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Immunotherapy has revolutionized cancer treatment by leveraging the body’s 
immune system to recognize and eliminate tumor cells. While monoclonal 
antibodies and checkpoint inhibitors have shown dramatic clinical successes, 
small molecules are increasingly recognized for their potential to modulate the 
immune system with improved pharmacokinetics and oral bioavailability. The 
incorporation of fluorine atoms into small molecule structures has become a 
widely used strategy to enhance therapeutic efficacy. Fluorine’s unique chemical 
properties such as high electronegativity, metabolic stability, and ability to 
modulate lipophilicity make fluorinated small molecules especially attractive 
for immunotherapeutic applications. This minireview highlights recent 
advances in fluorinated small molecules that target key immune pathways, 
including immune checkpoints, STING agonists, IDO inhibitors, and kinase 
pathways involved in immune regulation. We explore the chemical rationale, 
mechanisms of action, and therapeutic outcomes of fluorinated compounds 
currently in preclinical and clinical development. The discussion also addresses 
challenges such as immunotoxicity, resistance, and design strategies to 
overcome them. Together, these findings underscore the growing relevance of 
fluorinated small molecule immunotherapeutics in cancer treatment. 
KEYWORDS 

fluorinated small molecules, cancer immunotherapy, immune checkpoint inhibitors, 
STING agonists, fluorine in drug design, IDO1/TDO inhibitors 
1 Introduction 

The advent of immunotherapy has marked a paradigm shift in oncology, offering long-
term remission for cancers that were once considered untreatable (1). Immune checkpoint 
inhibitors, such as those targeting PD-1, PD-L1, and CTLA-4, have led to breakthrough 
responses in several cancers. However, many patients fail to respond or develop resistance, 
underscoring the need for novel therapeutic modalities (2). 
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Small molecules are emerging as valuable alternatives or 
complements to antibody-based immunotherapies. Their 
advantages include oral administration, better tumor penetration, 
lower costs, and ability to target intracellular sites inaccessible to 
biologics (3–5). In this context, halogen plays a critical role in 
optimizing their performance. 

Halogenation, particularly the replacement of hydrogen atoms 
with halogens, is a widely used strategy in compound optimization. 
Halogen substitution can sometimes enhance potency by orders of 
magnitude (6). Among halogens, fluorine substitution is especially 
notable for its profound impact on key physicochemical properties 
such as pKa, lipophilicity, metabolic stability, and molecular 
conformation. For instance, fluorination can alter the pKa exceed 
one log unit. 

Fluorination usually increases lipophilicity, but may reduce it at 
saturated alkyl groups. Fluorine’s van der Waals radius, close to 
hydrogen’s, minimally affects conformation when monosubstitution. 
However, larger fluorinated groups such as trifluoromethyl, whose 
steric volume is comparable to that of an ethyl group, can significantly 
alter molecular geometry by changing bond angles (7, 8). 

Fluorine substitution at chiral centers prone to in vivo racemization 
—such as that seen in thalidomide—has been shown to prevent such 
Frontiers in Immunology 02 
stereochemical interconversion. From a molecular interaction 
standpoint, fluorine forms weaker hydrogen bonds than hydrogen 
but exhibits stronger electrostatic interactions. Importantly, fluorine 
substitution at sites susceptible to metabolism by enzymes can confer 
metabolic resistance, primarily due to increased steric hindrance. This 
strategy is used in designing analog inhibitors, including nucleoside 
analogues (9–16). 

This minireview focuses on the expanding role of fluorinated 
small molecule derivatives in cancer immunotherapy in last 5 years. 
We categorize recent developments into key target areas and 
highlight representative examples that illustrate the therapeutic 
promise of these compounds. 

Here we present an integrated schematic (Figure 1) summarizing 
the key immunometabolic and signaling pathways that shape 
tumor–immune interactions and highlight therapeutic targets 
within the tumor microenvironment (TME). 

