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Mice mucosal leishmaniasis
model shown high parasite load,
increased cytotoxicity and
impaired IL-10+ T cell response
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Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil, 5Núcleo de Doenças
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Mucosal Leishmaniasis is one of the most aggressive clinical manifestations of

Leishmania infection disease, characterized by the destruction of nasal and oral

tissues. The mechanisms by which this disease occurs are still not well

understood due to the lack of effective experimental models. Mucosal

leishmaniasis is associated with inflammatory response, especially Th17

response. Based on that, in this work, the immunopathological aspects of the

experimental infection of BALB/c mice by Leishmania amazonensis in the

mucosa site were evaluated as this mice presents high susceptibility with

increased Th17 mediated pathology. Three infection modes were performed

and compared according to the injection site. Six weeks post infection, mice

presented edema in the nasal and premaxillary region, with progressive growth

until twelve weeks. The micro-Computerized Tomography and the histology

images demonstrated that the parasite inoculation led to destruction of

squamous and transitional tissues in NC and NB groups, with several cells

harboring amastigotes. Mice infected in the mucosa tissues had higher parasite

load and IgG, IgM antibody levels and increased production of cytotoxic

mediators such as CD107, granzyme b and perforin, inflammatory cytokines as

IFN-g; and IL-17, but lower frequencies of CD4+ IL-10+ cells compared to ear

dermis. Taken together, our data shows that L. amazonensis parasites are more

proliferative in nasal mucosa and the infection leads to an increased

inflammatory response compared to ear dermis, suggesting an imbalance

between the inflammatory and regulatory response in the mucosa as occurs in
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human MCL which point this model as an interesting approach to understand

some features of the disease immunopathology. Further studies are being

performed to understand the Th1-mediated tissue destruction. This study was

conducted in accordance with the local legislation and institutional requirements

being approved by the Ethics Committee on the Animal Use in Experimentation -

under the protocol CEUA No. 133/23 of the Health Sciences Center (CCS) from

the University of Rio de Janeiro.
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Introduction

Leishmaniasis is a group of neglected tropical diseases caused by

infection by protozoan parasites belonging to the genus Leishmania.

The disease affects the most deprived populations in the world, being

endemic in more than 98 countries, with cases distributed across Asia,

Africa, the Middle East, and South and Central America (1). Estimates

suggest that around 1 million new cases of leishmaniasis occur every

year globally, with a population of 1 billion people living in areas at risk

of contracting the disease (2). Of the different clinical manifestations of

leishmaniasis, mucocutaneous leishmaniasis (MCL) stands out because

it can generate a severe deformity, generating destruction of the tissues

of the nose, upper lips, palate, pharynx, larynx, perforation of the

septum and loss of bone tissue (3, 4). Mucocutaneous Leishmaniasis

(MCL) is a consequence of Leishmania’s tropism for mucosal tissues,

involving the respiratory mucosa of the upper tract and the oral cavity.

This clinical manifestation is typically a result of infection with New

World species such as L. braziliensis, L. panamensis, L. guyanensis and L.

amazonensis (5). It is estimated that 3 to 5% of cases of cutaneous

leishmaniasis caused by these species evolve into the mucosal form (6).

The cure rate for MCL treatment is lower compared to LCL (7, 8),

which highlights the importance of a better understanding of

development and immune response in this clinical manifestation (9, 10).

Therefore, despite being a more severe manifestation and even

with a wide range of Leishmania species that can cause MCL and

capable of infecting small rodents such as hamsters and mice, there

is a lack of experimental models for MCL (5), and the immune

response associated with this clinical manifestation is still poorly

characterized. Using Leishmania amazonensis infection on BALB/c

mice that is very susceptible to infection, we hypothesized that the

parasite could establish the infection directly to the nose inducing

manifestation similar to mucosal leishmaniasis. Previous attempts

were made in the literature using subcutaneous infection in the paw

leading to mucosal metastasis, however, they are very long

(approximately 8 months after infection) diverse (some animals

do not develop the disease) and several mice don’t survive during

the prolonged infection and aging process. It is urgent a model that

facilitates the study of mucosal leishmaniasis (11). In the context of

the disease, mucosal leishmaniasis is associated with a Th1, but also
02
a Th17, neutrophil infiltrate immune response (12). Meanwhile,

