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Evolving insights on the role of
microglia in neuroinflammation,
plasticity, and regeneration of
the injured spinal cord

Emily A. Swarts® and Faith H. Brennan**

tDepartment of Biomedical and Molecular Sciences, Queen'’s University, Kingston, ON, Canada,
2Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada

Microglia have emerged as central players in the pathophysiology of traumatic
spinal cord injury (SCI). The purpose of this brief review is to highlight the
evolution of knowledge on the role of microglia in SCI. We explore the initial
discovery of macrophages and their role in SCI lesions, followed by how
microglia were examined and distinguished from monocyte-derived
macrophages. We then discuss findings from studies that mapped and
manipulated microglia in experimental SCI, made possible through
technological advances in genetic, pharmacological, and bioinformatic
approaches. We also highlight the importance of considering how the timing
and location of microglia activation shapes neuroinflammation, synaptic
plasticity and intraspinal circuit remodelling. Finally, as microglia research
continues to flourish, we consider how microglia could be harnessed
therapeutically to promote repair and functional recovery of motor, sensory,
and autonomic systems after SCI.
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Early descriptions of macrophages in SCI lesions

Macrophages are the most abundant immune cell type found in clinical and
experimental spinal cord injury (SCI) lesions (1-3). This rich population is derived from
at least two phenotypically similar but ontogenetically distinct sources: circulating
monocyte-derived macrophages that originate from the spleen and bone marrow, and
tissue-resident microglia that originate from the embryonic yolk sac (4-8). Because the
macrophage response to SCI is prolific and conserved across species, macrophage-targeting
therapies hold great potential to repair the injured spinal cord if the role of both blood-
borne and tissue-resident macrophage populations can be deciphered. Research over the
last century has made great strides toward this goal (Figure 1).

Initial descriptions of macrophages in SCI were made in the early 1900’s by Spanish
neuroanatomist Santiago Ramon y Cajal. In spinal tissue sections from cats, dogs, and
rabbits with contusion, laceration, or transection SCI, Cajal observed rapid ‘traumatic
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1912 - « Description of phagocytes around degenerating axons (Cajal et al., 1991)
1954 « Identification of microglia and observation that microglia transform into amoeboid-shaped macrophages (Hortega, 1918, 1919, 1920)
« Endotoxin improves SCI recovery (Windle & Chambers, 1950, Clemente & Windle, 1954)
1985 - « Macrophages proposed to drive axon dieback and demyelination in SCI (Blight, 1985, 1992, 1994)
1994 o Chloroquine and colchicine inhibit inflammation and improved motor neuron sparing and hindlimb recovery in SCI (Giulian & Robertson, 1990)
« Divergent effects of neuroinflammation in SCI (Guth et al., 1994)
1999 - « Depletion of monocyte-derived macrophages improves SCI outcomes (Popovich et al., 1999)
« Inhibiting monocyte-derived macrophage recruitment improves SCI outcomes (Gris et al., 2004)
2004 « CD8 staining and bone marrow chimeric rats show microglia home to lesion margins but monocyte-derived macrophages home
to the lesion center (Popovich et al., 2001, Popovich et al., 2003)
« Macrophages documented in human SCI lesions from acute to chronic time points (Fleming et al., 2006)
2006 - « Macrophage infiltration compared in 4 strains of mice (Kigerl et al., 2006)
2008 « Microglia inhibition with minocycline decreases pain after SCI (Hains & Waxman, 2006)
o Lumbar microglia shown to predict pain after SCI (Detloff et al., 2008)
« Neurotoxic M1 macrophages shown to dominate in SCI lesions over reparative M2 macrophages (Kigerl et al., 2009)
2009 - « Zymosan shown to induce both pre-regenerative and neurotoxic macrophage responses (Gensel et al., 2009)
« Spatiotemporal dynamics of leukocyte infiltration shown rat SCI using flow cytometry and immunohistochemistry (Beck et al., 2010)
201 o Embryonic yolk sac identified as the source of adult microglia (Ginhoux et al., 2010)
« Iron and TNFa shown to drive dominance of M1 macrophages in SCI (Kroner et al., 2011)
2014 - « Use of CSF1R inhibitors to deplete microglia in the CNS (Elmore et al., 2014)
« Pattern recognition receptors shown to control macrophage fate and function in SCI (Gensel et al., 2015)
2018 « Microglia shown to be activated in lesion-remote levels after high-level SCI (Mironets et al., 2018)
2019 - « Microglia depletion using CSF1R antagonism worsens SCI recovery (Bellver-Landete et al., 2019)
2021 » Neonatal microglia drive scar-free regeneration (Li et al., 2020)
« Single cell RNA sequencing shows different populations of microglia in SCI lesions (Milich et al., 2021).
2022 -  Introduction of more nuanced nomenclature for microglia (Paolicelli et al., 2022)
i « Single cell RNA sequencing shows microglia signatures associated with repair in SCI (Brennan et al., 2022, Matson et al., 2022)