This diagram illustrates key molecular pathways regulating the 
tumor-immune interface. In tumor cells, metabolic regulators such 
as DHODH, glutamine, pyrimidine synthesis, the TCA cycle, and 
tryptophan catabolism (via IDO/TDO) modulate immune escape 
and support proliferation. Transcriptional and signaling pathways 
including PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, BTK, and b-
FIGURE 1 

Integrated schematic of tumor immunomodulatory mechanisms involving metabolic, signaling, and checkpoint pathways across tumor cells, T cells, 
and antigen-presenting cells. The red crosshairs represent the suppression targets, and the green crosshairs represent the activation targets. 
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catenin converge to sustain tumor cell survival, EMT, and 
resistance. Immunomodulatory protein degradation by cereblon– 
recruited E3 ligases targets substrates such as IKZF1/3, GSPT1, and 
b-catenin fragments, influencing immune regulation and tumor 
viability. Tumor-derived chemokines (CCL2, CCL5, CCL22, 
CXCL8, CXCL12) recruit suppressive immune cells including 
tumor-associated macrophages (TAMs),  myeloid-derived

suppressor cells (MDSCs), and regulatory T cells (Treg) via 
chemokine receptors (CCR2, CCR4, CCR5, CXCR1/2, CXCR4), 
reinforcing an immunosuppressive TME. The STING–cGAS 
pathway in antigen-presenting cells, macrophages, dendritic cells 
(DCs), activates type I interferon responses that prime cytotoxic T 
cell activity. T cell activation is mediated through TCR/CD28 
costimulation, engaging PI3K, LAT, and MAPK cascades; this is 
negatively regulated by immune checkpoints (PD-1/PD-L1, CTLA­
4/CD80) and intracellular suppressors such as HPK1. T cell lineage 
commitment is modulated by transcriptional regulators including 
FoxP3 and RORgt, influencing Treg and Th17 differentiation, 
respectively. This figure synthesizes multiple molecular 
interactions to illustrate how tumor cells co-opt immune 
regulatory pathways and highlights potential therapeutic targets 
across immune metabolism, checkpoint inhibition, signal 
transduction, and transcriptional control. 
2 Class of compounds 

We identified over 80 fluorinated small molecules with reported 
immunomodulatory activity in the past five years. Their chemical 
structures are illustrated in Figure 2 and are categorized according 
to their pharmacological mechanisms. 
2.1 Fluorinated immune checkpoint 
inhibitors 

Immune checkpoints serve as critical regulators that suppress T 
cell activity to maintain immune homeostasis. However, tumors 
hijack these pathways to evade immune surveillance. Checkpoint 
blockade therapies, such as anti-PD-1 and anti-CTLA-4 antibodies, 
have revolutionized cancer treatment by reactivating antitumor 
immunity. Nonetheless, challenges such as immune-related 
toxicities, poor tumor penetration, and therapeutic resistance 
necessitate the exploration of alternative strategies. 

Small molecule immune checkpoint inhibitors (ICIs) offer 
potential advantages, including oral bioavailability, improved 
tissue penetration, and cost-effective production (17, 18). Their 
development is crucial for broadening the scope of immunotherapy 
across different cancer types and patient populations. 

2.1.1 Small molecule PD-1/PD-L1 inhibitors 
While most approved PD-1/PD-L1 inhibitors are monoclonal 

antibodies, small molecule alternatives are under development to 
overcome limitations such as poor tissue penetration and immune-

related adverse events (irAEs) (19, 20). 
Frontiers in Immunology 03 
Fluorinated aromatic groups have been critical in enhancing the 
binding affinity of small molecule PD-L1 inhibitors. Compounds 
such as compound 1 (21, 22), and others utilize fluoroaryl moieties 
to improve hydrophobic interactions within the PD-L1 binding 
pocket. For instance, a fluorophenyl group in the BMS series 
increases p-stacking and binding site complementarity, enhancing 
antagonistic activity. 
FIGURE 2 

Fluorinated compounds with immunomodulatory activity. 
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2.1.2 Small molecule CTLA-4/CD80 inhibitors 
While less explored than PD-1/PD-L1, fluorinated derivatives 

compound 2 targeting the CTLA-4/CD80 axis are being 
investigated (23). These molecules often feature fluorinated indole 
or quinazoline cores to mimic protein-protein interaction surfaces. 

