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Age-related conditions, such as neurodegenerative disease, cancer, and

autoimmune disorders, are increasingly recognized as closely linked with the

gradual deterioration of the immune system. Regulatory T cells (Tregs) are a small,

specialized subset of T lymphocytes that play a critical role in maintaining immune

homeostasis and self-tolerance. As individuals age, Treg cells demonstrate reduced

capacity to suppress some autoreactive immune responses, although they largely

retain their capacity to regulate effector antiviral and antitumor immunity. Unlike

conventional effector T cells (Teff), which primarily derive energy from glycolysis,

Tregs rely more on mitochondrial oxidative phosphorylation to fulfill their energy

requirements. This metabolic profile renders them particularly sensitive to

mitochondrial dysfunction, underpinning the critical role of mitochondrial

protective pathways in preserving the functional integrity of Treg cells. The

mitochondrial unfolded protein response (mitoUPR) is gaining special relevance

among these protective mechanisms. In this review, we examine the complex

interplay between immune aging and mitochondrial dynamics, with particular

emphasis on the essential role of mitoUPR in supporting Treg function. We further

discuss how targeting mitochondrial stress responses may offer novel therapeutic

avenues for age-related diseases characterized by Treg dysfunction.
KEYWORDS

regulatory T-cells, cell metabolism, cellular stress, oxidative stress, unfolded protein
response, immunosenescence, aging
Introduction

Aging is characterized by a progressive decline in physiological processes across the

lifespan of an organism, with the immune system among the most profoundly affected (1).

This age-associated immune deterioration, a phenomenon known as immunosenescence,

contributes to the higher susceptibility to infections, chronic inflammation, and age-related
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diseases (2). Notably, different immune cell types exhibit distinct

responses to aging, likely reflecting their different metabolic

demands and stress response mechanisms.

Regulatory T cells (Tregs) have emerged as a key population in

the context of immunosenescence (3–6). This small subset of T cells

plays a critical role in maintaining immune homeostasis by

promoting tolerance and preventing excessive inflammatory

responses in both innate and adaptive immune arms (7, 8). Treg

cells possess a distinct metabolic profile. Unlike conventional

effector T (Teff) cells, Tregs rely heavily on mitochondrial fatty

acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to

sustain their suppressive function (9). As such, Treg cells are

particularly vulnerable to agents that compromise mitochondrial

function, including reactive oxygen species (ROS), environmental

toxins, and genotoxic stressors, which tend to accumulate with age

(1, 10, 11). To preserve their functional integrity, Tregs engage

different mitochondrial protective mechanisms, including antioxidant

pathways, DNA repair mechanisms, and mitochondrial quality

control systems (12–16).

One of such mitochondrial quality control systems is the

mitochondrial unfolded protein response (mitoUPR). The

mitoUPR responds to the accumulation of unfolded or misfolded

mitochondrial proteins by upregulating the transcription of

chaperones and proteases (17, 18). Disruption of mitoUPR results

in the accumulation of dysfunctional mitochondria or misfolded

mitochondrial proteins, which may contribute to the onset and

progression of a variety of age-related pathologies such as

neurodegenerative disorders, metabolic syndromes, and systemic

inflammation (19, 20). We have recently demonstrated that Tregs

exhibit increased baseline expression of different mitoUPR proteins

compared to conventional T cells (Tconv) (21).

This review explores the dynamic interplay between immune

metabolism and aging, with a particular focus on Treg cells and the

relevance of the mitoUPR in sustaining Treg function and driving

their fate.
Immune cells in aging

A properly functioning immune system is essential for health

and disease protection. With advancing age, immunosenescence

leads to increased vulnerability to chronic inflammation, infectious

diseases, and reduced vaccine responsiveness in the elderly

population (22).

The innate immune system serves as the body’s first line of

defense against infections and injuries, providing a rapid and non-

specific response already active from birth (23–25). Key

components of the innate immune system include physical

barriers such as the skin and mucosal membranes, along with

chemical and cellular defenses (23). Most innate immune cells,

except for natural killer (NK) cells, derive from myeloid progenitors

in the bone marrow (26). Dendritic cells (DCs) and NK cells bridge

the innate and adaptive responses by alerting and activating T cells

(27, 28). Meanwhile, other innate immune cells neutralize

pathogens by releasing cytotoxic chemicals, cytokines, chemokines,
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and antimicrobial peptides, or by direct pathogen elimination via

phagocytosis (29). Traditionally viewed as lacking memory, the

innate immune system is now recognized to exhibit trained

immunity – a long-term functional reprogramming, leading to an

enhanced responsiveness to subsequent, even unrelated, challenge

(30). This response is not antigen-specific but rather represents a

broad, heightened state of readiness in the cellular innate immune

system (30–32).

In aging individuals, innate immune cells exhibit many types of

functional impairment, hindering their ability to facilitate tissue

repair and properly initiate adaptive responses (33). DCs exhibit

impaired antigen uptake and dysfunctional T cell priming,

sometimes leading to the activation of T cells in response to self-

DNA (34, 35). NK cells in aged individuals secrete less interferon

gamma (IFNg), a key cytokine for T cell differentiation (36, 37).

