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Background: Metastatic colorectal cancer (mCRC) poses significant treatment 
challenges, especially liver metastasis (CRLM). A notable proportion of CRC has 
synchronous metastasis independent of lymph node metastasis (LNM). The 
biological traits of lymph node-independent metastasis in CRC are unclear, 
and early synchronous metastasis is hard to predict with current imaging or 
clinicopathological methods. 

Method: We collected samples from 12 CRC patients with synchronous distant 
metastasis without LNM (T1-3N0M1). Data-Independent Acquisition Mass 
Spectrometry (DIA-MS), multi-omics data integration, and machine learning 
were used to develop a Lymph node-Independent Metastasis Genes (LIMGs) 
signature to predict synchronous distant metastasis risk in stage I-II CRC patients 
and validate it in multi-cohort. Immune microenvironment across risk subgroups 
was calculated by Estimating Relative Subsets of RNA Transcripts (CIBERSORT). 
Tumor Mutation Burden (TMB), Microsatellite Instability (MSI) score, immune 
functions and immune checkpoint gene expression were analyzed to evaluate 
immunotherapy response. Single cell RNA sequencing (scRNA-seq) analysis 
i l lustrated  the  expression  profi le  of  integrin  a11  (ITGA11)  in  CRC.  
Immunohistochemistry (IHC) confirmed its expression pattern, while wound 
healing and transwell assays elucidated the role of ITGA11 in CRC metastasis. 

Results: The LIMGs signature demonstrated strong predictive performance of 
lymph node-independent synchronous metastasis across cohorts. The high-risk 
subgroup exhibited enhanced extracellular matrix (ECM) remodeling, epithelial­
mesenchymal transition (EMT) and correlated with immunosuppressive tumor 
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microenvironment (TME), lower TMB and MSI score, indicating worse 
immunotherapy response. Additionally, machine learning reveal ITGA11’s 
pivotal role in lymph node-independent metastasis. IHC scores showing 
significant discriminatory ability of ITGA11 across different samples. Wound 
healing and transwell assays reveal that the knockdown of ITGA11 hinders the 
migration and invasion of CRC SW480 cells. 

Conclusion: Our findings suggest that EMT-related signature LIMGs significantly 
affects lymph node-independent distant metastasis in CRC and effectively 
predicts non-LNM synchronous metastasis in stage I-II CRC patients. LIMG 
ITGA11 may promote early metastasis by enhancing migration and invasion. 
These offering insights into precise risk stratification and treatment for 
CRC patients. 
KEYWORDS 

colorectal cancer, proteomics, machine learning, synchronous metastasis, immune 
microenvironment, Itga11 
Introduction 

CRC currently ranks as the third most common cancer 
worldwide and the second leading cause of cancer-related deaths, 
with over 1,800,000 new cases and nearly 900,000 deaths annually 
worldwide (1). Metastatic colorectal cancer (mCRC) is one of the 
challenging aspects in the treatment of CRC, with the liver being the 
primary site for metastasis (CRLM). Synchronous metastases refer 
to metastasis detected before or at the time of CRC diagnosis (2). 
15%–25% of CRC patients present with distant metastasis at 
diagnosis, and the vast majority (80%–90%) of CRLM are initially 
unresectable (3). Liver metastasis is also the leading cause of death 
in CRC patients, resulting in a significant social burden. 

Traditionally, it has been believed that cancer progression 
involves sequential spread of the tumor to local lymph nodes 
followed by distant metastasis. However, a considerable number 
of mCRC patients do not exhibit early systemic spread. Among 
these, CRLM often occur without lymph node metastasis (LNM). 
Data indicate that approximately 23% of synchronous liver 
metastases originate from stage I-II (N0) CRC, and 44% of 
metachronous metastases arise from N0 CRC (4). A study on 
resection of CRLM showed that among over 12,000 patients, 37% 
had no LNM (5). Furthermore, there was no difference in the 
incidence of liver metastases between patients with and without 
LNM (6). At the molecular level, CRC metastasis are often proven 
to originate from a dominant clone within the primary tumor and 
sharing a high degree of consistency in mutated genes. In contrast, 
polyclonal origins are more commonly observed in LNM, with 65% 
of cases showing that LNM and distant metastases arise from 
independent subclones within the primary tumor (7). Moreover, 
LNM exhibits a high rate of inconsistency in mutations compared 
to the primary tumor (8), suggesting lymph nodes may not always 
02 
be involved in distant metastasis. Animal models have further 
confirmed that CRC dissemination to the liver can occur 
independently of LNM, with direct hematogenous spread being a 
route for CRLM (9). This may imply that stage III and IV CRC may 
be considered as parallel progression from stage II disease rather 
than sequential progression. 

An incidence model based on tumor size, time, and mutations 
shows that early metastasis in the majority (80%) of mCRC patients 
may occur before the primary tumor is clinically detectable (10). As 
disseminated tumor cells (DTCs) frequently colonize distant organs 
by the time of primary tumor detection, and they are undetectable 
with clinical imaging and patients remain asymptomatic regarding 
subclinical disease. Circulating tumor DNA (ctDNA) and 
circulating tumor cells (CTCs) show promise as biomarkers for 
micrometastasis but require enhanced sensitivity and clinical 
feasibility (11). Effective biomarkers based on tissue-based 
protein/RNA detection are needed, combining single-cell analysis, 
detection of ctDNA epigenetic modification, CTC, exosome, 
immune cell, cytokine may enable real-time predictive 
biomarker development. 