FIGURE 1

Microglia promote maladaptive plasticity and autonomic dysfunction after high-level SCI (Brennan et al., 2024)

Timeline of major discoveries on the role of microglia in SCI. Due to space restrictions only select papers are shown.

degeneration’ - dystrophic axon bulbs that were thought to underlie
central nervous system (CNS) regeneration failure (9). Cajal
remarked that the centers and peripheral stumps of these
degenerated and blebbing nerves were a ‘pasture-ground for
phagocytes’ (9-12). Cajal’s silver staining techniques were not
able to determine the origin, phenotype, or functional repertoire
of lesion-associated phagocytes, though he accurately predicted that
most of the cells directly around dystrophic axons originated from
the blood (12). After over 100 iterations of protocol development,
Cajal’s contemporary, Pio del Rio Hortega, integrated lithium
carbonate with silver nitrate staining and formalin-ammonium
bromide fixation methods to precipitate silver carbonate (13).
Using this method, the cytoplasmic expansions of cells with a tiny
soma and branched processes could be distinguished from
astrocytes and neurons in the intact CNS (14, 15). As these cells
were smaller than other glia and exhibited shorter, finer processes,
they were called microglia (14, 15). Hortega noted that microglia
could migrate, phagocytose, and undergo morphological
transformation, increasing their soma to become amoeboid-
shaped macrophages (16, 17). However, at the time it was
impossible to distinguish microglia from infiltrating, monocyte-
derived macrophages in CNS lesions, or to determine their
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functional role in CNS injury. Despite the discovery that CNS
lesions were rich in macrophages, neuroimmune research stagnated
for the next three decades. This was because the study of glia and
phagocytosis was limited to morphological characterizations with
insufficient tools to assess function. Also, electrical properties could
not be detected in glial or immune cells at the time, making them
less attractive to study than neuronal action potentials. Third, glia
were still largely considered as ‘connective tissue’ that simply held
nervous elements together (18). Fortunately, this view would
dramatically change in future years.

Functional roles for macrophages in
SCI repair

In the 1950s, an unexpected discovery highlighted functional
interactions between neuronal, immune, and glial cells that
rejuvenated neuroimmune research. Injection of Priomen, a crude
pyrogen used to study mechanisms of thermal regulation, improved
functional recovery after SCI in dogs (19). Macrophage profiles
were detected adjacent to newly sprouting nerve fibers, extending
their processes around demyelinated axons, with their cell bodies
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laden with lipid debris months and years post-SCI (19, 20). Studies
three decades later in rats with SCI found that injection of bacterial
endotoxin also enhanced macrophage accumulation and functional
recovery (21). The beneficial effects of macrophages were thought to
be mediated by the removal of cellular debris required to stimulate
tissue revascularization and reconstruction (21, 22). However, the
beneficial effects of endotoxin were augmented by simultaneous
injection with anti-inflammatory steroids (21, 22). This was among
the first observations showing the divergent effects of
neuroinflammatory cells in SCI. Data from subsequent studies in
the early 1990’s in different species also showed that the
inflammatory response, which was known to involve
macrophages, could be harmful to SCI motor, sensory and
autonomic recovery (23, 24). For example, chloroquine and
colchicine decreased the number of macrophages and improved
motor neuron sparing, hindlimb recovery, and bladder function
when given to rabbits six hours after ischemic SCI (24), although
effects on specific motor or autonomic neuron subtypes were not
identified. Similarly, injection of silica dust to suppress macrophage
function improved sparing of myelinated axons in the dorsal horn
of guinea pigs with lateral compression SCI (23). In the 1980’s and
early 1990’s, electron and light microscopy studies of axons in
contusion lesions revealed that the number of intact axons
decreases over 2-7 days (d) post-injury, coinciding with invasion
of macrophages (25, 26). However, the specific macrophage subsets,
neurons they interacted with, and intracellular signaling pathways
affected by these broad-acting immune-modulatory strategies was
not fully understood.