BALB/c dermal pathology is associated with Th2 (13) but also with

a strong Th17 (14, 15), making BALB/c a model to exploit the role

of those immune axis to the pathology of mucosal leishmaniasis. In

this way, here in we established a L. amazonensis mucosal

leishmaniasis mice model using three infections sites to

understand the immunopathology of the disease.
Methods

Leishmania culture

In this work, parasites of the species L. amazonensis (MHOM/

BR/75/JOSEFA) were used. The promastigotes were maintained in

25cm² culture flasks with M199 medium (pH 7.2), supplemented

with 10% fetal bovine serum, 5μg/mL bovine hemin, 50U/mL

penicillin, and 50μg/mL streptomycin.
Animals

Mice from BALB/c lineage, females aged 8–12 weeks, were used.

The mice came from the Biotério Central de Camundongos of the

Centro de Ciências da Saúde (CCS) from the Universidade Federal

do Rio de Janeiro, mice were maintained under the Protocol of the

Ethics Committee on the Use of Experimental Animals No. 133/23

of the CCS.
Infection and lesion development

The parasites were cultivated until the beginning of the stationary

phase. The culture containing the promastigote forms were collected,

washed with phosphate buffer saline (PBS); and centrifuged for 10

minutes at 4°C at 1000 x G force. After centrifugation, the supernatant

was discarded, and the cells were washed with PBS. The procedure was

repeated twice. Then the cells were counted and adjusted to a

concentration of 2x108 parasites/mL. The animals were sedated with
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ketamine and xylazine and infected with 2x106 parasites using

Hamilton® syringes coupled with 34G needles. Different infection

methods were implemented: intradermal in the ear performed at an

angle of 20°; Cutaneous Nose, with the inoculum carried out at the

apex of the mouse’s nose; Septum, with the inoculum occurring in the

mouse septum and “Nasobasal”, with the inoculum being carried out at

an angle of 60° towards the lower “floor” part of the nose. The lesion

was monitored with photos. Weekly measurements of the mice’s ears

were taken using Mitutoyo™ thickness gauges.
Micro computerized tomography, 3D
reconstruction and lesion analysis

Animals were sedated and placed in the LabPET8 Flex Triumph

Gamma Medica™ tomography system at CENABIO, UIPA. The

equipment settings included 60kV, 480μA, 1024 projections, 8-

minute acquisition, and 30x magnification with a 39.46mm field of

view, focusing on the snout and mucous membrane. After

acquisition, data was reconstructed and analyzed using 3D

Slicer™ software, with the Scissors tool applied to generate the

snout area.
Histology analysis

Tissues from animal snouts were fixed in 4% formaldehyde in

PBS for 15 days. Decalcification was performed for 28 days using

10% EDTA. After fixation and decalcification, tissues were

dehydrated through a series of ethanol and xylene solutions, then

embedded in paraffin. Sections (5μm thick) were cut, rehydrated,

and stained with Hematoxylin & Eosin (H&E). Tissue processing

was done by the Histotechnology Platform at IOC - FIOCRUZ.

Histology was performed with n = 5 per group.
Parasite load quantification

At the end of each experiment, parasite load was assessed using

the limiting dilution method (LDA). Animals were euthanized with

an overdose of Ketamine and Xylazine, and tissues (snout, nose tip,

premaxilla, ear, cervical lymph node, ear lymph node, NALT, and

spleen) were collected, weighed, and macerated in 1mL of M199.