Recent proteomic studies in CRC have revealed novel protein 
traits, molecular subtypes, and metastasis markers, underscoring 
molecular heterogeneity across clinicopathological subgroups (12). 
However, proteomic research on lymph node-independent distant 
metastasis in CRC remains limited. Epithelial-mesenchymal 
transition (EMT), which drives early CRC progression by 
diminishing cell-cell adhesion and apical polarity while enhancing 
invasion, is of particular interest (13). Here, we hypothesized that 
lymph node-independent distant metastasis in CRC arises from 
EMT-related micrometastasis and hematogenous routes. Our study 
aims to develop a predictive signature for direct distant metastasis 
risk in early-stage (I-II) CRC by integrating multi-omics data and 
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machine learning, thus refining risk stratification and guiding 
therapy. To this end, we analyzed 12 synchronous distant 
metastasis patients (T1-T3N0M1) using DIA-MS. Our findings 
identify EMT-linked LIMGs as key drivers of lymph node-
independent metastasis, with high-risk samples exhibiting a more 
immunosuppressive tumor microenvironment that may facilitate 
early distant metastasis. 
Materials and methods 

Patients 

For the DIA-MS analysis, the patient cohort was sourced from 
the Colorectal and Anal Surgery Department of the First Affiliated 
Hospital of Wenzhou Medical University, with the study having 
secured ethical approval (KY2022-183) from the hospital’s Ethics 
Committee. Our study screened 271 mCRC patients who 
underwent simultaneous radical resection of primary tumors and 
distant metastases between 2018 and 2024. From them, 12 patients 
with a pathological stage of T1 - 3N0M1 were selected for specimen 
collection, as shown in Figure 1A. The inclusion criteria were age 18 
- 80, clinical diagnosis of synchronous distant metastasis, having 
undergone radical surgery, histopathological confirmation of 
colorectal adenocarcinoma, and classification as T1 - 3N0M1 
stage according to the 8th edition of the AJCC/UICC TNM 
staging system. Exclusion criteria included lymph node 
metastasis, an insufficient number of examined lymph nodes (< 
12), a history of other primary malignancies, neoadjuvant therapy, 
and multiple distant metastases. A detailed overview of the 
clinicopathological characteristics of the study cohort is presented 
in Figure 1B and Supplementary Table S1. 
Sample preparation 

Formalin-fixed paraffinembedded (FFPE) samples of adjacent 
normal tissues, primary tumors, and distant metastases were 
collected from 12 CRC patients. Pathological examination by a 
pathologist confirmed the tumor areas and using hematoxylin­

eosin-stained pathologic slides as reference. All pathological 
reports were cross diagnosed by two senior pathologists and 
reviewed by a third. To minimize specimen loss, the same type of 
tissue sections (4mm) from different patients were prepared and 
mixed into four composite samples for testing. 
Protein extraction and peptide enzymatic 
digestion 

For protein extraction, each sample was supplemented with an 
appropriate volume of SDT lysis buffer (4% SDS, 100 mM Tris-HCl, 
pH 7.6), followed by protein quantification using the BCA method. 
Subsequently, 15 mg of protein from each sample was mixed with 5× 
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loading buffer, boiled for 5 minutes, and resolved via SDS-PAGE on 
a 4%–20% precast gradient gel under a constant voltage of 180 V for 
45 minutes; the gel was stained with Coomassie Brilliant Blue R­
250. To generate a quality control (QC) sample, equal amounts of 
protein from all samples were pooled into a “Pool sample.” All 
samples, including the QC Pool sample, underwent trypsin 
digestion using the Filter-Aided Proteome Preparation (FASP) 
method, after which the resulting peptide fragments were desalted 
via C18 Cartridge columns, lyophilized, and reconstituted in 40 mL 
of 0.1% formic acid. Peptide concentrations were determined by 
measuring absorbance at 280 nm (OD280), and an appropriate 
quantity of iRT standard peptides was added to each sample prior to 
analysis by data-independent acquisition (DIA) mass spectrometry 
using an Astral high-resolution mass spectrometer. 
DIA mass spectrometry analysis 

Data-Independent Acquisition Mass Spectrometry (DIA-MS) 
analysis involved a two-step workflow: (1) chromatographic 
separation of samples using the Vanquish Neo system (Thermo 
Fisher) with nanoliter flow rates via nano-HPLC, followed by (2) 
DIA-MS analysis on the Astral high-resolution mass spectrometer 
(Thermo Scientific) in positive ion mode (parent ion scan range: 
380–980 m/z). First-order mass spectrometry parameters included 
240,000 resolutions at 200 m/z, 500% Normalized AGC Target, and 
5 ms Maximum Injection Time (IT). DIA data acquisition utilized 
299 scan windows (2 m/z isolation window, 25 eV HCD collision 
energy, 500% Normalized AGC Target, 3 ms IT for MS2). The raw 
DIA data were processed using DIA-NN software with trypsin 
digestion (max 1 missed cleavage site), carbamidomethyl (C) as 
fixed modification, and oxidation (M) and acetyl (N-terminal 
protein) as dynamic modifications. Database search results were 
filtered to retain only proteins with a False Discovery Rate (FDR) 
below 1% (14, 15). 
Data resources 

The RNA-seq, proteome datasets and clinical data for CRC 
patients were obtained from Gene Expression Omnibus (GEO) 
database, The Cancer Genomic Atlas (TCGA) database (https:// 
portal.gdc.cancer.gov/), and Li et al.’s study cohort CCRC (16), 
totaling 1,479 samples across GSE39582 (n=585), CCRC (n=146), 
GSE38832 (n=122), and TCGA-COADREAD (n=626). Differential 
expression genes (DEGs) were identified using the limma package 
(Fold change < 0.67 or >1.5, p < 0.05). Overlaps of DEGs in primary 
tumors and distant metastases were visualized using the “Venn” 
tool. The CCRC cohort which containing N0M1 CRLM (n=23) and 
N0M0 (stage I-II, n=49) patients, was used as the training set, 
validated by GSE39582 and GSE38832, TCGA cohort were utilized 
for analyzing mutation frequency, TMB, MSI, CNVs and 
conducting survival analysis, while CRC_EMTAB8107 (n=7) was 
used for scRNA-seq data analysis. 
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Protein-protein interaction network 