Neutrophils exhibit reduced migration and impaired production of

neutrophil extracellular traps (NETs), essential for microbial

neutralization and elimination (38–40). Macrophages display

impaired chemotaxis and increased ROS production, compromising

their ability to clear pathogens (41). Additionally, in the elderly,

microglial cells in the central nervous system become sensitized by

the chronic, low-grade inflammation that develops with aging, a

condition known as inflammaging (42–44).

The adaptive immune system, while slower to respond than the

innate immune system, is characterized by its antigen specific

response and the generation of immunological memory (25).

Activation of adaptive immunity is initiated through the

recognition of individual antigens by clonotypic, highly specific

receptors expressed on B and T lymphocytes, enabling targeted and

long-lasting immune responses (45, 46). In the bone marrow,

common lymphoid progenitors develop from hematopoietic stem

cells (26). These progenitors give rise to committed T cell, B cell, or

NK cell precursors. Once committed to the T cell lineage, T cell

precursors migrate to the thymus where they become CD4+ helper

T cells, CD8+ cytotoxic T cells, or Treg cells (47). After their thymic

release, following antigen exposure, CD4+ and CD8+ T cells

differentiate into memory T cells that exhibit enhanced

responsiveness upon re-exposure to the same antigen (48). In

adulthood, thymic involution leads to a progressive decline in the

output of naïve T cells (49); however, the peripheral T cell pool is

maintained through homeostatic proliferation and survival within

secondary lymphoid tissues (50, 51). This shift from thymic output

to peripheral T cell generation dynamics imposes a replicative

stress, thereby increasing the risk of replication-induced genomic

instability and cellular senescence, and ultimately contributing to

functional decline and eventual exhaustion of the T cell population

(52, 53).

Unlike other T cell subsets, the Treg cell compartment remains

stable or even expands with age (54–56). While aged Tregs retain

many of their core suppressive functions, some regulatory

mechanisms become selectively impaired (Figure 1). Notably,

their ability to control the proliferation of IL-17 producing T

helper cells (Th17) is compromised in chronic, but not acute,

inflammatory conditions (57, 58). In contrast, aged Tregs

continue to effectively suppress antigen-presenting cell function
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and IFN-g production (58), which is critical for antiviral and

antitumor immunity and promoting the expression of immune

checkpoint inhibitors (59). In addition, Tregs in aged mice are less

efficient in suppressing IL-2 production of effector T cells (60). This

selective dysregulation in Treg function during aging may

contribute to the paradoxical combination of weakened immunity

against infections and increased autoimmune responses observed in

the elderly, underscoring the importance of Treg cells in aging-

related immune remodeling and their relevance as targets for

immunotherapeutic strategies in aging. The distinct metabolic

profiles of glycolytic-driven Teff and mitochondrial-reliant Treg

cells (9) has led to extensive investigation into the role of

mitochondrial function in maintaining the functional integrity

of Tregs.
Mitochondrial function in Tregs

Mitochondria are intracellular, membrane-bound organelles

with diverse roles in cellular metabolism and homeostasis (61), as

outlined in Figure 2. In the immune system, mitochondria are

essential for regulating inflammation and determining cell

development, fate and function (62). Mitochondria drive

inflammatory signaling through the release of mitochondrial

damage-associated molecular patterns (mtDAMPs), including

mitochondrial ROS (mtROS), mitochondrial N-formyl peptides,

and mtDNA (63). These mtDAMPs act as endogenous “alarm

signals” that are recognized by pattern recognition receptors

(PRRs) such as RIG-1-like receptors (RLRs), NOD-like receptors

(NLRs), and Toll-like receptors (TLRs) expressed predominantly in

cells of the innate immune system (64). Engagement of PRRs

triggers downstream signaling cascades that lead to the induction

of pro-inflammatory cytokines and tissue-repair intermediates (65).
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In addition to playing a major role in initiating immune responses

to both microbial pathogens and sterile insults caused by cell death

or tissue damage, mitochondrial signaling and metabolism regulate

the differentiation and functional programming of immune cells

(62, 66–68). Mitochondrial activity also influences both the

production of cytokines and the responsiveness of immune cells

to cytokine-mediated signals (69, 70). The importance of

mitochondrial health in immune regulation is further highlighted

by the observation that many immunosenescence-associated

alterations are closely linked to progressive mitochondrial

dysfunction (71).

In Treg cells, mitochondria play a unique role in their survival

and function (9, 14, 72–75). Mitochondrial metabolism, especially

FAO and OXPHOS are essential for the in vitro suppressive abilities

of Tregs (9). In contrast, Tconv use glycolytic metabolism for rapid

energy production to support their effector functions (9). Genetic

studies further underscore the importance of mitochondrial

integrity in maintaining the suppressive function of Treg cells, as

the deletion of the mitoUPR-related proteins SIRT3 or PGC1-a
leads to impaired Treg suppressive activity (72). Different lines of

evidence also support a critical role of mitochondrial metabolism in

the differentiation of Tregs from naïve T cells (14, 76). Interestingly,

in the tumor microenvironment, disruption of OXPHOS and lipid

metabolism in tumor-infiltrating Tregs has been shown to

paradoxically bolster their suppressive capacity, mediated in part

by type I IFN signaling and increased IL-10 production (77), also

demonstrating that not all Treg suppressive functions are

dependent on lipid metabolism and OXPHOS. Likewise, freshly

isolated ex vivo human Tregs exhibit high glycolytic activity (78).