Serial 1:4 dilutions were made, and the results were plotted. Three

experiments (n=3-5) were conducted, with two examining the

entire snout and one focusing on segmented parts, 12 weeks

post-infection.
Flow cytometry

Flow cytometric analysis of cells from cervical and ear lymph

nodes of infected or naïve animals was performed. Tissues were

macerated, and cells counted with 0.1% trypan blue dye. 1x106 cells
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were plated in a 96-well plate, centrifuged, and stimulated with

PMA (20ng/mL), ionomycin (1μg/mL), and monensin (2.5μg/mL)

in Complete RPMI for 4 hours at 37°C. Cells were blocked with

anti-FcR, surface stained, fixed using the eBioscience™ FoxP3 kit,

and intracellularly labeled. The samples were analyzed on a BD LSR

Fortessa X-20 cytometer. Supplementary Table S1 denotes the

cytometer configuration. Supplementary Table S2 shows the

antibodies (BioLegend™) used and their concentrations.

Supplementary Figure S1 denotes the performed gating strategy.
Statistics

Results are represented by Standard Error of the Mean (SEM).

Statistical significance was performed by unpaired two tailed

Student t test with 95% confidence interval (p<0,05) for the

respective data: Lesion profile by tomography, parasite load

quantification and cytometry. While One Way ANOVA with 95%

interval of confidence (p<0,05) was performed using Tukey post-

test, for the ELISA OD Sum data. Statistically significant differences

were defined as * for p<0,05; ** for p<0,005; *** for p<0,0005.
Results

Direct inoculation of Leishmania
amazonensis in nasal mucosa led to injury
but the lesion profile depends on the type
of inoculum performed

To assess Leishmania infection in the nasal mucosa, 2x106

promastigotes of L. amazonensis were directly inoculated into

different nasal sites of mice. After 6 weeks, the Nose Cutaneous

(NC) and Nasobasal (NB) groups developed visible lesions with

edema and redness (Figure 1A). These lesions progressed and

became necrotic by 12 weeks in some cases. The muzzle volume

was significantly larger in the NC and NB groups (387mm³ and

616mm³) compared to the Sham group (Figure 1B), resembling the

progressive ear infection, which reached 1.8mm in thickness

(Figures 1C, D). In contrast, the Septum group showed no visible

lesions throughout the study (Figure 1A). These results indicate that

nasal inoculation can cause tissue damage, depending on the

infection site.
The nasal mucosa model showed a higher
parasite load than ear dermis infection.

Parasite load in infected mice ranged from 106 to 108 parasites

per gram of tissue in the Nose Cutaneous (NC) and Nasobasal (NB)

groups, while the Septum (ST) group showed only 104 parasites,

with Only 20% of animals testing positive (Figure 2A). Ear dermis

infections had 106 parasites per gram (Figure 2B). Parasites were
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mostly concentrated in the edema sites, such as the nose tip and

pre-maxillary regions (Figures 2C, D). Some animals in the NB

group had around 105 parasites in NALT (Figure 2E). Only one

animal in the NC group showed spleen infection (Figure 2F). The

cervical lymph nodes of NC and NB mice had 106 parasites

(Figure 2G), while the ear lymph nodes had 105 parasites

(Figure 2H). The Septum group showed parasitic load in the

cervical lymph node but not the nasal cavity (Figure 2G). These

results indicate that mucocutaneous L. amazonensis infection leads

to a higher parasite content in nasal mucosa infection compared to
Frontiers in Immunology 04
ear dermis, with the cervical lymph node being the primary

draining node.
Nasal infection induced nasal swelling, but
no septum perforation or new nasal cavity
formation took place