The STRING database (http://string-db.org/) was employed to 
explore the interaction relationships among target proteins. 
Cytoscape software (version 3.10.0) and the GeneMANIA 
database (http://genemania.org/) were then used to construct a 
Frontiers in Immunology 04
Protein - Protein Interaction (PPI) network, which helped 
identify the co - expression patterns and interactions of key 
proteins. By leveraging the Molecular Complex Detection 
(MCODE, version 2.0.3) plugin (https://apps.cytoscape.org/apps/ 
mcode), we extracted potentially densely interconnected gene 
modules from the PPI network. 
FIGURE 1 

Sample selection and proteomics landscape of T1-T3N0M1 CRC. (A) Flow chart of the selection process. (B) Clinicopathological parameters are 
shown in histogram. Volcano plot of the differential expressed proteins in the primary tumors (C), distant metastases (D) compared to adjacent 
normal tissues. GSEA analysis for the differential expressed protein in primary tumors (E) and distant metastases (F). Venn plot of up-regulated (G) 
and down-regulated (H) proteins in primary tumors and distant metastases. 
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Biological function and pathway 
enrichment analysis 

To unravel the biological functions and pathways associated 
with differentially expressed genes (DEGs) and the core cluster 
within the PPI network, we utilized the “ClusterProfiler” package 
and Gene Set Enrichment Analysis (GSEA) software, which can be 
accessed at https://www.gsea-msigdb.org/gsea/index.jsp. With these 
tools, we performed Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Gene Ontology (GO), and GSEA analyses. To evaluate the 
correlation between gene expression levels and biological pathways 
or molecular mechanisms, we downloaded the h.all.v7.4.symbols. 
gmt subset from the Molecular Signatures Database (MSigDB), 
available at https://www.gsea-msigdb.org. 
Machine learning identifies LIMGs 
prognostic biomarkers 

Wilcoxon test identified differentially expressed genes between 
N0M0 (stage I-II) and N0M1 patients, Lasso regression eliminated 
redundant genes through ten-fold cross-validation using the glmnet 
package (17). Logistic analysis was used after Z-score transforming 
of the expression data to determine the odds ratio (OR) of potential 
hub genes and understand their contribution to the metastasis. 
Finally, 9 genes were identified as LIMGs. The diagnostic 
performance of LIMGs was validated using ten machine learning 
algorithms including Logistic, Support Vector Machine (SVM), 
Gradient Boosting Machine (GBM), Neural Network, Random 
Forest (RSF), XGboost, K-Nearest Neighbors (KNN), Adaptive 
Boosting (Adaboost), Light Gradient Boosting Machine (Light 
GBM), and Categorical Boosting (CatBoost). We applied them to 
the CCRC cohort for training, and further validated on external 
datasets (GSE39582, GSE38832), ROC curves generated by the 
pROC package were utilized to evaluate the accuracy of the 
model in diagnosing lymph node-independent distant metastasis 
of I-II stage CRC. For each patient, LIMG score was calculated for 
each sample and stratified them into subgroups based on the 
median score, Kaplan-Meier (KM) survival analysis and 
nomogram (rms package) assessed prognostic significance 
of LIMGs. 
 

Mutation analysis and immune 
microenvironment 

Based on the LIMGs Score, risk subgroups are classified in 
TCGA-COADREAD cohort. Utilizing the “mafTools” R package 
we analyzed the differences in somatic mutations, TMB between 
high-risk and low-risk groups, as well as mutation frequency in 9 
LIMGs across all samples. The total count of non-synonymous 
somatic mutations per megabase across the entire genome was 
computed to assess the TMB. The CNV data and MSI score of CRC 
patients were downloaded using the TCGA bio links package. Using 
the CIBERSORT algorithm (18), we evaluated the abundance of 24 
Frontiers in Immunology 05 
immune cell subsets in different risk subgroups. The immune-

related functions and expression differences of immune 
checkpoint genes between subgroups calculated by ssGSEA 
package predicted immunotherapy response. Correlations 
between ITGA11 and immune cells were calculated using TIMER 
(19), QUANTISEQ (20), MCPcounter (21), EPIC (22), and 
CIBERSORT (23). 
Drug sensitivity analysis 

Based on Cancer Therapeutics Response Portal (CTRP, https:// 
portals.broadinstitute.org/ctrp.v2.1/) and  Genomics  of  Drug

Sensitivity in Cancer (GDSC, https://www.cancerrxgene), the 
“Oncopredict” R package was used to conduct a half-maximal 
inhibitory concentration (IC50) analysis of drugs for high-risk 
and low-risk groups of CRC patients. 
Single cell RNA sequencing analysis 

We acquired a CRC dataset (CRC_EMTAB8107) from the 
Tumor Immune Single Cell Hub 2.0 (TISCH 2.0) database 
(http://tisch.compgenomics.org/) (24), comprising 23,176 cells 
from 7 tumor samples. Subsequent analyses included scRNA-seq 
for the ITGA11 and Cell-Cell Interaction (CCI) analysis and 
visualize the expression and distribution of ITGA11, and the 
interactions between target gene-enriched cell subpopulations 
and others. 
Antibodies, plasmids, cell lines and culture 

In this study, two antibodies were utilized: ITGA11 (#DF8992, 
Affinity Biosciences, USA) and GAPDH (#2118, Cell Signaling 
Technology, USA). The SW480 cell line (#CBP60019), 
authenticated by short tandem repeat (STR) profiling, was 
procured from the Chinese Academy of Sciences (CAS). Cells 
were cultured in RPMI 1640 medium (#C11875500BT, Gibco, 
USA) supplemented with 10% fetal bovine serum (FBS) and 
10,000 U/ml penicillin-streptomycin (#15140122, Gibco, USA) in 
a humidified incubator with 5% CO2. A knockdown plasmid 
targeting ITGA11 was synthesized  by Miaoling Bioscience

