity (14).

One of the most striking findings in our study was the

identification of positive HERV loci in patients even after the

resolution of the acute phase of COVID-19. A sporadic pattern of

HERV loci expression was observed in samples from patients at both

early and late time points following acute infection as determined by

RT-PCR analysis. The timing of sample collection after the acute

infection in these patients then was well beyond the half-life of

circulating monocytes (53). Even more remarkable, positive HERV

were detected in all patients from a scRNA-seq analysis of samples

taken 8 months post-acute COVID-19, with 3 specific HERV loci

positive across all 12 patients that were a subset of a larger cohort

(46). Yin et al. reported that 8 of these 12 patients exhibited

symptoms consistent with long-term COVID-19 at month 8, while

the remaining 4 had post-COVID-19 symptoms that had resolved by

that time (41, 42, 46). Although no specific patient characteristics

explained the clustering of these 12 individuals, the study’s inclusion

criteria may have biased the sample toward patients with unresolved

symptoms (41, 42). In other words, patients experiencing persistent

symptoms were more likely to remain in the study to gain insights

into resolving their post COVID-19 symptoms (41, 42). Support for

the uniqueness of the 12 PASC samples comes from the analysis of a

second scRNA-seq dataset with patients at 4, 8, and 24 months post-

COVID-19 (47). In this study, different criteria were used to define

long-term COVID-19, and normal patient samples were combined

with experimental samples for scRNA-seq analysis. Despite these

methodological differences, a few positive HERV loci were detected at

the 4- and 8-month time points, but none were observed at

24 months.

Further analysis of the 12 individuals with PASC revealed that

some of the positive HERV loci in the 12 PASC samples had a greater

number of good/usable windows (indicative of longer transcript

lengths), and sequence read depth when compared to samples from

patients with acute COVID-19. One that stands out is the good

window/depth amplification found in HERV001 that is located

between introns 1–2 of the JAKMIP2 gene. In acutely infected

COVID-19 patients, we found parallel expression of JAMMIP2 and

HERV001 in a few samples, while in the PASC patients we found

amplification of both JAKMIP2 and HERV001. Consistent with these

results, a previous study noted that JAKMIP2 expression occurs in a

temporal fashion in pluripotent stem cells during development (56).

From a region analysis of gene expression surrounding JAKMIP2-

HERV001, we also found significant expression of the gene serine

peptidase inhibitor Kazal type 1 (SPINK1) in the monocytes from

PASC patients. A previous study demonstrated that silencing of

SPINK1 suppressed the proliferation of hepatocellular carcinoma

cells leading to the possibility that SPINK1 possessed oncogenic

properties (57). Interestingly, we found that the expression of
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several other genes at a further distance from the JAKMIP2-

HERV001-SPINK1 genes did not show significant increase in

expression in the PASC patients from the controls. Since previous

studies have shown viral lung infections can result in the epigenetic

modification of myeloid precursors following COVID-19 infection

that could last for up to a year after infection, our analysis

demonstrating the localized epigenetic remodeling and re-

expression of previously silenced JAKMIP2-HERV001-STINK1

might have a profound effect on monocyte function (10, 19, 58–

62). Further studies will be required to assess the extent of host cell

expression in the same chromosome locale of additional expressed

HERV loci and the impact of that the expression of host genes might

have on the patients with PASC.
Conclusion

Our results characterize the expression of select HERV loci

following viral infections, which were not expressed in normal

monocytes from patient controls. We found distinct patterns of

expressed HERV loci in monocytes from PBMC across 3 acute

COVID-19 datasets. These patterns were also different from those

found in patients with influenza infections, Dengue virus infections

and sepsis and in individuals who received the COVID-19 or

influenza vaccine. Collectively, these findings are consistent with

our previous study and support a patient specific expression pattern

for the HERV loci (30). However, in contrast to the acute COVID-

19 infections, the PASC datasets revealed several expressed HERV

loci that were shared across multiple patients. We acknowledge

limitations in our analysis. First, we used a limited number of

studies because our analysis relied on publicly available scRNA-seq

datasets where raw sequencing data were also accessible. Second,

the COVID-19 datasets included patient sample sets that were not

standardized across different studies. Importantly, for the analysis

of post COVID-19 patients, Peluso et al. pointed out that

substantial variability exists in the clinical features of PASC,

suggesting that sub-phenotypes may exist, which could impact

comparisons between different studies (41, 42). Finally, although

the 31-control sample set contained a range of ages that overlapped

in general with the patient samples, Mao et al. has recently

demonstrated the contribution of age and epigenetic

modifications to the reactivation of certain HERV (31). To

overcome these limitations, future analyses with longitudinal

sampling will be essential to track the patterns of select HERV

loci expression and correlate them with specific features of PASC.

Even with these limitations, our studies establish patterns of co-

amplified HERV loci and neighboring host gene transcripts in

monocytes from patients with PASC, providing a new prospective

on understanding the clinical features of long term COVID-19.