MicroCT analysis was performed to assess nasal cavity

impairment, focusing on the NC and NB groups, as the ST group
FIGURE 1

Nasal mucosa lesion profile. The modes of nasal mucosa inoculation with L. amazonensis. Nose cutaneous (NC) group was inoculated in the nostril
nose dermis; Septum (ST) was inoculated in the septum tissue, “Nasobasal” (NB) was inoculated in the nasal floor. In all cases was used an 34G
needle. (A) Lesion profile of the three groups, during a period of 12 weeks post infection (p.i), showing a continuous development of edema and
erythema starting at 6 to 8 weeks for the NC and NB group. ST group does not show any sign of lesion. (B) Snout volume quantification 12 weeks p.i
(Standard Error of the Mean – (SEM)), using micro–Computerized Tomography (micro-CT). NC and NB groups have greater volume compared to
control groups. (C) Ear dermis lesion thickness of mice infected in the ear as an infection control group (SEM). The thickness continuous increases
during the experiment reaching around 2.0mm in 12 weeks p.i. (D) Representative ear of a mice from control infection group showing edema and
erythema. (B) Representative data of 3 independent experiments (5 animals per group). (C) Data from one experiment 3–5 animals per group.
(D) Representative data from 2 independent experiments 5 animals were used. Statistics: unpaired t-test ** p<0,005.
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FIGURE 2

Parasite load profile. Profile of parasite load per gram of tissue, of the different groups of infection. NC, ST, NB, ED means respectively to Nose
Cutaneous, Septum, “Nasobasal” and Ear dermis infection groups. The following tissues are represented in the figure: (A) Nose = the entire snout
containing the nasal tissues; (B) Ear; (C) Nose Surface = only the visible nose; (D) mice premaxillary region; (E) Nasal Associated Lymphoid Tissue
(NALT); (F) Spleen; (G) Cervical lymph node; (H) auricular lymph node. Parasite load was detected by the limiting dilution method (LDA) carried out
at the end of the experiment (approximately 12 weeks of infection). (A) Data from 3 independent experiments; (B–D) 1 independent experiment; and
(E), Data from 4 independent experiments; (G, H), 2 independent experiments. N = 5 animals per group. Data represented with the Standard Error of
The Mean (SEM). Statistics: unpaired t-test *p < 0,05, ***p < 0,0005.
Frontiers in Immunology frontiersin.org05
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showed no visible lesions or significant parasite load. NC-infected

mice typically had lesions at the nose apex, while NB-infected mice

had lesions affecting the mucosa and premaxilla, extending to the

upper lips (Figures 3A, B). No nasal cavity enlargement,

perforations, or deformation were observed compared to controls
Frontiers in Immunology 06
(Supplementary Figure S2), but tissue swelling was evident in both

NC and NB groups (Figures 3A-D). Axial sections showed

noticeable edema on the outer nasal cavity (Figures 3C, D). These

results indicate that lesion profiles depend on the inoculation site,

mainly affecting the nasal tissues initial portions.
FIGURE 3

Anatomical and histological profile. (A, B) A complete three-dimensional reconstruction of NC and NB mice model respectively. (C, D) Coronal
Section planes showing edema and partial nose obstruction of NC and NB mice respectively. (E, F) Intense inflammatory infiltrate containing
infected cells, below the epithelium of NC and NB mice respectively. The red arrows indicate the region of edema, and the white arrows show
examples of cells bearing amastigotes. Magnification: (E) 1000x and (F) 1000x.
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Nasal infection promoted destruction and
deconfiguration of squamous and
transitional tissues

Histological analysis of the nasal cavity revealed significant

inflammation and parasite presence. In the NC group, edema

with a neutrophilic infiltrate and vacuolated macrophages

containing amastigotes was observed (Figures 3E, Supplementary

Figure S3), along with respiratory epithelium loss (Supplementary

Figure S4B), and parasitized macrophages near cartilage

(Supplementary Figure S4E). In the NB group, similar edema and

neutrophil infiltration were seen, with many parasitized

macrophages (Figure 3F). Respiratory epithelium showed slight

morphological changes, including cellular stress and detachment

(Supplementary Figures S4C, F). These findings indicate that

Leishmania infection impacts the inner nasal mucosa in this model.
Nasal mucosa infection produced higher
systemic antibodies titers compared to ear
dermis infection