2.1.3 Small molecule HKP1 inhibitors 
Hematopoiet ic  progenitor  kinase  1  (HPK1)  i s  an  

immunosuppressive regulatory factor that is initially expressed at 
low levels in lymphoid progenitor cells but becomes highly 
expressed in mature immune cells, such as T cells, B cells, DCs, 
and M2 macrophages (24, 25). Inhibiting HPK1 has emerged as a 
promising strategy to enhance antitumor immunity. 

Several fluorinated small molecule HPK1 inhibitors have already 
progressed into clinical trials, including compound 3 and 4 (26–29). 
These inhibitors aim to counteract HPK1-mediated suppression of T 
cell receptor (TCR) signaling, thus potentiating T cell activation and 
improving the efficacy of cancer immunotherapies. 

Fluorine in HPK1 inhibitors improves binding, stability, and 
pharmacokinetics, enabling synergy with checkpoint inhibitors for 
cancer therapy. 
2.2 STING agonists with fluorinated 
enhancements 

The STING (Stimulator of Interferon Genes) pathway activates 
innate immunity via type I interferon responses, making it a 
promising target for cancer immunotherapy. While many STING 
agonists are locally administered due to systemic toxicity, 
fluorinated analogs have shown potential for oral or systemic use 
by improving pharmacokinetic profiles. 

2.2.1 Cyclic dinucleotide mimetics 
Natural STING agonists, such as cyclic dinucleotides (CDNs), 

suffer from poor membrane permeability and metabolic 
degradation. Fluorinated analogs have been synthesized to 
address these limitations (30). 

For example, fluorinated deoxyribose and indole-based STING 
agonists have demonstrated improved potency, cellular uptake, and 
resistance to enzymatic hydrolysis. Strategic fluorine placement 
stabilizes the molecule and enhances cGAS-STING pathway 
activation in tumor-associated immune cells (31). 

Dejmek and colleagues substituted fluorine atoms for the free 
hydroxyl groups on the pentose ring of cyclic dinucleotides. 
Remarkably, this modification increased the agonistic activity by 
10- to 100-fold. The enhanced efficacy is attributed to better cell 
permeability, greater anti-degradation properties, and stronger 
binding to the STING protein. 

To further improve cellular permeability and metabolic 
stability, long-chain alkyl groups were conjugated to the 
phosphate hydroxyl groups to create prodrugs. For instance, 
compound 5, modified with an n-octanoyl group, exhibited an 
EC50 of less than 1 nM, representing more than a 10,000-fold 
improvement in potency compared to the parent CDN (32). 
Frontiers in Immunology 04
Several fluorinated CDN analogs, such as compound 6-8 (33– 
39), have advanced into phase I clinical trials, further underscoring 
the translational potential of this approach. 

2.2.2 Non-nucleoside STING activation 
Non-nucleoside drugs are also a research hotspots. Compared 

with traditional CDN STING agonists, non-nucleoside drugs have 
better metabolic stability and cell permeability. Some compounds 
are orally bioavailable. However, their development is hindered by 
structural complexity and species-specific STING  binding
differences between humans and models like mice. 