However, disruptions in mitochondrial OXPHOS can increase

oxidative stress, potentially compromising Treg survival by

inducing apoptosis (79). Although excessive oxidative stress is

detrimental to Treg cell function, low levels of ROS are essential
FIGURE 1

Tregs in aging. In aged individuals, Tregs lose their capacity to suppress IL-17 mediated autoimmunity but retain their ability to suppress antigen
presentation, as well as antiviral, and antitumor immune responses. This imbalance may contribute to the simultaneous increased risk for
autoimmunity and cancer with aging.
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for intracellular signaling and proper immune regulation (80).

mtROS, particularly hydrogen peroxide (H2O2), is an important

second messenger that regulates key transcriptional pathways,

including nuclear factor kappa B (NFkB) signaling essential for

Treg development (80, 81), as well as nuclear factor of activated T

cells (NFAT) and activator protein 1 (AP-1), which are involved in

T cell signaling and gene expression (82). Additionally, mtROS play

pivotal roles in Treg induction by macrophages and in the

suppressive function of thymus-derived Tregs (83, 84). These

findings illustrate the complex role of ROS in Treg biology, acting

as both essential signaling molecules and potential stressors,

depending on their levels and cellular context.

Mitochondrial dynamics of fusion and fission are essential for

maintaining mitochondrial integrity and function under dynamic

cellular conditions (85), and play a pivotal role in Treg cell biology.

Mitochondrial fusion is a protective mechanism that mitigates

cellular stress by enabling the exchange of mitochondrial DNA,

proteins, and metabolites between damaged and healthy

mitochondria (86). This process is largely mediated by the

GTPases mitofusin 1 (MFN1), mitofusin 2 (MFN2), and optic

atrophy protein 1 (OPA1) (85). Mitochondrial fusion is a crucial

metabolic checkpoint necessary to promote Treg differentiation,

lineage commitment and enhancing their suppressive function (87,

88). Conversely, mitochondrial fission – the division of

mitochondria into smaller units – is mediated primarily by

dynamin-related protein 1 (DRP1) (89). While mitochondrial

fission is not required for Treg differentiation (85), its inhibition

increases Treg accumulation in the central nervous system and
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spleen in animal models of autoimmune disease, such as multiple

sclerosis (90). Mitochondrial fission remains essential for

maintaining the health of the mitochondrial network (91). When

fusion alone is insufficient to ameliorate damage from dysfunctional

mitochondrial fragments, fission facilitates the segregation of these

fragments, which can then be targeted for degradation through

mitophagy, a selective form of autophagy specific to mitochondria

(92). Defective mitophagy has been implicated in Treg dysfunction

in autoimmune diseases such as myasthenia gravis, underscoring

the critical role of mitochondrial quality control in preserving Treg

function and immune homeostasis (13, 93).
Mitochondrial dysfunction in aging

Given the unique and critical role of mitochondria in Treg cell

proliferation, metabolism and suppressive function, mitochondrial

dysfunction poses a significant challenge – particularly in aging

populations – by simultaneously driving inflammatory signaling and

impairing Treg cell function (19, 93). This dual threat contributes to the

age-associated decline in immune homeostasis and the increased

prevalence of chronic inflammation. A major source of

mitochondrial damage in the elderly is the accumulation of oxidative

damage from mtROS generated as byproducts of OXPHOS (94).

During OXPHOS, electron leakage from the electron transport chain

(ETC) produces highly reactive superoxide anion radicals (O2* −),

which are capable of degrading lipids, proteins, and nucleic acids

within the cell (95). The enzyme superoxide dismutase (SOD) serves as
FIGURE 2

Overview of mitochondrial functions. Mitochondria are membrane-bound metabolic and signaling organelles with their own circular DNA. Within
the matrix, separated by the inner mitochondrial membrane, ATP is produced from the tricarboxylic acid (TCA) cycle and the electron transport
chain (ETC). b-oxidation contributes to ATP production by breaking down fatty acids into acetyl-CoA required for the TCA cycle. Production of ATP
from mitochondria regulates nutrient-sensing via AMPK/mTOR signaling, while mitochondrial reactive oxygen species (mtROS) from the ETC, at low
levels, activates the ERK signaling cascade, promoting proliferation and cell growth.
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a key mitochondrial antioxidant defense, converting O2* − into H2O2,

a less reactive but still potent signaling molecule (95). H2O2 is essential

for the regulation cell cycle signaling by modifying redox-sensitive

amino acids such as methionine and cysteine on target proteins (96).