(Wuhan, China). 
Immunohistochemical assay 

Tissue specimens were fixed in 4% paraformaldehyde, 
embedded in paraffin, and sectioned into 4 µm-thick slices for 
slide preparation. After gradient deparaffinization and rehydration, 
antigen retrieval was performed using a microwave method with 
citrate buffer (100°C, four cycles of 7 minutes each). The slides were 
washed extensively with PBS and then blocked for 30 minutes to 
minimize nonspecific binding. The primary antibody was incubated 
frontiersin.org 
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overnight at 4°C, followed by incubation with the secondary 
antibody at room temperature. Color development was achieved 
using DAB chromogen, and the sections were counterstained 
with hematoxylin. 
Wound healing assay 

Cells were plated in 6-well plates and grown to confluence. A 
sterile pipette tip scratched the monolayer, which was then washed 
with PBS to remove any dislodged cells. Culture medium with 1% 
(fetal bovine serum) FBS was added. Images of cell migration were 
taken at 0, 24, and 48 hours post-wounding. The wound closure 
area was calculated as: Migration Area (%) = (X0 - Xn)/X0 × 100, 
where X0 is the initial wound area and Xn is the area at a 
specific time. 
Transwell assay 

The invasive and metastatic potential of SW480 cells was 
assessed using a Matrigel-coated Transwell assay. Briefly, 3×10^4 
cells were seeded in the upper chamber of a Transwell with serum-

free medium, while the lower chamber contained 10% FBS-
supplemented medium. After 24 hours of incubation at 37°C, 
cells in the upper chamber were fixed with methanol and stained 
with Giemsa for quantitative microscopic analysis of invasion 
and migration. 
Western blot assay 

Cell proteins were extracted using a lysis buffer (10 mM TRIS-
HCl, pH 7.4, 1% SDS, 1 mM Na3VO4) and lysed via ultrasonic 
treatment. Protein concentration was quantified using a 
microspectrophotometer. Samples, mixed with loading buffer and 
a molecular weight marker, were loaded onto an 8% SDS-PAGE gel 
and subjected to electrophoresis at 80 V for 30 minutes, followed by 
120 V for 90 minutes. Proteins were transferred to a PVDF 
membrane (25 V, 120 minutes) and blocked in buffer at 4°C for 3 
hours. The membrane was then incubated overnight with primary 
antibodies at 4°C and for 3 hours with secondary antibodies. 
Protein bands were visualized using an ECF developer (RPN5785, 
GE Healthcare) and captured using a chemiluminescent imaging 
system (GE Healthcare). 
 

Statistical analysis 

All statistical analyses were conducted using R software (version 
4.4.2). The Wilcoxon test compared variables between groups, the 
Chi-square test assessed categorical variable differences, Pearson 
correlation analyzed variable correlations, and KM survival analysis 
with log-rank test evaluated differences. Statistical significance was 
Frontiers in Immunology 06
set at p<0.05: *: p<0.05; **: p<0.01; ***: p<0.0001; NS: 
non-significant. 
Ethics approval 

This study was conducted in accordance with the ethical 
standards outlined in the Helsinki Declaration and certified by 
the Ethics Committee of The First Affiliated Hospital of Wenzhou 
Medical University (KY2022-183). Given the retrospective nature of 
the study, informed consent was waived. 
Results 

Proteomic characteristics of T1-T3N0M1 
patients 

To identify the protein signatures and pathways associated with 
T1-T3N0M1 CRC, we used adjacent normal tissue as a control and 
analyzed the differentially expressed proteins in primary tumor and 
distant metastasis and conducted a comprehensive comparison of 
biological pathways and functions. Differential analysis revealed 746 
upregulated and 403 downregulated proteins in primary tumors 
(Figure 1C), and 751 upregulated and 321 downregulated in distant 
metastases (Figure 1D). GSEA was performed to analyze the 
features of the proteins detected in primary tumors and distant 
metastases in terms of biological pathways and molecular 
mechanisms. Results showed enrichment in MYC targets V2, E2F 
targets, MYC targets V1, G2M Checkpoints, EMT pathway in 
primary tumors (Figure 1E). Xenobiotic metabolism, Hpoxia, 
MYC targets V1, Myogenesis, P53 pathway enrichment in distant 
metastases (Figure 1F). Analysis of GO and KEGG pathway of these 
proteins is provided in Supplementary Figure S1. Venn diagrams 
visualized the intersections of differentially expressed proteins 
among primary tumors and metastases (Figures 1G, H). 
Construction of PPI networks and module 
identification for biomarker discovery 

To construct a PPI network for biomarker identification, we 
uploaded 617 differentially expressed proteins shared between 
primary tumors and distant metastases into the STRING 
database. The resulting network was visualized using Cytoscape 
software and the MCODE plugin, enabling the identification of the 
five most functionally significant modules (Supplementary Figure 
S2). Among these, Cluster 2 emerged as a key module, comprising 
40 nodes and 214 edges (Figure 2A). GO analysis reveals that 
Cluster2 is mainly enriched in ECM organization, cell adhesion, 
collagen-containing ECM, and ECM structural constituent 
(Figure 2B).  The KEGG analysis indicates  the enrichment of

Focal adhesion, ECM-receptor interaction, and PI3K-Akt 
signaling pathway (Figures 2C, D). Hallmark pathway enrichment 
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FIGURE 2
 

Preliminary screening of core biomarkers associated with lymph-node independent metastasis. (A) MCODE in Cytoscape identified a module
 
consisting of 40 nodes from the PPI network. The GO (B), KEGG (C) and Hallmark gene sets (E) enrichment analysis of the 40 genes from cluster2.
 