In the 2000’s it became appreciated that intraspinal
macrophages have the potential to promote both tissue injury and
repair in SCI, and that these seemingly divergent effects are not
necessarily mutually exclusive (27-30). The injured spinal cord is
rich in damage-associated molecular patterns (DAMPs), including
heat shock proteins, necrotic cell debris, extracellular matrix
products (fibronectin, hyaluronic acid), high-mobility group box
1, and mRNA, that can activate macrophage pattern recognition
receptors (PRRs). Stochastic interactions between DAMPs and
macrophage PRRs have the capacity to control the functional fate
of monocyte-derived macrophages and microglia in SCI lesions
(31, 32). Indeed, the phenotype of intraspinal macrophages changes
as the lesion environment evolves (33).

Although more dimensional descriptions of macrophages are
now used to better capture the phenotypic and functional
heterogeneity of macrophages (34), a linear scale was initially
used to describe intraspinal macrophages. Macrophages were
often described as being activated on a continuum from ‘pro-
inflammatory/M1’ to ‘anti-inflammatory/M2’ macrophages (33).
M1 macrophages express more iNOS, CD86 and CD16/32, and
are activated by endotoxin, interferon (IFN)-y and tumor necrosis
factor (TNF)-o.. M2 macrophages express more CD206, Arginase-1
and CDI16, and are activated by IL-4 and IL-13. In SCI, Ml
macrophages drive neuron death and axon dieback, whereas M2
macrophages can promote neuron survival and axon outgrowth
even across grown-inhibitory gradients containing chondroitin
sulphate proteoglycans (33). In line with this, blocking M2
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macrophage recruitment worsens motor recovery and increases
lesion size (35). The typical ratio of M1:M2 macrophages in SCI is
~50:50 until 7 d post-injury, but unfortunately, M1 macrophages
dominate after 14 d post-injury (33, 36), and transplanted M2-
polarized macrophages differentiate into M1 macrophages (12, 33).
The reason that harmful M1 macrophages ultimately dominate SCI
lesions was a mystery until a seminal study showed that intraspinal
iron and TNF are powerful signals that prevent phagocytosis-
mediated conversion from M1 to M2 macrophages (37).

However, pro-inflammatory macrophage activation is not
exclusively detrimental. This was demonstrated by combining
intraspinally injected zymosan, a glucan polysaccharide found in
yeast and potent macrophage activator, with transplantation of
dorsal root ganglion (DRG) cells into the same spinal cord (38).
Zymosan triggers a florid macrophage response and drives DRG
axon outgrowth through the release of macrophage-derived
neurotrophins and growth factors [e.g., brain-derived
neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF),
and glial cell line-derived neurotrophic factor (GDNF)] (29, 38, 39).
However, enhanced axonal outgrowth induced by zymosan occurs
concurrently with axon loss and neuron death near reactive
macrophages (38). This is likely because zymosan can have
paradoxical roles depending on which PRR(s) it activates.
Specifically, zymosan can bind to both dectin-1, a C-type lectin
receptor (CLR), and toll-like receptor 2 (TLR2). The activation of
dectin-1 on intraspinal macrophages drives zymosan-induced
axonal dieback and increases lesion size (40). Conversely, the
activation of TLR2 using a TLR2 antagonist, which also triggers
macrophage activation, increases axon density and reduces axon
retraction from the lesion site (40, 41). These data are reminiscent
of observations made decades earlier using crude pyrogens and
endotoxin (19-22), which activate TLR2. The potential to
manipulate macrophage functional plasticity to promote repair
of the injured spinal cord is the subject of several excellent
reviews (12, 42-49), although monocyte-derived macrophages
and microglia are often considered together.