However, excessive accumulation of H2O2 can lead to oxidative stress

and cellular damage (97). To prevent this, cells rely on a tightly

regulated antioxidant system comprising catalase (CAT), glutathione

peroxidase (GPx), and peroxiredoxins (Prx) (98, 99), which detoxify

H2O2 and maintain redox balance. The relationship between ROS

production and mitochondrial function is complex and context

dependent. Different studies have reported conflicting correlations

between ATP production and ROS levels (100, 101), as well as

between ROS production and mitochondrial membrane potential

(DYm). These discrepancies likely reflect variations in experimental

models, cell types, and physiological conditions, highlighting the

nuanced interplay between mitochondrial bioenergetics and redox

signaling. Under normal physiological conditions, ATP production,

DYm, and ROS levels are positively correlated because the cell can

efficiently neutralize ROS. However, under stress conditions, the cell

struggles to neutralize ROS, resulting in damaged OXPHOSmachinery

and a decline in both DYm and ATP production. In conditions like

type 2 diabetes and obesity, when DYm is impaired, there is a

disruption of the electrochemical gradient necessary for the import

of substrates like pyruvate and fatty acids (102–104). As a result, these

substrates, along with proteins that fail to be imported, accumulate in

the cytosol and activate the mitoUPR) (18, 105). The cytosolic

accumulation of ROS and misfolded proteins due to mitochondrial

stress leads to various forms of cellular dysfunction, including cellular

senescence (Figure 3), which is characterized by the cessation of

proliferation and resistance to cell death and apoptosis (106). In
Frontiers in Immunology 05
addition to mitochondrial dysfunction, other stressors can contribute

to cellular senescence, including oncogenic stress, telomere attrition,

replicative stress, and irradiation – all of which accumulate with age

and create a cycle of increasing toxicity within the intracellular

environment of the senescent cell (107). A key hallmark of

mitochondrial dysfunction and cellular senescence is genomic

instability, which contributes to the accumulation of DNA mutations

and is associated with an increased risk of malignancy (10). Telomere

shortening, a defining feature of both aging and cellular senescence, is

also closely linked to mitochondrial dysfunction (1, 10, 108). Although

the precise causal relationship between telomere attrition and

mitochondrial impairment remains unclear, growing evidence

suggests the bidirectional crosstalk between these two processes,

wherein telomere damage can influence mitochondrial function and

vice versa (10, 108–110). The deleterious effects of senescence are not

confined to the senescent cells themselves. Senescent cells actively

secrete a range of pro-inflammatory cytokines, chemokines, growth

factors, and proteases that can induce secondary senescence in

surrounding healthy cells and tissues – a phenomenon known as the

senescence-associated secretory phenotype (SASP) (111, 112), which

can contribute to amplify the chronic inflammation that drives aging

and its associated pathologies.

Given the complex, self-reinforcing interplay among

mitochondrial dysfunction, cellular senescence and inflammatory

responses, the regulatory role of Treg cells in controlling these

inflammatory loops is critical for maintaining immune and tissue

homeostasis. In centenarians, Tregs maintain a strongly anti-

inflammatory secretory profile, accompanied by reduced levels of

pro-inflammatory cytokines compared to those observed in the

general aging population (4). This observation suggests a potential
FIGURE 3

Cellular senescence. Senescent cells display many dysfunctional characteristics, such as: hyper-fused and elongated mitochondria; increased
production of ROS, driving genomic instability in mitochondrial DNA (mtDNA) as well as nuclear DNA; release of mitochondrial damage-associated
molecular patterns (mtDAMPs) such as mtROS and mtDNA, which stimulate inflammatory responses from immune cells; telomere shortening; and
the senescence-associated secretory phenotype (SASP), which includes growth factors and pro-inflammatory signaling molecules.
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role for Tregs in mitigating inflammaging. However, recent studies

have shown evidence that senescent Tregs can accumulate with age and

may, paradoxically, contribute to the progression of inflammaging and

age-related pathologies (3, 5, 113). Because Tregs are particularly

vulnerable to mitochondrial dysfunction, they may be more

susceptible to mitochondria-driven senescence than Tconv, as

demonstrated in mice (5).

Chronic inflammation in elderly populations, often driven by

mitochondrial dysfunction, is a key contributor to the process of

inflammaging. In this context, Treg activity is essential for

suppressing the excessive inflammatory responses and managing the

low-grade, subclinical inflammation associated with aging. This

underscores the great therapeutic potential of targeting

mitochondrial pathways to enhance Treg function and mitigate

inflammatory signaling. Among these pathways, the mitoUPR stands

out as a particularly promising target, given its central role in

preserving mitochondrial integrity and cellular homeostasis under

stress conditions.
mitoUPR in Treg cells

Activation of the mitoUPR

The UPR was initially identified in the endoplasmic reticulum

(ER) as a protective mechanism activated by ER stress (ERS) (114).

ERS occurs upon accumulation of unfolded or misfolded proteins in

the ER due to homeostatic disruptions such as oxidative stress or

Ca2+ imbalance. More recently, a similar pathway -the
Frontiers in Immunology 06
mitochondrial UPR (mitoUPR)- has been identified in

mitochondria, where stress or damage initiates the transcriptional

activation of genes encoding molecular chaperones and proteases to

restore mitochondrial function (18, 115).