Compound 9 (40) and 10 (41) are particularly noteworthy. 
Compared with its non-fluorinated analog compound 11, compound 
9 incorporates  fluorine at the 7-position of the indole ring, significantly 
improving binding stability, metabolic resistance, and, to a lesser extent, 
agonistic activity. Similarly, compound 10 demonstrates the crucial role 
of fluorine in modulating bioactivity: its non-fluorinated precursor, 
compound 12, exhibits no STING activation, whereas the fluorine-
substituted compound 10 shows strong thermal stability and induces a 
closed conformation of the STING protein, effectively triggering 
downstream immune responses. 
2.3 IDO and TDO pathway inhibitors 

Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3­
dioxygenase (TDO) enzymes mediate immune suppression in the 
TME by depleting tryptophan and producing immunosuppressive 
kynurenines (42–44). These pathways impair T cell proliferation, 
promote Treg differentiation, and support tumor immune escape. 

2.3.1 Fluorinated IDO1 inhibitors 
Fluorinated derivatives of IDO1 inhibitors have demonstrated 

improved pharmacological properties, including enhanced 
metabolic stability, target specificity, and bioavailability. 
Compounds such as compound 13 and 14 (45–47) incorporate 
fluoroaryl groups to fine-tune physicochemical properties such as 
pKa and lipophilicity, optimizing enzyme inhibition under 
physiological conditions. These modifications improve selectivity 
and reduce off-target toxicity, critical for clinical success. 

2.3.2 Dual inhibition 
To overcome redundancy between the IDO and TDO pathways, 

dual inhibitors are under development. Many of these compounds 
incorporate fluorinated aromatic rings that span both enzyme 
binding pockets, enhancing dual target engagement. One notable 
example is compound 15 (47, 48), a fluorinated dual IDO/TDO 
inhibitor with promising clinical activity. 

Beyond IDO/TDO dual inhibitors, other bifunctional molecules 
have been designed to target IDO1 along with additional oncogenic 
or epigenetic pathways. For example, compound 16, a derivative of 
epacadostat 13, inhibits both IDO1 and IDO2 (49), compound 17 
possesses both IDO1 inhibitory and DNA alkylation activities (50), 
and compound 18 simultaneously inhibits IDO1 and histone 
deacetylases (HDACs), which modulate chromatin architecture 
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and gene expression (51). These inhibitors may enhance antitumor 
efficacy via synergy. 

2.3.3 Aryl hydrocarbon receptor antagonists 
Kynurenine binds to the aryl hydrocarbon receptor (AhR) and 

further suppresses antitumor immunity (52, 53). Fluorinated AhR 
antagonists—such as compound 19-21 (54–57)—can block this 
interaction, thereby restoring immune activation and reprogramming 
the TME. Fluorine incorporation into these molecules enhances their 
metabolic stability and binding affinity, which are essential for 
disrupting the kynurenine-AhR axis and achieving therapeutic benefit. 
2.4 Kinase inhibitors with 
immunomodulatory functions 

Many oncogenic kinases also regulate immune evasion and 
cytokine production, making kinase inhibitors effective 
immunomodulatory agents. 

2.4.1 JAK/STAT pathway 
Fluorinated Janus kinase (JAK) inhibitors, such as compound 

22 (approved in 2019), modulate interferon signaling and T-cell 
responses. Fluorination enhances selectivity among JAK isoforms 
and reduces hematologic toxicity (58). 

2.4.2 BTK and PI3K inhibitors 
Bruton’s tyrosine kinase (BTK) and phosphoinositide 3-kinase 

delta (PI3K-d) inhibitors influence B-cell malignancies and Treg 
populations. Fluorinated analogs exhibit improved target 
occupancy and immune reprogramming effects. 

As of April 2025, five BTK inhibitors have been FDA-approved 
(59–63), two of which—compound 23,24—are fluorinated (64, 65). 
Other fluorinated BTK inhibitors, such as compound 25-28 (66– 
74), are under clinical or preclinical investigation. 

Regarding PI3K-d inhibitors, seven have received FDA approval 
(75–81), five of which—compound 29-33—are fluorinated (82–86). 
Additional fluorinated PI3K-d inhibitors under clinical 
development include compound 34-39 (86–96) with most having 
completed phase II trials. 