Mapping the location of monocyte-
derived macrophages vs. microglia in
SCI

As it became evident that macrophages had significant but
complex roles in SCI pathophysiology, subsequent efforts sought to
better understand macrophage heterogeneity, beginning with
distinguishing microglia from monocyte-derived macropahges.
Adoption of specific tools, including targeted antibody labeling,
bone marrow chimeras, and transgenic reporter mice, enabled more
precise mapping of the niches that monocyte-derived macrophages
vs. microglia occupy within SCI lesions (Figure 2). Monoclonal
antibody staining to CD8 showed that hematogenous macrophages
home to central necrotic regions of lesion cavitation after rat spinal
cord injury (50). Bone marrow chimeric rats demonstrated that
microglia are activated rapidly after SCI and are present around the
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injury site, whereas monocyte-derived macrophages exclusively
infiltrate the central gray matter lesion, and to a lesser extent the
subpial white matter, peaking recruitment around 7 d post-SCI
(51). Lys-EGFP-ki mice (which express enhanced green fluorescent
protein (EGF) in mature myeloid lineage cells but not microglia)
showed that at six weeks after compression SCI, monocyte-derived
macrophages reside in the lesion epicentre, but microglia are at the
lesion margins (52). Lys-EGFP-ki mice were also used to show that
microglia are the first macrophage population to contact
degenerating axons in vivo (within minutes). After ~ 3 d post-
injury, monocyte-derived macrophages become the main cell type
contacting dying axons, but they process phagocytic material less
effectively than microglia (53). Studies using Cx;cr1#™*>WT bone
marrow chimeric mice also confirmed that monocyte recruitment is
delayed relative to microglia, peaking around 7d post-SCI, and that
these cells home to the central gray matter (5, 54). More recent
studies using tamoxifen-inducible conditional transgenic reporter
mice (Cxzer] TeERER26-TATY ¢ selectively label microglia showed that
microglia rapidly die but then proliferate extensively during the first
two weeks post-SCI (55). These proliferating microglia home to the
interface between infiltrating leukocytes and astrocytes (55). The
homing of monocyte-derived macrophages and microglia to
distinct alcoves of SCI lesions suggests that the developmental
origin of macrophages dictates which lesion-associated ligands
they are exposed to, and their functional effects on surrounding
tissue (51).

Distinguishing the function of
monocyte-derived macrophages and
microglia using targeted cell depletion
strategies

Although both monocyte-derived macrophages and microglia
have the capacity to drive repair or secondary injury, the use of
more precise strategies to deplete specific macrophage populations
provided evidence that blood-borne macrophages are mostly
harmful to the injured spinal cord, whereas tissue resident
microglia are mostly beneficial. Intravenously injected liposome-
encapsulated clodronate depletes monocyte-derived macrophages
and improves hindlimb locomotion, preserves myelinated axons,
decreases cavitation, and enhances axon sprouting in the lesion
(56-58). The tissue damage and macrophage activation induced by
zymosan can also be partially reversed by injecting clodronate-
encapsulated liposomes (38). Radiation bone marrow chimeric rats
also confirmed that hematogenous macrophages are the principal
effectors of zymosan-induced axonal pathology (59). In vivo studies
and time-lapse imaging in cultured dorsal root ganglion neurons
showed that monocyte-derived macrophages physically interact
with dystrophic axons and drive their retraction (60). Like
hematogenous macrophage depletion, blocking recruitment of
circulating myeloid cells into SCI lesions via intravenous injection
of a neutralizing antibody to CDI11d integrin or CD49d/CD29
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integrin improves motor performance, myelin preservation, and
axon sparing in rodent SCI (61-63).