Any process that compromises mitochondrial protein

translation, synthesis, proteostasis, import or degradation can

trigger the mitoUPR (116–120). Among these triggers are the

mtROS accumulation, the development of the mitochondrial

permeability transition pore (mPTP), mito-nuclear protein

imbalance, reduced DYm, the overactivation or depletion of

mitochondrial chaperones and proteases, and the depletion of

mitochondrial prohibitins (121–124). One key activating signal

for the mitoUPR is the activating transcription factor associated

with stress 1 (ATFS-1) in C. elegans and its mammalian homolog,

activating transcription factor 5 (ATF5) (115, 125). When the

mitochondrial protein import machinery is functional, ATF5 is

efficiently translocated into the mitochondria and subsequently

degraded. In contrast, when protein import is compromised,

ATF5 is redirected to the nucleus where it activates the

transcription of mitoUPR genes (Figure 4), including chaperones

and proteases such as heat shock proteins (HSPs) like

mitochondrial Hsp70 (mtHsp70 or GRP75) and Hsp60, Lon

protease (LonP1), and caseinolytic mitochondrial matrix

peptidase proteolytic subunit (ClpP) (125, 126). Chromatin

remodeling also regulates the nuclear transcription of mitoUPR

genes (18). Under mitochondrial stress, chromatin is compacted by

histone methyltransferases, but specific DNA regions encoding

mitoUPR genes are protected from compaction by demethylases

(115). Notably, disruptions in Ca2+ homeostasis and mitophagy by
FIGURE 4

Activation of the mitoUPR. Under conditions of mitochondrial stress, protein import to the mitochondria through the translocase of the outer
membrane (TOM) and translocase of the inner membrane (TIM) is impaired, preventing the import of activating transcription factor 5 (ATF5). When
ATF5 cannot be imported into the mitochondria, it translocates to the nucleus, where it upregulates transcription of mitoUPR genes, including
proteases LonP1 and ClpP, as well as chaperones GRP75 and Hsp60.
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gene knockdown do not trigger the mitoUPR, suggesting that both

processes are required for mitoUPR activation (116, 127, 128).

Activation of the mitoUPR in mammals is closely linked to the

integrated stress response (ISR), a conserved pathway activated by a

variety of cellular stressors (129). ISR is initiated by a set of

eukaryotic initiation factor 2 alpha (eIF2a) kinases, including

protein kinase R-like endoplasmic reticulum kinase (PERK),

protein kinase R (PKR), heme-regulated inhibitor (HRI), and

general control nonderepressible 2 (GCN2) (130). These kinases

phosphorylate eIF2a, promoting the translation of stress-

responsive transcription factors such as ATF4, CHOP, and ATF5,

which in turn upregulate genes encoding mitochondrial chaperones

and proteases involved in the mitoUPR (115, 131). During ISR

activation, stress granules (SG) facilitate the nuclear relocation of

ATF5 (132). However, while ISR-related transcription factors are

essential for mitoUPR activation, the ISR alone is not sufficient to

fully activate the mitoUPR (122) and additional mitochondrial-

specific signals are required to initiate a complete stress response.

One of these additional signals is mtROS. mtROS contribute to the

mitoUPR coordination by oxidizing heat shock protein 40 (HSP40).

In this oxidized form, HSP40 interacts with mitochondrial

preproteins in the cytosol before being imported into the

mitochondria, where it associates with HSP70. The accumulation

of HSP40-HSP70 complexes with mitochondrial protein precursors

promotes the nuclear translocation of the transcription factor heat

shock factor 1 (HSF1), where it upregulates the transcription of

mitoUPR genes. Although HSF1 has long been recognized as a

central regulator of cellular stress responses, its specific role in

mitoUPR activation has only recently been identified (133–135).
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Interestingly, and similar to the non-cell autonomous nature of

the senescence-related SASP phenomenon, mitoUPR activation can

extend beyond the stressed cell in neighboring cells, suggesting a

form of paracrine mitochondrial communication. In C. elegans,

mitochondrial stress in neurons not only activates mitoUPR within

the neurons, but also in distal intestinal cells (136–139) by the

secretion of serotonin and metabolic signaling molecules from

stressed neuronal mitochondria (137, 140, 141). Whether this

paracrine mitoUPR signaling occurs in other cellular systems is

not yet known.
mitoUPR signaling

Research over the last decade has revealed that mitoUPR

operates as a multi-axis system in coordination with other cellular

processes and stress responses. This multi-axis regulation includes

the canonical axis, the sirtuin axis, the intermembrane space/

estrogen receptor alpha (ERa) axis, and the translation axis (129).

These different axes work together to preserve mitochondrial

function in response to both cellular and mitochondrial stress.