2.4.3 BRAF and MEK1/2 inhibitors 
The RAF/MEK/ERK pathway regulates tumor cell proliferation, 

differentiation, survival, and migration, and it also modulates 
immune responses. ERK activation increases immunosuppressive 
factors, such as interleukin-10 (IL-10), promotes Th2 cell 
differentiation, and reduces CD8+ T-cell and B-cell activity (97). 

Currently, five MEK1/2 inhibitors are FDA-approved (98–106), 
four of which——compound 40-43——are fluorinated. Additionally, 
all approved BRAF inhibitors, compound 44-47, are fluorinated agents 
(107–111). 
Frontiers in Immunology 05 
2.5 Fluorinated immunomodulators on 
hematopoietic system and immune cell 
differentiation 

2.5.1 Fluorinated derivatives of thalidomide and 
lenalidomide 

Glutarimide-based immunomodulatory drugs (IMiDs), such 
as lenalidomide 48, pomalidomide 49 and thalidomide 50, 
modulate cereblon, a component of the E3 ubiquitin ligase 
complex, to induce selective protein degradation (112, 113). 
IMiDs enhance T cell and NK cell activities by promoting IL-2, 
CD28, and IFN-g expression. Their combination with monoclonal 
antibodies like daratumumab or elotuzumab is recommended as 
first-line therapy for multiple myeloma (114). IMiDs are also 
under investigation in combination with CAR-T therapy and 
cancer vaccines such as PVX-410 (115). Fluorination of the 
phthalimide or glutarimide ring, compound 51-53, can fine-tune 
cereblon binding and degradation selectivity, thus providing a 
stronger immunomodulation effect (116, 117). 

New-generation IMiDs have improved specificity to minimize 
side effects. Examples include compound 54,55 targeting GSPT1, 
compound 56 targeting GSPT1/2, compound 57 targeting IKZF1/3, 
and compound 58 targeting b-catenin peptides (118–124). G1 to S 
phase transition 1/2 (GSPT1/2) are a key factor in cell proliferation 
and Ikaros zing-finger family transcription factors (IKZF TFs) are a 
regulators play an important role in lymphocyte development and 
differentiation (125). In the other hand, b-catenin peptide is a key 
transducer in Wnt signal pathway, has a very close relationship with 
tumor occurrence (126). 
2.5.2 DHODH inhibitor 
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial 

enzyme responsible for the fourth step of pyrimidine biosynthesis 
and is essential for cellular proliferation. Currently available 
fluorinated DHODH inhibitors include leflunomide 59 and its 
active metabolite teriflunomide 60, primarily used to treat 
rheumatoid arthritis and multiple sclerosis (127–129). Although 
these drugs inhibit T and B cell proliferation, many cancer cells 
upregulate DHODH expression to sustain rapid growth. 
Compounds such as compound 61,62 (129–132) have entered 
early-phase clinical trials targeting acute myeloid leukemia. 
2.5.3 Immune cell differentiation 
Retinoic acid receptor-related orphan receptor gamma t 

(RORgt) is a nuclear transcription factor specific to immune cells. 
Its activation induces the differentiation of T cells into Th17 cells, 
thereby enhancing antitumor immunity (133). Several fluorinated 
small molecules targeting RORgt have been reported, including 
Compound 63-66 (134–138), the latter having advanced into 
clinical trials. 
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2.6 Fluorinated molecules in tumor 
microenvironment modulation 

The tumor microenvironment (TME) plays a central role in 
immune suppression. Fluorinated small molecules can modulate 
several aspects of the TME: 

2.6.1 pH sensitive and iron sensitive fluorinated 
compound 

pH-responsive fluorinated carriers enhance drug release in 
acidic tumor conditions. Fluorination improves nanoparticle 
stability and pH sensitivity without impairing self-assembly (139). 
These nanoparticles preferentially release drugs in acidic TME (pH 
5.0–6.5), reducing systemic toxicity at physiological pH (~7.4). 