Chord diagrams of KEGG (D), and Hallmark gene sets (F) enrichments show associations of 40 genes across different biological aspects. Differentially
 
expressed genes between N0M0 and N0M1 (G). The Lasso regression path plot (H) and cross-validation plot (I) illustrate the gene selection process.
 
The univariate logistic regression results of LIMGs (J). Statistical signifificance: p<0.05; **: p<0.01; ***: p<0.0001; NS: non-signifificant.
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analysis shows enrichment in EMT pathway, Myogenesis, Apical 
junction, Apoptosis, and Angiogenesis (Figures 2E, F). 
 

Machine learning identifying LIMGs 
signature and constructing diagnostic 
model 

To further identify core biomarkers and establish an accurate 
diagnostic model, we identified differentially expressed genes in 
Cluster2 between stage I-II and N0M1 CRC (Wilcoxon test, p<0.05) 
(Figure 2G), after eliminating redundant genes using Lasso 
regression (Figures 2H, I), 9 genes were selected as LIMGs 
(ACTG2, HSPH1, ITGA11, LAMA5, HSPB1, THBS1, SORBS1, 
POSTN, NID1). Univariate logistic regression highlighted the 
importance of LIMGs via OR (Figure 2J). Ten machine learning 
algorithms including Logistic, SVM, GBM, Neural Network, 
Random  Forest, XGboost, KNN, Adaboost,  Light GBM, and

CatBoost were then applied to assess the diagnostic efficacy of 
LIMGs in the CCRC training set, ROC curves (Figure 3A), DCA 
(Figure 3D), confirmed robust diagnostic performance, with 
external validation in two cohorts (GSE39582, Figures 3B, E), 
(GSE38832, Figures 3C, F). The Neural Network model 
demonstrated consistent performance across cohorts, with 
diagnostic  efficacy  displayed  by  the  confusion  matrix  
(Figures 3G–I). Feature importance analysis of the top eight 
models in the training cohort identified ITGA11 as the key factor 
influencing lymph node-independent metastasis (Figure 3J). 
LIMGs correlate with poor prognosis and 
clinicopathological features 

The GSVA method scored GSE39582 (Figure 4A), GSE38832 
(Figure 4B) and TCGA-COADREAD (Figure 4C) samples based on 
LIMGs expression, classifying risk subgroups by the median score. 
KM curves revealed significant survival difference between risk 
subgroups. KM curves for subgroups based on ITGA11 median 
expression revealed its significant impact on overall survival (OS), 
Disease-free survival (DFS), and Progression-free interval (PFI) 
(Figure 4D). To further explore the association between LIMGs 
and metastasis of patients, we employed the R package rms to 
integrate data on metastasis-free survival (MFS), survival status, and 
eight relevant features of CCRC cohort. A nomogram was 
constructed using the Cox method, and the prognostic 
significance of these features was assessed in 143 samples of 
CCRC cohort (Figure 4E). Kaplan-Meier curves (Figure 4F) and 
ROC curves for 1- and 3-years MFS (Figure 4G) underscored the 
predictive accuracy of LIMGs, highlighting its value in predicting 
metastasis. Further evaluation for the association between the 
LIMGs and other pathological characteristics reveals that higher 
LIMG score is significant associated with advance AJCC stage 
(Figure 5A), N stages, (Figure 5B), MSI status (Figures 5E, F), 
KRAS-WT (Figure 5G), and the left-sided colorectal cancer 
(Figure 5H) (all p<0.05). Furthermore, CRC is molecularly 
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classifed into six subtypes by Marisa et al. (25) including C1 
(downregulation of immune pathway), C2 (MSI subtype), C3 
(KRAS mutant), C4 (chromosomal instability and stem-like), C5 
(Wnt pathway upregulation) and C6 (derived from serrated 
tumors). We found that higer LIMG score correlated with C4-C6 
molecular subtypes (Figure 5D). Additionally, no significant 
differences in LIMG score were observed across different T stages 
(Figure 5C), ages, sexes, vascular invasion statuses, histological 
types, and BRAF, TP53 mutation statuses (Supplementary 
Figure S3). 
Analysis of LIMGs interaction and 
correlation with EMT 

The hallmark enrichment revealed that LIMGs are mainly 
enriched in the EMT pathway (Figure 6A). EMT drives tumor 
invasion and metastasis through induction of stemness, modulation 
of  the  TME,  angiogenesis  promotion,  and  metabolic  
reprogramming. We investigated the correlation between LIMGs 
and the EMT pathway by 200 EMT-related genes from the MSigDB 
database v7.1. The correlation between LIMGs and EMT gene 
signatures was analyzed using Pearson correlation analysis on the 
GEPIA2 (http://gepia2.cancer-pku.cn/#index). The results 
indicated that ITGA11 has the strongest correlation with EMT 
(Figure 6D). Then we used GeneMANIA to analyze the interactions 
among LIMGs (Figure 6B) and the PPI network centered on 
ITGA11 (Figure 6C). The results of GO and KEGG enrichment 
analyses of LIMGs are shown in Supplementary Figure S4. 
Mutation landscape and immune activity in 
different risk groups 