The canonical axis of the mitoUPR is defined by the

upregulation of mitochondrial molecular chaperones and

proteases that function to disassemble, refold, or degrade

misfolded or aggregated proteins (Figure 5). The two main

protein-folding systems that operate in the mitochondrial matrix

are the chaperone glucose-regulated protein 75 (GRP75, also known

as mtHsp70) and the chaperonin Hsp60 (142–144). GRP75 plays a

central role during the import and folding of proteins translocated
FIGURE 5

The mitoUPR canonical axis. The canonical mitoUPR consists of chaperones and proteases that control protein folding and degradation within
mitochondria. GRP75, along with Hsp40, assist with protein folding during import of nuclear-encoded proteins with mitochondrial targeting
sequences (MTS) to the matrix. When misfolded proteins or protein aggregates accumulate, ClpP and ClpX form a protease complex that degrades
misfolded proteins. During proteotoxic stress, the expression of these chaperones and proteases are upregulated within mitochondria.
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into the matrix, whereas Hsp60 functions primarily to refold

misfolded or partially unfolded proteins within the matrix.

GRP75 associates with multiple protein complexes along the

inner mitochondrial membrane (IMM), contributing not only to

protein assembly, folding and import, but also to the regulation of

mitoUPR signaling (145). GRP75 cooperates Hsp40 (DNAJA3) to

create an efficient ATP-dependent chaperone system that ensures

the fidelity of mitochondrial protein folding and assembly (144).

Proteolytic degradation of irreversibly damaged proteins during

mitoUPR is mediated by protease complexes such as ClpXP. The

ClpX subunit recognizes and binds to specific degradation motifs

on substrate proteins, partially unfolding them for translocation

into the ClpP protease chamber, where proteolysis occurs (146).

Overexpression of ClpX, but not ClpP, during myogenesis,

increases de expression of mitoUPR components and enhances

OXPHOS activity via induction of the transcription factor C/EBP

homologous protein (CHOP) (147). This finding suggests that ClpX

may exert regulatory control over mitoUPR signaling and

mitochondrial metabolism independent of its proteolytic partner.

Emerging evidence also indicates that the mitoUPR intersects with

broader cellular developmental programs. Components of the

canonical mitoUPR have been implicated in the regulation of

follicular cell development, supporting a model in which

mitochondrial proteostasis pathways are integrated into signaling

networks that govern cellular differentiation and function (148,

149). These insights expand the functional scope of the mitoUPR

beyond stress adaptation, positioning it as a key regulator of both

mitochondrial and cellular homeostasis.
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The sirtuin axis (Figure 6) increases resistance to mtROS by

upregulating antioxidants and coordinating the mitophagy

response (150, 151). The NAD+-dependent deacetylases of the

sirtuin family SIRT3 and SIRT1, have been identified as mitoUPR

regulators (129). SIRT1 locates in the nucleus and cytosol, while

SIRT3 is primarily found in the mitochondria and also, more

recently, in the nucleus, though its nuclear function remains

unclear (152, 153). mtROS stimulates AMP-activated protein

kinase (AMPK), which activates peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC-1a),
leading to upregulation of SIRT3 via estrogen-related receptor

alpha (ERRa) (154–156). Interestingly, the interplay between

SIRT3 and PGC-1a is reciprocal, since SIRT3 may also

promote PGC-1a activity through multiple mechanisms,

including the activation of upstream regulators such as CREB

(155, 157), or the deacetylation of forkhead box class O 3a

(FOXO3a) (155, 158). PGC-1a and FOXO3a interact to

upregulate antioxidants SOD2 and CAT, which neutralize

mtROS in a rapid two-step reaction (159) whereby SOD2,

along with the cofactor manganese, efficiently converts O2* −

into H2O2 and oxygen (160), and CAT rapidly converts H2O2

into water and oxygen (161, 162). The bidirectional SIRT3/PGC-

1a regulation forms a positive feedback loop that amplifies the

mitochondrial adaptive response under conditions of metabolic

stress. Although not directly indicative of mitoUPR engagement,

the activation of the SIRT3/PGC-1a/FOXO axis complements

the canonical mitoUPR during proteotoxic stress, contributing to

the overall mitochondrial stress response. Disruption of this
FIGURE 6

The mitoUPR sirtuin axis. Reactive oxygen species, including superoxide anion (O2* −) and hydrogen peroxide (H2O2) promote activation of Sirt3.
Sirt3 deacetylates CREB, which activates PGC1a, and Foxo3a. Foxo3a promotes transcription of PGC1a, but also interacts with PGC1a to promote
transcription of antioxidant genes such as Catalase (Cat) and superoxide dismutase (SOD2). PGC1a can also upregulate Sirt3 expression by activating
estrogen-related receptor alpha (ERRa), which promotes Sirt3 transcription. Reactive oxygen species are neutralized by upregulation of SOD2, which
converts O2* − to H2O2, and Cat, which converts H2O2 to water and oxygen.
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pathway has been implicated in metabolic disorders, including

those associated with aging (163–166).

The ERa axis of the mitoUPR (Figure 7) in the intermembrane

space (IMS) activates estrogen receptor alpha (ERa) via AKT

signaling and ROS production, leading to increased levels of

nuclear respiratory factor 1 (Nrf1) and the protease OMI1 (167).