To assess immune responses to different nasal mucosa

infections by Leishmania, we measured antibody levels. The NC

group showed the highest IgM, IgG, and IgG1 levels, followed by

NB and ED (Figures 4A-F). IgG2a and IgG2b were highest in NB,

then NC (Figures 4G-J). Overall, NC and NB had stronger antibody

responses than ED, while ST had the lowest. These findings suggest

mucocutaneous infection triggers a stronger humoral response

than ear dermis infection, with antibody profiles varying by

inoculation site.
Cytotoxic and effector CD4+ and CD8+ T
cells from draining lymph nodes were
increased in NC, however, CD4+ T cells
producing IL-10 were impaired in nasal
mucosa infection

Flow cytometry of draining lymph nodes showed reduced CD4+

T cell frequency in the ED group but not in nasal infections. The NC

and NB groups had increased total CD4+ T cells (Figures 5A, E) and

higher numbers of cells expressing cytotoxic markers (CD107a,

granzyme B, perforin) across NC, NB, and ED groups (Figures 5B-

D), despite unchanged frequencies (Supplementary Figures S6-S8).

Although frequencies remained unchanged (Supplementary

Figures S9, Supplementary Figures S10), total IFN-g+ (Figure 5F)

and IL-17+ (Figure 5G) cells increased in NC, NB, and ED groups.

CD4+ IL-10+ T cells increased only in the ED group (Figure 5H),

with lower IL-10-producing CD4+ T cell frequencies in nasal

infections compared to ED (Figures 6A, B), highlighting distinct

expansion dynamics between nasal and dermal infections.

We analyzed whether changes in CD4+ IL-10+ T cells were

linked to CD4+ CD25+ FoxP3+ Tregs. Treg numbers increased in
Frontiers in Immunology 07
NC, NB, and ED groups without frequency changes (Supplementary

Figure S11). Similar trends were observed for CD25- FoxP3+,

CD25+ FoxP3-, and CD25- FoxP3- cells (Supplementary Figures

S12-Supplementary Figure S14), indicating the IL-10 reduction is

unrelated to regulatory T cell frequency.

We also analyzed CD8+ T lymphocytes during mucosal

infections. NC and NB groups showed an expansion in total

CD8+ T cells (Figures 7A, E) with frequencies similar to CD4+ T

cells (Supplementary Figure S15). Cytotoxic CD8+ T cells markers

increased in NC, NB, and ED groups (Figures 7B-D), with NC

showing higher CD8+ Perforin+ frequency (Supplementary Figure

S18), nut no frequency changes to CD107a and Granzyme B

respectively (Supplementary Figure S16, Supplementary Figure

S17). There were no IFN-g+ CD8+ significant changes in

frequency (Figure 7F) or number (Supplementary Figure S19). IL-

17+ CD8+ T cells increased in NB and ED groups (Figure 7G)

without frequency changes (Supplementary Figures S20). CD8+ IL-

10+ T cells showed no numerical change (Figure 7H), but frequency

decreased in mucosa-infected and ED groups (Supplementary

Figure S21).
Discussion

Mucocutaneous Leishmaniasis (MCL) causes severe tissue

damage in nasal, oral, and pharyngeal mucosa, leading to edema

and erythema in affected areas (3, 5). In our mouse model, the NC

and NB groups developed visible edema and erythema by week 6,

progressing over time. Lesions in the NC group formed at the nose

tip and extended dorsally, resembling the experimental mucosal

leishmaniasis in dogs and hamsters (16, 17). In the NB group,

lesions spread to the upper lips and premaxilla, mimicking clinical

features of human MCL (18, 19).

Some animals developed necrotic lesions after 12 weeks of

infection. While L. amazonensis typically causes non-necrotizing

lesions in BALB/c mice resembling diffuse cutaneous leishmaniasis

in humans (20). Similar variation in infection sites was observed with

Leishmania major (21), possibly linked to site-specific microbiota.

Nasal microbiota, including Staphylococcus and Streptococcus species

(22, 23), may exacerbate tissue damage by recruiting neutrophils and

CD8 IL-17+ cells during infection (24, 25).