To elucidate the distinct mutational patterns among different 
risk groups, we utilized the “mafTools” R package to analyze the 
distribution of top 20 somatic mutations between risk groups and 
mutation status in 9 LIMGs based on TCGA-COADREAD data. 
Our findings revealed that APC, TP53, TTN, and KRAS exhibited 
high mutation frequencies across different subgroups, with APC 
being identified as the most frequently mutated gene across 
subgroups (Figures 7A, C). LAMA5 showed the highest mutation 
frequencies among LIMGs (Figure 7B). Meanwhile, copy number 
variation (CNV) plays a crucial role in cancer occurrence and 
development. We found that the highest CNV in LIMGs was also 
found in LAMA5 (Figure 7F). Given the significance of TMB, MSI 
status, immune cell infiltration, immune functions, and immune 
checkpoint gene expression in immunotherapy response, we 
examined their relationship with LIMGs. Immune infiltration 
analysis by CIBERSORT revealed that the high-risk group had 
lower proportions of memory B cells, plasma cells, CD4+ T cells, 
NK cells, dentritic cells and eosinophils but higher proportions of 
M0 and M2 macrophages (Figure 7H). Moreover, the high-risk 
group exhibited greater immunological function, including higher 
levels of Type I and II IFN Response and APC co-stimulation. 
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(Figure 7I). The high-risk group also exhibited a significantly lower 
MSI proportion (Figure 7D) and  lower  TMB  (Figure 7E). 
Conversely, the TMB and MSI status was higher in low-risk 
group, suggesting better immunotherapy response. Analysis of 
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immune checkpoint expression showed higher expression of 
PDCD1 in low-risk group and higher expression of TIGIT, ICOS 
and CTLA4 in high-risk group (Figure 7G). Furthermore, the 
positive correlation between ITGA11 expression and various 
FIGURE 3 

Ten Machine learning methods assess the diagnostic performance of LIMGs signature. ROC curves of ten machine learning methods (Logistic, SVM, 
GBM, Neural Network, RF, XGboost, KNN, Adaboost, Light GBM, and CatBoost) applied in CCRC training cohort (A) and external validation cohort 
GSE39582 (B) and GSE38832 (C). Cost-benefit decision curves in training (D) and validation (E, F) cohorts. Classification confusion matrix of the 
Neural Network model in training (G) and validation cohort (H, I). (J) The feature importance bar chart illustrates variable contributions to the top 8 
models in training cohort. 
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immune cells was calculated by five algorithms (TIMER, 
QUANTISEQ, MCPcounter, EPIC, CIBERSORT) (Figure 7J), 
specifically with high levels of CAFs and TAMs. This correlation 
may indicate poor prognosis in CRC patients with higher level of 
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ITGA11+CAFs and ITGA11+TAMs. In summary, the high-risk 
group exhibited lower TMB, MSI status and immunosuppressive 
TME, suggesting less favorable immunotherapy outcomes 
compared to the low-risk group. 
FIGURE 4 

The correlation between the LIMGs and survival. Heatmaps of LIMGs expression and the KM curves stratified by high-risk and low-risk groups based 
on median LIMG Score in the GSE39582 (A), GSE38832 (B), and TCGA cohorts (C). (D) KM curves for overall survival (OS), disease-free survival (DFS), 
and progression-free interval (PFI) in high-risk and low-risk groups stratified by the optimal cutoff value of ITGA11 expression in TCGA-COADREAD. 
(E) Nomogram for predicting Metastasis-free survival (MFS) was constructed using multivariate Cox regression. (F) KM curves compared high-risk vs. 
low-risk stratified by median risk score. (G) ROC curves evaluated 1-year/3-year MFS prediction accuracy of the Nomogram. 
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LIMGs associate with lower chemotherapy 
sensitivity 

To predict drug sensitivity and identify potential therapeutic drugs 
for high-risk CRC patients, we calculated IC50 values for three 
commonly used CRC chemotherapy drugs (5-Fluorouracil, 
Oxaliplatin, Irinotecan) in different risk subgroups and assess the 
correlation between LIMG score and drug sensitivity. The results 
showed that high-risk patients had poorer sensitivity to 5-Fluorouracil 
(Figure 8A), Oxaliplatin (Figure 8B), and Irinotecan (Figure 8C), with 
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IC50 values positively correlated with risk scores. Conversely, high risk 
patients exhibited higher sensitivity to Dasatinib (Figure 8D), 
Doramapimod (Figure 8E), and PRKDC inhibitor NU7441 
(Figure 8F), with IC50 values negatively correlated with LIMG score. 
ScRNA-seq analysis of ITGA11 

To explore the expression and distribution of ITGA11 in the TME at 
the single-cell level, we conducted scRNA-seq analysis using the TISCH 
FIGURE 5
 

The correlation between LIMGs and clinicopathological features. The correlation between the LIMG Score and AJCC stage (A), N stage (B), T stage
 
(C), Molecular subtypes (D), Microsatellite stability (E, F), KRAS mutation status (G), and tumor location (H). Statistical signifificance: *: p<0.05; **:
 
p<0.01; ***: p<0.001; ****: p<0.0001; NS, non-signifificant.
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2.0 database. Analysis of scRNA-seq data from the CRC_EMTAB8107 
dataset revealed the identification of 20 cell clusters and 12 cell types 
within CRC tissues (Figure 9A). We observed a significant enrichment of 
ITGA11 in CAFs (Figure 9B), especially within clusters C3 and C10 
(Figure 9F). The analysis of Cell-Cell Interactions (CCI) revealed that 
both C3 and C10 CAFs mainly interacted with C9 malignant cells and 
C19 endothelial cells (Figures 9D, E). 
Frontiers in Immunology 12 
ITGA11 promotes migration and invasion of 
colorectal cancer cells 

In this study, we unveiled the crucial role of LIMGs in distant 
metastasis of CRC, primarily associated with cell adhesion and 
EMT. Notably, LIMG ITGA11 is the gene most strongly correlated 
with EMT. Although ITGA11 overexpression has been reported in 
FIGURE 6 