In 2014, colony stimulating factor 1 receptor (CSF1R) inhibitors
became available to deplete microglia without depleting monocyte-
derived macrophages (64). These tools have now been used by
several groups to interrogate the role of microglia in contusion SCI.
The data show that pharmacological microglia depletion impairs
motor recovery by disrupting several naturally occurring
neuroprotective processes (55, 65, 66). Microglia-dependent
protective functions include: JAK/STAT3-dependent astroglial
proliferation and protective astroglial border formation,
promoting neuronal survival, releasing neurotrophins,
axon regeneration, and oligodendrocyte precursor cell survival
(55, 65-69) (Figure 2). Microglia depletion also significantly
delays the entry of monocyte-derived macrophages into spinal
lesions. When monocyte-derived macrophages do arrive, they
disperse throughout ventrolateral white matter regions that would
normally be spared, and hinder motor recovery (66). This is in line
with data showing that blocking the centripedal migration and
sequestration of monocyte-derived macrophages to the central
lesion core by worsens tissue sparing and functional recovery
from SCI (70-72). Increasing microglial proliferation by local
delivery of macrophage-colony stimulating factor (M-CSF)
reduces lesion size and enhances functional recovery (55).
Similarly, engineering microglia to overexpress BDNF, using
Cx3cr1 ™PR*BDNF or Tmem119:BDNF transgenic mice, reduces
inflammation, neuronal death, and increases angiogenesis and
motor recovery in mice with T10 crush SCI (67). A protective
role of microglia on spinal vasculature was also demonstrated in
an aortic cross-clamp model of ischemic SCI. Serial injections
of lipopolysaccharide (LPS) prior to SCI ‘prime’ microglia and
prevents ischemia-induced paralysis; LPS-induced neuroprotection
is reversed by microglia depletion (73). IL-1-dependent microglia-
endothelial cell interactions are critical in mediating this
neuroprotective program (73). Collectively, studies using
microglia-specific depletion strategies consistently show that, in
contrast to monocyte-derived macrophages, microglia drive repair
and regenerative processes after SCI.

Transcriptional responses of microglia to
SCI

Since boosting the beneficial functions of long-lived microglia
in vivo could be a novel therapeutic strategy for SCI, it is critical to
understand the mechanisms through which microglia drive CNS
repair. Research in recent years has taken advantage of RNA
sequencing technologies to provide more granular insight as to
how microglia coordinate inflammation, neuroprotection, and
tissue repair in SCI. Bulk RNA sequencing of spinal cord
homogenates showed that >50% of the top 1000 genes that are
increased by SCI require microglia presence (66). Gene ontology
analysis showed that these genes are responsible for microglia
proliferation, phagocytosis, cytokine production, endocytosis,
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and/or protein secretion (e.g., Aifl, Ccl2, Ccl3, Ccl5, CDI14, Cd36,
Osm, Pycard, Syk, Tgfbl, Tlr2, Tlr4, Tnf, Trem2) (66, 74). The
beneficial effects of microglia in SCI are partly mediated through
phagocytosis and cytokine production, since the worsened
phenotype of microglia-depleted mice can be rescued by
reconstituting the lesion environment with recombinant CCL2
and a TLR2 agonist, effectively reprograming monocyte-derived
macrophages to become less destructive (66). These data are in line
with observations that efficient phagocytic clearance of myelin
debris and apoptotic cell material is required for tissue repair,
remyelination, and axon regeneration after SCI (44-47).

Single cell RNA sequencing datasets also show that microglia
coordinate SCI repair by dynamically changing their transcriptional
phenotype. In the intact spinal cord, microglia mainly express
homeostatic genes, including P2ry12, Tmeml119, Hexb, Siglech, and
Cx3crl (66, 75, 76). However, microglia in the injured spinal cord
adopt several injury-associated transcriptional phenotypes, including
genes that control cell lipid phagocytosis (e.g., Cd68, Clec7a, Ctsd,
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Ctsz, Trem2, Apoe), iron processing (e.g., Fthl, Ftll), interferon
production (e.g., Ifitl, Ifit2, Ifit 3, Irf7), and antigen-binding and
processing (e.g., H2-Abl, H2-Ebl, CD74, Cd93, Cd38) (66, 75-78).
These phenotypes shift in proportion over time, but can be found in
acute (1-3 d), subacute (7 d) and chronic (one month) time points
(66, 75). Evaluating the transcriptional profile of other cell types in
the lesion shows that microglia are also required for astrocytes to
increase genes that drive cytoplasmic translation, response to
interleukin-4, and immune responses (e.g. Tmsb4x, Fthl, Apoe)
(66). Transcriptional analysis of monocyte-derived macrophages
shows that without microglia present, monocyte-derived
macrophages express more genes that could promote inflammation
and neurotoxicity (e.g., Cd86, Cd36, Clecl12a) (33, 66, 79). The
induction of these transcriptional programs by microglia explains
why astroglial and monocyte-derived macrophage responses to SCI
are disrupted without microglia.