Overall, ERa activation increases proteasome and protease

expression levels, thereby regulating protein quality control

within the IMS. Notably, small heat shock proteins (sHSPs) act as

chaperones in the IMS, both under homeostatic conditions and in

response to protein aggregation (168). In cells that do not express

ERa, CHOP and Hsp60 are induced in response to IMS stress,

suggesting that, although the ERa axis operates independently of

the canonical mitoUPR, the canonical axis may compensate when

the ERa axis is insufficient to neutralize proteotoxic stress (169).

The translational axis of the mitoUPR helps reduce the protein

synthesis in the matrix, thereby mitigating the burden on the matrix

protein-folding machinery (Figure 8). The mitochondrial matrix

protease LonP1 is critical for maintaining protein homeostasis in

the mitochondrial matrix (170). Upon mitoUPR induction, LonP1

specifically degrades the mitochondrial ribonuclease P catalytic

subunit 3 (MRPP3), a key nuclease involved in mitochondrial

RNA processing (171). This degradation of MRPP3 leads to a

reduced translation of mtDNA-encoded proteins, providing a

mechanism to limit the accumulation of unfolded proteins during

mitochondrial stress. Conversely, LonP activity can also promote

healthy levels of translation by preventing accumulation of

misfolded proteins through its protease activity implicated in the

canonical axis (172). Another complementary mechanism for
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mitoUPR activation is the mitochondrial-nuclear protein

imbalance (173), which occurs when there is a stoichiometric

disparity between nuclear-encoded and mitochondrial-encoded

OXPHOS subunits. While disruptions in mitochondrial protein

import typically lead to reduced levels of nuclear-encoded proteins

within the organelle, a mito-nuclear protein imbalance may also

occur from decreased expression or translation of mitochondrial-

encoded proteins, often observed when mitochondrial ribosomal

proteins (MRPs) are silenced or otherwise impaired (173). In this

context, microRNAs (miRNAs) have emerged as potential

regulators of mitochondrial proteostasis. Evidence suggests that

miRNAs may influence mitoUPR activation by modulating the

expression of MRPs or other components involved in

mitochondrial translation and protein folding, thus adding an

additional layer of post-transcriptional regulation to the stress

response machinery (174).
mTOR-mediated regulation of mitoUPR in
Tregs

The mammalian target of rapamycin (mTOR) is a master

regulator of cellular metabolism and homeostasis, functioning

through two distinct complexes: mTOR complex 1 (mTORC1)

and mTOR complex 2 (mTORC2). Both complexes integrate

nutrient availability, growth factor signals, and cellular energy

status to orchestrate cell growth, differentiation, and survival (175,

176). A recent study in C. elegans demonstrated that mTORC1 is

essential for activating the mitoUPR by sensing mitochondrial
FIGURE 7

The mitoUPR ERa axis. In response to oxidative stress in the intermembrane space (IMS), estrogen receptor alpha (ERa), via mTORC2/AKT signaling,
promotes transcription of the protease OMI1, which degrades misfolded proteins within the IMS. ERa also promotes transcription of Nrf1, a
transcription factor promoting transcription of nuclear-encoded components of the electron transport chain (ETC).
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stress and increasing ATF5 transcription (177). In Treg cells,

mTOR signaling plays a pivotal role in shaping metabolic

programming and immune function, including mitochondrial

homeostasis via the mitoUPR (15, 178, 179). Recent evidence has

revealed a complex and dynamic crosstalk between mTOR signaling

and the mitoUPR in Tregs, with mTORC1 and mTORC2 exerting

distinct and sometimes opposing effects on this stress response

pathway (15). Activation of mTORC1 enhances the expression of

mitoUPR components by engaging downstream effectors such as

heat shock factor 1 (HSF1) and eukaryotic translation initiation

factor 4E-binding protein 1 (4EBP1) (180–182). These

transcriptional and translational regulators promote the

expression of mitochondrial chaperones and proteases, including

CHOP, ATF4, SOD2, and ClpP, facilitating the clearance and

refolding of damaged proteins. This effect is sensitive to

rapamycin, a specific mTORC1 inhibitor, which reverses

mTORC1-driven mitoUPR activation (181, 183). In contrast,

mTORC2 contributes to mitoUPR regulation primarily by

modulating the activity of FOXO transcription factors. mTORC2

inhibits FOXO proteins via AKT-mediated phosphorylation,

thereby restricting their nuclear localization and transcriptional

activity (176, 180). This has significant implications for Treg

biology, as FOXO factors – particularly FOXO1 and FOXO3 –

are essential for the expression of FoxP3, the master transcription

factor of Treg cells, and for the induction of key antioxidant

enzymes such as superoxide dismutase 2 (SOD2) and CAT (180,

184–186). The FOXO3 axis is further modulated by SIRT1 and

SIRT3, suggesting a feedback loop in which mitochondrial stress

reinforces FOXO-mediated antioxidant and mitoUPR gene
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expression (187). Our recent studies have shown that, while

short-term inhibition of mTORC1 by rapamycin can reverse

acute mitochondrial damage in Tregs, prolonged metabolic stress

leads to a progressive decline in both the proliferative capacity and

suppressive function of Treg cells (188). These findings illustrate the

metabolic plasticity of Treg cells and highlight the potential

therapeutic benefit of targeting mTOR-mitoUPR signaling to

enhance Treg-mediated immunoregulation in the settings of

chronic inflammation, aging, or mitochondrial dysfunction.
Potential therapeutic targeting of the
mitoUPR in Tregs