The enrichment and interaction analysis of LIMGs and correlation analysis between LIMGs expression and the EMT pathway. (A) Hallmark enrichment analysis plot 
of LIMGs. (B) Interactions among LIMGs. (C) The PPI network centered on ITGA11. (D) Correlation between LIMGs expression and the EMT pathway gene set. 
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several tumors, its impact on CRC cell migration and invasion 
remains unexplored. The radar chart illustrates the expression levels 
of  LIMGs  (Log2(FC))  based  on  our  proteomics  data  
(Supplementary Figure S5). The results reveal the expression 
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across primary tumors, and distant metastasis for 9 LIMGs. 
Among them, ITGA11 showed higher expression in distant 
metastasis than in primary tumors. The IHC score further 
confirmed higher ITGA11 expression in both primary tumors 
FIGURE 7 

Mutation landscape and immune activity analysis. Top 20 mutated genes in high-risk (A) and low-risk (C) subgroups. (B) Mutation frequency of 9 
LIMGs. (D) The LIMG Score of CRC patients with microsatellite instability-high (MSI-H), microsatellite instability-low (MSI-L) and microsatellite 
stability (MSS). (E) Comparison of TMB in high- and low- risk subgroups. (F) The CNV frequency of each LIMG signature genes. (G) Differentially 
expressed immunocheckpoint genes across risk subgroups. (H) Differences in immune cell infiltration across risk subgroups. (I) Immune-related 
functions in the high- and low- risk subgroups. (J) Correlation between ITGA11 expression and immune cells. Statistical signifificance: *:p<0.05; **: 
p<0.01; ***: p<0.0001; NS: non-signifificant. 
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and distant metastasis compared to normal tissues, with 
significantly higher levels in distant metastasis compared to 
primary tumors (Figure 10B, p<0.05). The ROC curve shows that 
ITGA11 significantly differentiates primary tumors from distant 
metastasis (Figures 10C–E). Furthermore, we achieved stable 
knockdown of ITGA11 in the human colon cancer cell line 
Frontiers in Immunology 14 
SW480 and subsequently evaluated the efficiency of this 
knockdown via Western blot analysis (Figure 10F). To assess the 
functional implications, we performed wound healing and transwell 
assays. The results of these assays demonstrated that ITGA11 
knockdown significantly compromised the migratory ability of 
SW480 cells (Figure 10A; t - test, p < 0.05) and led to a 
FIGURE 8 

Drug sensitivity analysis. Sensitivity analysis of 5-fluorouracil (A), oxaliplatin (B), and irinotecan (C) in different risk groups. Sensitivity analysis of 
Dasatinib (D), Doramapimod (E), and PRKDC inhibitor NU7441 (F) in different risk groups. 
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substantial decrease in the number of invading cells (Figure 10B; t  ­
test, p < 0.05). Collectively, these findings underscore the pivotal 
role of ITGA11 in the migration and invasion processes of CRC. 
Discussion 

Approximately 20% of newly diagnosed CRC patients have 
synchronous distant metastasis and generally face a poor prognosis 
(26). While LNM signifies advanced disease, tumor cells may spread 
hematogenously before lymphatic metastasis. Previous reports indicate 
that about 18% of mCRC patients lack local lymph node involvement 
(27), and a novel CRC mouse model shows distant metastases can 
develop without prior lymph node involvement (9). Recurrence 
patterns in patients with CRLM undergoing liver transplantation 
without other metastasis suggest tumor cells may persist in 
circulation post-resection of primary and metastatic tumors. A more 
plausible explanation is that undetectable pre-operative metastasis 
account for most post-operative metastasis. Early hepatic metastases 
are often missed or undiagnosed by imaging, and by the time typical 
metastatic signs appear, radical surgery is usually no longer an option 
(28). Thus, identifying potential synchronous metastases or metastasis 
risks at early stage primary CRC is crucial (29). 

The early occurrence of metastasis may stem from pre-existing, 
undetectable tumor dissemination prior to diagnosis or treatment. The 
primary tumor not only generates disseminated tumor cells but also 
establishes the pre-metastatic niche and modulates the immune 
response (30). Identifying the genetic traits of its stromal and 
extracellular matrix (ECM) components is vital for metastasis 
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prediction (31). In cancer, EMT enables cancer cells to lose cell 
polarity and acquire a mesenchymal phenotype with enhanced 
stemness and migratory ability through complex interactions 
between fibers and proteins (13). Continuous remodeling of the 
ECM and actin cytoskeleton is closely associated with EMT, with 
integrins acting as physical linkers between the ECM and actin 
cytoskeleton, mediating mechanotransduction through interactions 
with major ECM components like collagen and fibronectin (31, 32). 
ITGA11, identified among LIMGs, shows the strongest correlation 
with EMT and high importance in various models predicting 
synchronous metastasis in CRC. ITGA11 promotes CAF invasion 
and CAF-induced tumor cell invasion, and associates with high-grade 
tumors and poor prognosis (33, 34). Mechanistically, ITGA11’s pro­
invasive activity may stem from its ligand-dependent interaction with 
PDGFRb, promoting downregulated JNK activation and ECM 
changes, including increased deposition of a strongly co-expressed 
pro-invasive stromal protein (tenascin-C, TNC) (35). PDGFRa+ 
ITGA11+ CAFs are associated with lymphovascular invasion (LVI) 
and early metastasis in early-stage bladder cancer, promoting 
lymphangiogenesis by recognizing the ITGA11 receptor SELE on 
lymphatic endothelial cells. Additionally, CHI3L1 from the CAF 
aligns the surrounding stroma to facilitate cancer cell intravasation 
and promote early tumor metastasis (36). Laminin LAMA5, a 
glycoprotein in the ECM, has been identified as a specific molecular  
target in mCRC (37). It is a key component of the vascular basement 
membrane, forming a scaffold for endothelial cell adhesion in 
conjunction with collagen IV, and is linked to the angiogenesis and 
tumor growth in CRLM (31, 38). Notably, LAMA5 exhibits the highest 
mutation frequency and CNVs in LIMGs, it is reported that genetic 
FIGURE 9 