Mucosal leishmaniasis in humans often affects septa, cartilage,

and nasal cavities, with occasional bone destruction visible via

computed tomography (3, 26–28). In this study, microCT

revealed edema in the nasal and premaxilla regions of NC and

NB groups. Histopathology showed dense cellular infiltrates and

infected cells near cartilage and the nasal mucosa, with respiratory

epithelium changes, consistent with previous findings (11).

Despite MCL caused by Leishmania braziliensis typically shows

fewer parasites at the site than cutaneous leishmaniasis (29), our

model NC and NB groups had higher parasite loads, in the draining

lymph nodes and showing also infected cells in nasal mucosa. This

may reflect L. amazonensis characteristics, which produce higher

parasite loads than L. braziliensis in mice (30), and as evidenced by
frontiersin.org
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FIGURE 4

Systemic antibodies infection profile. Systemic antibodies responses in the different infected groups. (A, C, E, G, I) Ig titration using four dilutions,
represented by O.D. 600 absorbance measurements (Standard Error of The Mean (SEM)). (B, D, F, H, J) Ig O.D. Sum from each animal and groups.
NC groups produce more IgM, total IgG and IgG1, while NB mode of infection have more IgG2a and IgG2b. NC, ST, NB, ED groups represented by
square; triangle; inverse triangle and diamond respectively. Statistics: One-way ANOVA; *p<0,05; **p<0,005; ***p<0,0005.
Frontiers in Immunology frontiersin.org08
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FIGURE 5

CD4+ T cells cytotoxic and effector profile. (A-D) The cytotoxic profile of T helper lymphocytes was measured by the expression of CD107a,
Granzyme B and Perforin. (A) Cervical and auricular lymph nodes total Lymphocytes counts are shown in logarithmic scale; (B) total cells expressing
CD107a, (C) Granzyme B; (D) Perforin. (E-H) The effector profile of T helper lymphocytes was measured by the expression of IL-10, IL-17 and IFN-g.
(E) Cervical and auricular lymph nodes total lymphocytes counts are shown in logarithmic scale; (F) total cells expressing IFN-g, (G) IL-17; (H) IL-10.
Data accumulative of two independent experiments (3–6 animals per group). Statistics: plot with Standard Error of The Mean (SEM), t-test was used
for all groups and samples *p<0,05, **<0,005, ***p<0,0005 ****p<0,00005.
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the case of MCL caused by L. amazonensis, where parasite

amastigotes were described as easily visualized in H&E sections

(31). Unlike previous models focusing on nasal infection (16, 17, 32,

33), this study uniquely examined infections within the nasal

mucosa cavity, revealing that the inoculum site significantly

influences lesion severity and parasite load across NC, ST, and
Frontiers in Immunology 10
NB groups. Necrosis was observed in some animals, a feature

absents in other models (16, 17, 33). Mucosal infections showed

clinical aspects similar to, or more severe than cutaneous ear

lesions, aligning with findings in Leishmania panamensis-infected

hamsters (17). While other models required approximately 8

months to develop lesions (11), this approach shortened
FIGURE 6

CD4+ T cells IL-10+ is impaired. The IL-10 producing CD4+ T cells was measured and the frequency is shown. (A) Pseudocolor dot plot showing
the representative animals of each group. (B) Frequency plot from cervical and auricular lymph nodes from infected animals vs controls. Data
accumulative of two independent experiments (3–6 animals per group). Statistics: plot with Standard Error of The Mean (SEM), t-test was used for all
groups and samples **<0,005.
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FIGURE 7

Cytotoxic and effector profile of CD8+ T cells. (A-D) The cytotoxic profile of T helper lymphocytes was measured by the expression of CD107a,
Granzyme B and Perforin. (A) Cervical and auricular lymph nodes total Lymphocytes counts are shown in logarithmic scale; (B) total cells expressing
CD107a, (C) Granzyme B; (D) Perforin. (E-H) The effector profile of T helper lymphocytes was measured by the expression of IL-10, IL-17 and IFN-g.
(E) Cervical and auricular lymph nodes total lymphocytes counts are shown in logarithmic scale; (F) total cells expressing IFN-g, (G) IL-17; (H) IL-10.
Data accumulative of two independent experiments (3–6 animals per group). Statistics: plot with Standard Error of The Mean (SEM), t-test was used
for all groups and samples * p<0,05, **<0,005, ***<0,0005.
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progression to 6–8 weeks. Future studies could compare axenic

amastigote infections, given their higher virulence and differing

proliferation kinetics from promastigotes (34, 35).