CSFIR inhibition combined with single cell RNA sequencing
also revealed how microglia control axon regeneration in the
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injured young vs. adult CNS. Mice at postnatal day two exhibit scar-
free healing and axon regeneration across the lesion site (69).
Microglia are critical for neonatal spinal cord regeneration, as
microglia depletion prevents axon regeneration across the lesion
site (69). Single cell RNA sequencing showed that neonatal
microglia secrete extracellular matrix bridge proteins (e.g. Fnl,
Thbsl) that ligate the crushed spinal cord ends, then produce
peptidase and endopeptidase inhibitors (e.g. Cstb, Stfal, Serpin6a,
Anxal) that drive resolution of inflammation (69). Transplantation
of neonatal microglia or peptidase inhibitor-treated microglia into
adult lesions improves axon growth and tissue repair (69).
Regeneration-associated bridging microglia are much less
abundant in the adult spinal cord and express higher levels of
CD68 and lower levels of P2y12, which is thought to dampen their
ability to promote regeneration in the adult spinal cord (69, 80).

Interestingly, a recent study showed that if microglia are
depleted and then allowed to repopulate the inflammatory
environment of chronic SCI lesions, they return with a more pro-
inflammatory and pro-regenerative phenotype than the original
microglia (81). In this study, CSFIR was inhibited from 7-9 weeks
post-SCI and then the inhibitor was withdrawn from week 9-12 to
allow microglia to repopulate (81). Microglia depletion reduced
expression of inflammatory genes (e.g. Clgb, Ccl12) (81). In
comparison, forcing microglia turnover increased extracellular
matrix genes (e.g. Ncaml, Cadm3, Llcam) and neuronal
transcripts (e.g. App, Nptn, Nfl, Nrxnl), which were associated
with increased density of B3-tubulin® axons in the lesions (81).

We anticipate that ongoing sequencing studies will continue to
shed light on mechanisms of biological heterogeneity as a function
of time post-injury, injury level, injury severity, proximity to the
lesion, biological sex, age, and other environmental or therapeutic
factors. These data could then be harnessed to provide new
microglia-dependent targets that could be co-opted to develop
tailored microglia-dependent therapeutics.

Lesion-remote microglia shape
intraspinal plasticity after SCI

Although most research has focused on lesion-adjacent microglia
and their role in neuroinflammation, microglia distant to the lesion can
also become activated and shape spinal circuitry to affect functional
outcomes from SCI (Figure 2). The role of microglia in synaptic
plasticity and circuit remodeling was recently shown to be critical for
the development of autonomic dysregulation after SCI (82). A high-
level SCI above the major sympathetic outflow (spinal level T6)
disinhibits sympathetic preganglionic neurons (SPNs) from
descending brainstem control. Consequently, remarkable synaptic
plasticity, axonal sprouting and autonomic circuit expansion occurs
within circuits that control lymphoid and endocrine organs (83-84).
This leads to a condition called dysautonomia, which manifests in the
cardiovascular system as autonomic dysreflexia, in the immune system
as immune-depression syndrome, and in the endocrine system as
metabolic syndrome (83, 84). In T3 transection SCI, microglia increase
in number and adopt hypertrophic, amoeboid-shaped morphologies in
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thoracic and lumbar spinal segments centimeters away from the lesion
(3, 82, 85, 86). Microglia activation in lesion-remote regions is triggered
by the activity of disinhibited glutamatergic interneurons; silencing
excitatory neuron activity by blocking Vglut2 activity, or blocking
calcium channel 025-1 signaling, prevents microglia hyperplasia and
hypertrophy (82). These interventions also prevent maladaptive
synaptic plasticity, circuit formation and dysautonomia (82, 87, 88).