Additionally, acidic conditions promote iron release, and tumor 
cells upregulate transferrin receptor 1 (TfR1) to meet proliferative 
demands (140). Artemisinin, leveraging its endoperoxide bridge, 
generates reactive oxygen species (ROS) in high-iron environments, 
inducing tumor cell death. Fluorinated derivatives of artemisinin, 
compounds 67-71, show improved cell penetration, ROS 
generation, stability, and tumor selectivity (141–144). 

2.6.2 Metabolic inhibitors 
Fluorinated metabolic inhibitors block lactate production or 

glutaminolysis, reprogramming immune cell metabolism. Metabolic 
reprogramming in tumors, such as increased lactate production 
and glutaminolysis, contributes to an immunosuppressive 
microenvironment. Targeting these pathways can modulate immune 
responses (145). 

While specific fluorinated inhibitors are under investigation, the 
general strategy involves disrupting lactate dehydrogenase activity 
and glutamine metabolism to reprogram immune cell function 
within tumors (146). Notable drug candidates under clinical 
investigation include compound 72 and its preclinical analogues 
compound 73,74 (147–149). 

In addition to targeting lactate and glutamine, inhibition of farnesyl 
diphosphate synthase (FDPS) is another emerging area of research. 
FDPS is a key enzyme in the mevalonate pathway, responsible for 
depleting isopentenyl pyrophosphate (IPP), thereby reducing T cell 
activation and impairing antigen presentation by DCs and 
macrophages. FDPS also activates osteoclasts, promoting tumor 
metastasis. Bisphosphonates like zoledronate target FDPS to reduce 
bone destruction. Fluorination of bisphosphonates, compound 75, 
significantly enhances their inhibitory potency, increases T cell 
activity—particularly Vg2Vd2 T cells—improves antigen 
presentation, and reduces bone metastasis (150). 

2.6.3 Chemokine receptor 
Chemokine receptors play critical roles in tumor growth, 

metastasis, and immune suppression (151), Several fluorinated 
chemokine receptor antagonists have been developed, targeting 
CCR2 (152), CCR4 (153), CCR5 (154), CXCR1 (155), CXCR2 (156), 
and CXCR4 (157, 158), effectively blocking immune cell trafficking that 
promotes tumor growth. 
Frontiers in Immunology 06
Multiple chemokine receptor antagonists have advanced to clinical 
trials, including compound 76 targeting CCR2 (159, 160), compound 
77 targeting CCR4 (161–164), compound 78, a dual CXCR1/2 
inhibitor (165, 166), compound 79 targeting CXCR2 (156, 167), 
Compound 80 targeting CXCR4 (157), and the repurposed HIV 
drugs vicriviroc 81 and maraviroc 82 (168–170) as CCR5 antagonists.  

2.6.4 Fluorinated CD39/CD73/A2AR antagonists 
Fluorinated CD39/CD73/A2AR antagonists can block tumors 

from exploiting high levels of ATP in the TME to establish an 
immune-cold shield and promote tumor growth. CD39 converts 
extracellular ATP and ADP into AMP, while CD73 further converts 
AMP into adenosine, which activates the adenosine 2A receptor 
(A2AR), promoting the expansion of immunosuppressive cell types 
such as Treg and Th2 cells (171). 

Reported fluorinated CD73 inhibitors include compound 83 
(172, 173) and a compound 84 discovered by Beatty et al. (174). 
Among A2AR antagonists, compound 85,86 (175–178) have

entered clinical trials. 
3 Discussion and future prospective 

Fluorine incorporation in small molecule immunotherapeutics 
enhances potency, selectivity, and durability. In checkpoint 
inhibition, it improves PD-L1 and CTLA-4 antagonist properties. 
Fluorinated STING agonists show better uptake and activity, while 
IDO1 and TDO inhibitors gain improved pharmacokinetics and 
immune modulation, advancing cancer immunotherapy strategies. 