Further delineation of the extent of these HERV-host gene patterns

in PASC, which are most likely due to the localized epigenetic

remodeling of myeloid progenitor cells, will be necessary to better
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correlate these findings with the clinical features of long-term

recovery from COVID-19.
Materials and methods

Datasets used in this study

In this study, we used 14 publicly available scRNA-seq datasets

from 1) 6 healthy individuals from Amrute et al. (13), 2) 2 healthy

individuals from Derbois et al. (50), 3) 10 healthy individuals from

Chen et al. (63), 4) 3 healthy individuals from Thompson et al. (64),

5) 4 healthy individuals from Lee et al. (35) and 6) 5 healthy

individuals from Yu et al. (34). For patients’ data, we obtained

publicly available scRNA-seq datasets from 1) 11 COVID-19

patients and 5 patients infected with influenza A virus from Lee

et al. (35), 2) 10 COVID-19 patients from Unterman et al. (7), 3) 12

hospitalized COVID-19 patients, with samples collected at both day

0 and day 7 of enrollment from Amrute et al. (13), 4) 3 individuals

who were in close contact with COVID-19 patients (exposed) and

10 outpatients (infected) who confirmed COVID-19 from Yu et al.

(34), 5) 6 individuals who received two doses of an mRNA COVID-

19 vaccine without prior SARS-CoV-2 infection from Terzoli et al.

(39), 6) 1 individual who received an influenza vaccine without

having been vaccinated against influenza for at least 3 years from

Turner et al. (65), 7) Early Recovery Stage (ERS) and Late Recovery

Stage (LRS) COVID-19 patients from Wen et al. (40), 8) 12 PASC

patients who consistently met the case definition for LC symptoms

for 8 months following COVID-19 infection from Yin et al. (46), 9)

2 COVID-19 patients followed for 24-months from diagnosis, with

sample collected at up to 8 pre-specified time points from

Phetsouphanh et al. (47), 10) 4 sepsis patients and 3 sepsis

patients with Acute Respiratory Distress Syndrome (ARDS) from

Jiang et al. (6), and 11) 15 dengue patients from Ghita et al. (38)

Detailed sequence reads information for each sample is listed in

Supplementary Table 10.
scRNA-seq data with WHA analysis

The scRNA-seq PBMC datasets were downloaded in either fastq

or bam format, depending on availability from NCBI SRA or GEO. If

only bam files were available, they were converted to fastq format

using 10x Genomics Cell Ranger software (v 7.1.0) bamtofastq (v

1.4.1) (66). All fastq files were aligned to the human reference genome

(GRCh38) using Cell Ranger count with default parameter settings.

Monocytes were then selected based on matrix files generated by

Azimuth (https://satijalab.org/azimuth/) (37), which normalizes

gene expression data and performs clustering to predict cell

identity. To extract sequence reads corresponding to monocytes,

barcodes associated with these cells were listed in.txt file and used to
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filter bam files with samtools (v 0.1.19). The resulting.bam files were

then converted to fastq files using bedtools (v 2.26.0).

Processed fastq files were then used for Window-based HERV

Alignment (WHA) analysis. Each sample was duplicated for WHA

analysis and mapped to 3,220 HERV loci as reference data

(Supplementary Table 11) using BWA (v 0.7.13) with minimum

percent match threshold of >99% (30). First, we selected HERV loci

with 100% WSS scores. From these, loci with a sequence depth of

less than 3 or fewer than 9 usable windows were classified as

negative HERV loci. Conversely, loci with a sequence read depth

greater than 3 and at least 9 usable windows were classified as

positive HERV loci.

The HERV profiles of healthy individuals and patients were

compared through manual filtering using Excel files to identify

HERV loci unique to patient samples, ensuring that all control

samples excluded any positive HERV loci. To achieve this, we

selected only negative values for all healthy individuals, while

ensuring that at least one positive value remained in the patient

samples. From this analysis, a total of 208 HERV loci were selected

for further analysis. Heatmaps were generated to visualize

differences in HERV loci across various groups using STAMP

(67), and R (68).

To determine significant differences in sequencing depth and

good/usable windows between the acute COVID-19 group and the

long-term COVID-19 group, we performed a t-test using the

ggplot2 package in R (https://cran.r-project.org/web/packages/

ggpubr/index.html). A P value < 0.05 was considered statistically

significant for this analysis.
Host gene analysis

To further investigate the genes, STK32A, DPYSL3, JAKMIP2,

SPINK1, and SCGB3A2, which are located near our HERV locus of

interest (HERV-001), we reprocessed the fastq files (monocytes

PBMC) used in our WHA analysis. This time, all files were mapped

using each gene as reference data. For each group (control, acute3,

PASC, ERS/LRS, and PASC-upto24m), we recorded the sequence

depth and number of good/usable windows for each gene.

Additionally, we performed an ANOVA statistical analysis

followed by Tukey’s HSD test to determine statistical significance

(P value < 0.05) for each gene.
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SUPPLEMENTARY FIGURE 1

Comparison of the number of positive windows obtained from PASC patients
and those found in the remaining datasets. The average number of good/

usable windows, along with the standard deviation, observed in the PASC
samples is shown in the figure.

SUPPLEMENTARY FIGURE 2

Comparison of the number of positive windows obtained from PASC patients

and those found in the remaining datasets. (A) The average number of good/
usable windows, along with the standard deviation, observed in the PASC

samples is shown in the figure. (B) Positive HERV loci identified not in the 8-
month PASC group, but only in the remaining groups.

SUPPLEMENTARY FIGURE 3

Comparison of the sequence read depths of PASC with the remaining data

sets. Comparison of the read depths for two HERV loci between PASC and the
remaining Acute COVID group using t-test.

SUPPLEMENTARY FIGURE 4

Chromosomal distribution of HERV loci. This figure shows the

full chromosomal map illustrating the distribution of all identified HERV
loci across the human genome. The specific regions highlighted in red/

blue correspond to the HERV loci used in Figures 6A and B. All
other black markers represent the full set of HERV loci analyzed in

this study. See Supplementary Table 11 for the full set of HERV
genome coordinates.
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