To determine if microglia have a causal role in maladaptive
plasticity and dysautonomia, microglia were depleted
pharmacologically using CSFIR antagonism or genetically using
Cxaer1 ™ xR26™™ mice. These experiments showed that microglia
depletion blocks structural and functional plasticity of autonomic
circuits after high-level SCI (82). Specifically, microglia depletion
prevents SCI-induced excitatory synaptogenesis and loss of inhibitory
synapses, decreases sprouting of lumbar CGRP" afferents, and prevents
the expansion of neuronal circuits that innervate lymphoid and
endocrine tissues (82). Consequently, indices of dysautonomia (i.e.,
autonomic dysreflexia, splenic atrophy, antigen-specific antibody
production), are also improved by microglia depletion in high-level
SCL Mechanistically, microglia strip inhibitory synapses from SPNs
and the interneurons they connect to, lowering their threshold for
activation and excitatory circuit formation. The Trem?2 receptor is at
least partially required for this response (82). Other studies have shown
that inhibition of soluble TNFar, which is predominantly produced by
microglia, prevents maladaptive structural plasticity and autonomic
dysregulation after high-level SCI (85, 89).

Lesion-remote microglia are also thought to drive thermal and
mechanical hypersensitivity post-SCI. Activation of lumbar
microglia is associated with phosphorylation of p38 MAP kinase,
elevated TNFa and IL-1f levels, and induction of allodynia after
SCI (90). The inhibition of lesion-remote microglia using
minocycline prevents hyperresponsiveness of lumbar dorsal horn
neurons, p38 MAP kinase and blocks SCI-induced pain (91). Thus,
in designing strategies to manipulate microglia therapeutically, it is
important to not only consider the protective role of lesion-adjacent
microglia in coordinating neuroinflammation, but also the
pathological role of lesion-remote microglia in aberrant signaling
that drives dysautonomia and pain.

The future: microglia-targeting
strategies to repair the injured spinal
cord

There are now several genetic and pharmacological approaches
being actively explored to manipulate microglia to promote tissue
repair and functional recovery from SCI. Microglia transplantation
(69, 92, 93) in specific CNS regions is possible through local
intraparenchymal injections, although whether their phenotype
and function remains long-term is unknown. A more targeted
approach is to use lipid-polymer-hybridized-nanoparticles
(LPNPs) to deliver siRNA within defined CNS regions to modify
microglial gene expression (94). This technique harnesses the fact
that microglia are the primary phagocytes in the CNS, and
selectively phagocytose biocompatible nanoparticles loaded with
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siRNA and either Rhodamine B or Alexa555-conjugated gold
nanoparticles tracers, allowing microglial fate-mapping alongside
gene manipulation (94). However, this technique requires fully
functional phagocytosis pathways (i.e, ‘find me’, and ‘eat me’
signals), which may themselves be modified by pathology.

An alternative approach is to use adeno-associated viral (AAV)
vectors containing, for example, Ibal promoter regions to transduce
microglia in vivo (95-97). AAV viral vectors have successfully modified
microglial gene expression and disease outcomes in various
neurodegenerative diseases and peripheral neuropathies (95-100).
Since SCI has a less complex progression staging and timing of
diagnosis than these conditions, it should be possible to time the
delivery of AAV therapies to target specific microglia-dependent
neuroinflammatory events. However, since SCI lesions have a larger
contingent of peripheral immune cells than chronic neurodegenerative
lesions, AAV technologies may not be as effective in distinguishing and
targeting microglia vs. monocyte-derived macrophages in SCI.
However, a recent study used a combinatorial genetic and surgical
strategy to chronically target microglia with region specificity, without
affecting peripheral macrophages (101). Specifically, a tamoxifen

metabolite (endoxifen) was administered to CxscrlERT2

or
TMEM1197*™? mice. Sustained microglia gene manipulation was
achieved by delivering endoxifen through osmotic pumps attached to
fine cannulas made of stainless steel or microfluidic polymer
fibers (101).

Microglia are also central components of various other
therapeutic strategies in development for SCI. For example, the
gut microbiome influences microglial immunosurveillance,
phenotype, and synaptic remodeling, suggesting that microglia
could also be co-opted non-invasively through strategies targeting
the gut-brain axis (102, 103). Epigenetic changes (e.g. DNA
methylation, histone deactylation) impact microglia responses
and represent a novel therapeutic avenue (104). Microglia-
targeting therapies have also been shown to boost the efficacy of
other interventions, such as rehabilitation training (105). We expect
that in future years, these and many other strategies centered on
microglia biology will emerge as flourishing fields to enhance
recovery after SCI, and potentially other types of CNS trauma.
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