Though promising for immunotherapy due to enhanced 
pharmacokinetic properties and specificity, fluorinated small 
molecules also present challenges, notably the risk of irAEs stemming 
from systemic immune activation (179). Although direct studies linking 
fluorinated compounds to irAEs are limited, insights can be drawn from 
the broader context of immunotherapies, particularly ICIs, which have 
been extensively studied for their irAE profiles (180, 181). 

Researches indicate that ICIs disrupt immune balance, causing 
irAEs via multiple mechanisms. For instance, a comprehensive review 
highlights that the activation or reactivation of T cells is a dominant 
factor in the development of ICI-related irAEs, with enhanced Th17 
cell responses contributing to the production of proinflammatory 
cytokines like IL-17A, IL-21, and IL-22 (179). These findings 
underscore the delicate balance required in immunotherapy: 
enhancing anti-tumor immunity while minimizing collateral 
immune activation that can lead to adverse events. 

Fluorinated small molecules for immunotherapy may trigger 
irAEs. Mitigation strategies include dose optimization, immune 
pathway modulation, and thorough preclinical testing. Off-target 
effects and metabolite toxicity also warrant attention. Future designs 
should enhance selectivity, reduce toxicity, and address resistance 
mechanisms like immune suppression or compensatory signaling. 

To overcome these challenges, future design strategies include: 
Structure-guided drug design incorporating fluorine in 

metabolically vulnerable regions to enhance stability. 
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Proteolysis targeting chimera and molecular glues with 
fluorinated ligands to achieve targeted protein degradation (119). 

Nanoformulations and prodrugs using fluorinated linkers to 
control release and reduce systemic exposure. 

Companion diagnostics, such as fluorine-18 labeled PET 
tracers, to visualize immune response and guide therapy. 

The integration of AI-driven molecule optimization, high-
throughput screening, and deep learning models for ADMET 
prediction will further accelerate the development of next-
generation fluorinated immunotherapeutics (182). 

In summary, fluorinated small molecules represent a dynamic and 
growing class of agents in cancer immunotherapy. By merging the 
principles of fluorine chemistry with immuno-oncology, researchers 
can design novel agents capable of overcoming existing limitations and 
ushering in a new era of precision immunotherapy. 
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́ ́19. Pla-López A, Castillo R, Cejudo-Marın R, Garcıa-Pedrero O, Bakir-Laso M, 
Falomir E, et al. Synthesis and biological evaluation of small molecules as potential 
anticancer multitarget agents. Int J Mol Sci. (2022) 23:7049. doi: 10.3390/ijms23137049 

20. Xia Y, Zhang H, Du H, Huang L, Yu C, Wu H, et al. Design, synthesis, and 
antitumor activity evaluation of 1,2,3-triazole derivatives as potent PD-1/PD-L1 
inhibitors. Bioorg Chem. (2024) 153:107813. doi: 10.1016/j.bioorg.2024.107813 

21. Maxinovel Pty., Ltd. A phase I study to evaluate the safety, tolerability and 
pharmacokinetic characteristics of MAX-10181 in patients with advanced solid tumor 
(2022). Available online at: https://clinicaltrials.gov/study/NCT05196360 (Accessed 
April 29, 2025). 
frontiersin.org 