MCL severity correlates with higher anti-Leishmania IgG levels

(36). In our model, mucosal infections (NC and NB) produced

more IgM and IgGs than dermal infections, the high antibody levels

produced by the mucosal infection compared to dermis can be

interpreted as an increased inflammatory response that may

contribute to the severity of pathology. Interesting, the mucosal

infection site is contributing to the type of immune response with

NC favoring IgG1 (Th2 response) and NB favoring IgG2a (Th1

response), according to the antibody dichotomy (37).

To compare nasal mucosa infections with human MCL, we

performed flow cytometry on lymph node cells. Mucosal infection

(NC and NB) increased CD4+ and CD8+ T cells expressing

cytotoxic markers (CD107a, Granzyme B, Perforin) and IL-17,

with less IFN-g, but no increase in IL-10-expressing cells, unlike

the ED group. In MCL, CD4+ T cells produce high IFN-g and TNF-
a, with elevated Th17 responses that recruit neutrophils and cause

tissue damage (12, 38, 39). MCL also shows higher granzyme A-

expressing cells, linked to greater damage (34), with a lower IL-10

receptor expression, despite normal IL-10 expression (39). Our data

suggests a similar imbalance between cytotoxic and regulatory

responses, with reduced IL-10+ T cells and increased IL-17+ T

cells potentially contributing to severity, as IL-10 limits Th17-

mediated pathology in experimental leishmaniasis (40).

The overall IL-10 production by T cells is important to protect

against excessive inflammation and damage during the peak of

infection for Leishmania mexicana and L. major (40, 41). Tregs

(CD4+ CD25+ FoxP3+ T cells) and Tr1 (CD4+ CD25- FoxP3- IL-

10+) are the most important subsets of T cells that provide IL-10

during immune-responses (42). In the L. amazonensis mice

infection, the CD4+ CD25+ T cells can contribute to parasite

control decreasing the inflammatory response (43). Furthermore,

CD4+ CD25+ FoxP3+ T cells are also implicated to reduce

inflammation and parasite load in BALB/c mice infection by

Leishmania panamensis (44). Moreover, on visceral leishmaniasis

mice model, the regulatory T cells had no effect on Leishmania

donovani parasite proliferation but were able to reduce tissue

damage (45). However, the IL-10 production by T cells is also

frequently linked to parasite persistence and in some circumstances

an increased pathology. The IL-10 production by CD4+ CD25-

FoxP3- IL-10+ T cells in a Th1 environment is important for the

lesional persistence of L. major (Seidman strain) and L. mexicana

(41, 46), while for the L. major (Friedlin) that causes a self-healing

pathology, the IL-10 production by CD4+ CD25+ FoxP3+ Tregs

prevents the sterile cure (47). In our model, we can hypothesize that

the inflammatory response of mucosal sites is exacerbated by the

absence of T cell IL-10 production that is not contributing to the

parasite control, instead it is favoring the recruitment of host cells

for parasite replication and increasing tissue damage.

Taken together, L. amazonensis infection in BALB/c mice

induces an immune response that reflects some aspects of the

human MCL, with increased cytotoxic and effector cells but a
Frontiers in Immunology 12
compromised regulatory response. However, our studies didn’t

find some MCL features like cavity formation, septal perforations,

and bone destruction, possibly due to parasite species or host

lineage differences, or the shortened experimental period

compared to human pathology (28). To address this, ongoing

research is being performed with C57BL/6 strain for a stronger

Th1 response (15, 48). We also are planning to test the L.

braziliensis hamster model for its higher susceptibility for this

species (49). As NC and NB sites differed in some characteristics,

we believe that the combination of these inoculum sites may better

represent the full mucosal leishmaniasis profile in mice. More

studies are needed to confirm the lymphocyte profile in the

mucosal site.