Activation of mitoUPR has been shown to extend lifespan in C.

elegans and ameliorate damage from acute injuries such as toxin

exposure, ischemia, seizure-related injuries, cardiac injury, and

brain trauma (128, 189–198). In contrast, targeting the mitoUPR

in chronic disease and aging is likely more complex, since activation

of mitoUPR alone may not be sufficient to counteract prolonged

stress conditions (192, 194, 199–205). Translation of the mitoUPR

targeting strategies into clinical applications will require overcoming

key challenges, including (1): the limited understanding of long-term

in vivo effects of such approaches, whether transient or toxic, which

will require further pre-clinical animal models and long-term clinical

studies, and (2) current lack of efficient methods for tissue-specific

drug delivery. Several studies have been exploring the potential of

developing mitochondria-specific drugs for therapeutic applications.

Advances in mitochondrial structural biology are continuously
FIGURE 8

The mitoUPR translational axis. The translational axis responds to mito-nuclear protein imbalances by decreasing the synthesis of mitochondrial
proteins, thereby reducing the protein-folding burden within mitochondria. Proteotoxic or oxidative stress activates transcription factor 5 (ATF) to
promote transcription of Lon protease (LonP). Once in the mitochondria, LonP degrades the mitochondrial ribosomal protein MRPP3, thus reducing
the protein translation within the matrix.
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identifying new targets for mitochondriotropic drug delivery carriers,

including delocalized lipophilic cations (DLCs), Szeto–Schiller (SS)

peptides, vesicle-like aggregates such as dequalinium (DQA) or

triphenylphosphonium (TPP) and the use of the mitochondrial

protein import machinery for therapeutic interventions (206, 207).

To date, the direct targeting of the mitoUPR to modulate Treg

cell function has not been explored in clinical settings. However,

substantial pre-clinical evidence support this possibility, including

the improvement of Treg function and reduction of autoimmune

responses after scavenging mtROS in Tregs (93), the reduced

suppressor activity in Treg cells devoid of SIRT3 (72), the higher

expression of mitoUPR proteins in Treg cells compared to effector

Tconv (15), and the upregulation of these proteins in response to

mitochondrial redox induced stress (188).

Because of the prevalent mitochondrial reliance of Treg cells

compared to effector Tconv, the modulation of the mitoUPR has

emerged as a potential strategy to shift the Treg/effector Tconv

balance in disease-specific contexts. Therapeutic strategies targeting

the mitoUPR can exert bidirectional effects depending on the

clinical objective: either prevent mitochondrial repair, leading to

the accumulation of damage and selective depletion of Tregs, or

support mitochondrial function and improve Treg cell survival and

function (190, 198, 208). This dual potential has significant

therapeutic implications. In the context of cancer, where Tregs

often suppress anti-tumor immunity and contribute to immune

evasion, disrupting mitochondrial integrity and inhibiting mitoUPR

in Tregs may amplify anti-tumor effector responses. Conversely, in

transplantation, and aging-related conditions like autoimmune or

neurodegenerative disorders, where excessive effector responses

drive pathology, enhancing mitoUPR to support Treg stability

and function may restore immune tolerance and mitigate tissue

damage. Symptoms of inflammaging may be alleviated by systemic

targeting of the mitoUPR to counteract mitochondrial dysfunction

and restore immune homeostasis, or by selective targeting of the

mitoUPR in Treg cells to reduce inflammation.

In the context of Treg cell-based adoptive immunotherapy and

the optimization of ex vivo expansion protocols for Treg

manufacturing, monitoring mitoUPR markers may offer a valuable

strategy for assessing and ensuring mitochondrial health and redox

balance throughout the production process. Tracking the expression

of mitoUPR components during Treg expansion may offer critical

insights into the oxidative stress status of the cells and the protective

mechanisms engaged to maintain mitochondrial function under in

vitro culture conditions. Comparative analyses of mitoUPR markers

across different expansion conditions – including nutrient

composition, oxygen tension, and pharmacologic modulators – can

support the development of standardized, clinically scalable protocols

that preserve Treg identity, stability, and suppressive function. Such

approaches can serve as functional quality control metrics to predict

in vivo performance and therapeutic efficacy.
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While the short-term integration of mitoUPR monitoring may

improve manufacturing outcomes for clinical applications, a

comprehensive understanding of Treg mitochondria l

bioenergetics and stress adaptation mechanisms remains essential.

Deeper characterization of mitochondrial metabolism, including

OXPHOS dynamics, redox signaling, and mitoUPR regulation, will

be necessary to fully exploit the therapeutic potential of Tregs,

particularly in chronic inflammatory diseases, autoimmunity, and

transplant tolerance. Ultimately, integrating mitochondrial

profiling into Treg manufacturing workflows may not only

enhance cell product consistency and potency but also pave the

way for next-generation Treg-based therapies with improved

durability and clinical impact.
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