https://doi.org/10.1038/nri3197
https://doi.org/10.1016/j.biopha.2020.109821
https://doi.org/10.1016/j.apsb.2022.11.007
https://doi.org/10.1016/j.apsb.2022.11.007
https://doi.org/10.3390/biomedicines11102621
https://doi.org/10.1016/j.bbcan.2024.189170
https://doi.org/10.1021/acs.jmedchem.2c02015
https://doi.org/10.1039/B610213C
https://doi.org/10.1021/acs.jmedchem.5b00258
https://doi.org/10.1021/acs.jmedchem.5b00258
https://doi.org/10.1007/s11696-023-02804-5
https://doi.org/10.1016/j.ejmech.2019.111826
https://doi.org/10.1016/j.ejmech.2023.115758
https://doi.org/10.1016/j.jfluchem.2020.109639
https://doi.org/10.3390/ph16081162
https://doi.org/10.1016/j.ejmech.2021.113356
https://doi.org/10.1016/j.apsb.2023.12.010
https://doi.org/10.1016/j.apsb.2023.12.010
https://doi.org/10.1021/acsomega.0c00830
https://doi.org/10.1038/nrc.2016.36
https://doi.org/10.1186/s13046-021-01987-7
https://doi.org/10.3390/ijms23137049
https://doi.org/10.1016/j.bioorg.2024.107813
https://clinicaltrials.gov/study/NCT05196360
https://doi.org/10.3389/fimmu.2025.1622091
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Leong et al. 10.3389/fimmu.2025.1622091 

 

22. Wang Y, Xu Z, Wu T, He M, Zhang N. Aromatic acetylene or aromatic ethylene 
compound, intermediate, preparation method, pharmaceutical composition and use 
thereof (2018). Available online at: https://patentscope.wipo.int/search/en/detail.jsf? 
docId=WO2018006795&_cid=P20-MBX35Q-59319–1 (Accessed June 15, 2025). 

23. Green NJ, Xiang J, Chen J, Chen L, Davies AM, Erbe D, et al. Structure–activity 
studies of a series of dipyrazolo[3,4-b:3′,4′-d]pyridin-3-ones binding to the immune 
regulatory protein B7.1. Bioorg Med Chem. (2003) 11:2991–3013. doi: 10.1016/S0968­
0896(03)00183-4 

24. Hu MC, Qiu WR, Wang X, Meyer CF, Tan TH. Human HPK1, a novel human 
hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes 
Dev. (1996) 10:2251–64. doi: 10.1101/gad.10.18.2251 

25. Ahn MJ, Kim EH, Choi Y, Chae CH, Kim P, Kim SH. Novel hematopoietic 
progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation. PloS One. (2024) 19: 
e0305261. doi: 10.1371/journal.pone.0305261 

26. BeiGene. A phase 2, open-label, randomized, multi-arm study of BGB-A445 in 
combination with investigational agents in non-small cell lung cancer patients 
previously treated with anti-PD-(L)1 antibody (2025). Available online at: https:// 
clinicaltrials.gov/study/NCT06029127 (Accessed April 29, 2025). 

27. Xu S, Li J, Wang Z. 3-[(1h-Pyrazol-4-Yl)oxy]pyrazin-2-Amine Compounds as 
HPK1 inhibitor and use thereof (2022). Available online at: https://patentscope.wipo. 
int/search/en/WO2022068848 (Accessed June 12, 2025). 

28. Noel MS, Demel KC, Srivastava B, Daigle SR, Boiko S, Hoerres A, et al. Phase 1/2 
trial of the HPK1 inhibitor NDI-101150 as monotherapy and in combination with 
pembrolizumab: Clinical update. JCO . (2024) 42:3083–3. doi: 10.1200/ 
JCO.2024.42.16_suppl.3083 

29. Kaila N. Discovery of NDI-101150, a highly potent and selective HPK1 inhibitor 
for the treatment of cancer, through structure-based drug design (2024). Available 
online at: https://www.nimbustx.com/wp-content/uploads/Nimbus-HPK1-NDI­
101150.pdf (Accessed June 12, 2025). 

30. Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING 
agonists as cancer therapeutics. Cancers. (2021) 13:2695. doi: 10.3390/cancers13112695 

31. England DB, Langston SP, Lee HM, Ma L, Shi Z, Vyskocil S, et al. Antibody drug 
conjugates (2020). Available online at: https://patentscope.wipo.int/search/en/ 
WO2020229982 (Accessed June 12, 2025). 
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