In conclusion, when infected directly at nasal mucosa, L.

amazonensis parasites are more proliferative and lead to an

increased inflammatory response compared to ear dermis

infection, which can be associated with the IL-10 impairment

related to the immunopathology of MCL.
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7. Cincurá C, de Lima CMF, Machado PRL, Oliveira-Filho J, Glesby MJ, Lessa MM,
et al. Mucosal leishmaniasis: A Retrospective Study of 327 Cases from an Endemic Area
of Leishmania (Viannia) Braziliensis. Am J Trop Med Hygiene (Internet). (2017)
97:761–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590558/.

8. Martins SS, Barroso DH, Rodrigues BC, da Motta JdOC, Freire GSM, Pereira
LIdA, et al. A pilot randomized clinical trial: oral miltefosine and pentavalent
antimonials associated with pentoxifylline for the treatment of american
tegumentary leishmaniasis. Front Cell Infection Microbiol (Internet). (2021)
11:700323. doi: 10.3389/fcimb.2021.700323

9. Sampaio RNR, Silva JSFe, Paula CDRd, Porto C, Motta JdOCd, Pereira LIdA, et al.
A randomized, open-label clinical trial comparing the long-term effects of miltefosine
and meglumine antimoniate for mucosal leishmaniasis. Rev da Sociedade Bras
Medicina Trop. (2019) 52. doi: 10.1590/0037-8682-0292-2018

10. Calvopina M, Jijon S, Serrano E, Kato H. Case report: successful treatment with
miltefosine of severe new world mucosal leishmaniasis caused by leishmania
guyanensis. Am J Trop Med Hygiene. (2020) 103:752–5. doi: 10.4269/ajtmh.19-0867

11. Cupolilo SM, Souza F, Abreu-Silva AL, Calabrese KS, Goncalves C. Biological
behavior of Leishmania (L.) amazonensis isolated from a human diffuse cutaneous
leishmaniasis in inbred strains of mice. PubMed. Natl Institutes Health;. (2003)
18:1059–65. doi: 10.14670/hh-18.1059

12. Boaventura V, Santos CS, Ribeiro C, de J, Santos, Clarêncio J, et al. Human
mucosal leishmaniasis: Neutrophils infiltrate areas of tissue damage that express high
levels of Th17-related cytokines. Eur J Immunol Wiley-Blackwell;. (2010) 40:2830–6.
doi: 10.1002/eji.200940115

13. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to
Leishmania major in mice. Nat Rev Immunol. (2002) 2:845–58. doi: 10.1038/nri933

14. Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, UdeyMC, von Stebut E. IL-17
promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol.
(2009) 182:3039–46. doi: 10.4049/jimmunol.0713598

15. Dos-Santos JS, Firmino-Cruz L, Ramos TD, Fonseca-Martins AMd, Oliveira-
Maciel D, De-Medeiros JVR, et al. Characterization of sv129 mice as a susceptible
model to leishmania amazonensis. Front Med . (2019) 6. doi: 10.3389/
fmed.2019.00100

16. Pirmez C, Marzochi MCA, Coutinho SG. Experimental canine mucocutaneous
leishmaniasis (Leishmania Braziliensis Braziliensis). Memórias do Instituto Oswaldo
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33. Cortes S, Esteves C, Maurıćio I, Maia C, Cristovão JM, Miles M, et al. In vitro and
in vivo behavior of sympatric Leishmania (V.) Braziliensis, L. (V.) Peruviana and their
hybrids. Parasitology. (2011) 139:191–9. doi: 10.1017/s0031182011001909
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