Single cell RNA sequencing analysis. (A) UMAP projection of all cells from CRC_EMTAB8107. (B, C) Expression distribution of ITGA11 across different 
cell types. CCI analysis between endothelial cluster C_4 (D) and fibroblast cluster C_12 (E). (F) Expression distribution of ITGA11 across different cell 
clusters. 
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variant rs4925386 in chromosomal region 20q13.3 (LAMA5) 
significantly associated with CRC susceptibility (OR=0.93) (39). 
Periostin (POSTN), secreted by CAFs, accelerates angiogenesis, 
tumor invasion, and EMT via integrin interaction (40). Aberrant 
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POSTN expression in CRC correlates strongly with peritoneal and 
distant organ metastasis. Meanwhile, POSTN+ CAFs significantly 
promote CRC cell migration and proliferation through hypoxia 
induced POSTN expression and secretion (41). The cbl-associated 
FIGURE 10 

ITGA11 expression variation across tissues and its role in the migration and invasion of CRC cell. (A) Immunohistochemical analysis of ITGA11 
expression in normal tissues, primary tumors, and distant metastases. (B) The Wilcoxon test indicated a significant difference (P<0.05) in ITGA11 
expression across normal tissues, primary tumors, and distant metastases. (C–E) The ROC curves indicated that ITGA11 expression effectively 
differentiated normal tissues, primary tumors, and distant metastases. (F) The ITGA11 expression in human colon cancer cells SW480 was measured 
by western blotting. (G, H) Results of the transwell assay. (I, J) Results of the wound healing assay. 
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protein (CAP), encoded by the sorbin and SH3 domain-containing 1 
(SORBS1) gene, plays a role in actin cytoskeleton regulation, receptor 
tyrosine kinase signaling, and cell adhesion. Overexpression of SORBS1 
inhibits the PI3K/AKT pathway, blocks EMT, and promotes M1 
macrophage polarization (42). Conversely, SORBS1 silencing 
accelerates EMT, boosts Filopodium-like Protrusion (FLP) formation 
via JNK/c-Jun activation in cancer cells, and elevates chemosensitivity 
by enhancing p53 protein accumulation (43). Nidogen1 (NID1), 
directly induced by SNAIL/SNAI-1 transcription factor, promotes 
EMT. It connects laminin, collagen, and proteoglycans to cell 
receptors, regulating cell polarization, migration, and invasion (44). 
Actin gamma 2 (ACTG2) is aberrantly expressed in cancers (45), with 
low levels in CRC, its overexpression inhibits CRC cell proliferation, 
migration, and invasion (46). Thrombospondin-1 (THBS1) inhibits 
angiogenesis and immune activity (47), but has complex, contradictory 
roles in carcinogenesis. THBS1 expression correlates with CRC 
mesenchymal phenotype, immunosuppression, and poor prognosis, 
promoting metastasis by exhausting cytotoxic T cells and impairing 
angiogenesis, especially at metastatic sites (48). 

Pathological analysis of early-stage CRC aids in risk identification 
and treatment guidance. Factors like T4 stage, poor differentiation, 
intestinal perforation, lymphovascular/perineural invasion, inadequate 
lymph node examined, and positive surgical margins heighten disease 
progression risk (49). Our study revealed no significant LIMG score 
differences in T stage, vascular invasion, and histological type. 
However, a higher LIMG score correlated with tumor location, MSI 
status, lower KRAS mutation frequency, and lower TMB. Study shows 
that synchronous CRLM exhibit poorer prognosis and biological traits 
than metachronous ones (2, 50), with synchronous CRLM showing 
lower TMB (51). Moreover, patients with LNM- mCRC typically have 
fewer high-risk pathological features than LNM+ mCRC (52), 
indicating clinicopathological factors may inadequately assess the 
lymph node-independent metastasis in CRC, potentially leading to 
misdiagnosis. LIMG Score variations across primary tumor sites may 
stem from tumor site-genomic alteration correlations in mCRC. Left-
sided CRC is more prone to synchronous liver metastases (7.1% vs. 
11.6%), which may be anatomically influenced by venous shunting 
(53). Molecularly, right-sided primary tumor-derived MSS-type mCRC 
has a higher median TMB, with oncogenic alterations like KRAS, 
BRAF, and PIK3CA enriched, while APC and TP53 are more enriched 
in left-sided tumors (54). 

Immunotherapy benefits CRC patients but is limited by the 
complex immunosuppressive TME and tumor heterogeneity (55). 
Our study found that high-risk patients have lower infiltration of 
anti-tumor immune cells (memory B cells, plasma cells, CD4+ T 
cells, NK cells, DCs), while exhibiting higher levels of M2-type 
TAMs that promote tumor growth and immunosuppression. 
Plasma cells, as terminal effector B cells, eliminate tumor cells via 
antibody-dependent cell-mediated cytotoxicity (ADCC) (56), 
forming an immunological chain with DCs and participating in 
tertiary lymphoid structures (TLS) formation (57). Reduced plasma 
cell and DC infiltration may indicate weakened antibody-mediated 
anti-tumor effects, TLS deficiency, and inadequate immune 
surveillance, potentially with increased Bregs or M2-type TAMs, 
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leading to insufficient CD8+ T cell activation, further exacerbating 
immune escape, and diminished immunotherapy response. 

Furthermore, we have identified ITGA11 as a critical factor in 
lymph node-independent metastasis in CRC, though its precise 
mechanism remains unclear. Our study demonstrated that 
knocking down ITGA11 significantly inhibits CRC cell migration 
and invasion. The mechanism behind ITGA11’s involvement in 
lymph node-independent synchronous metastasis may encompass 
multiple pathways, with EMT being a potential key player, which 
we aim to explore further. 

Study limitations are several. A notable drawback is the small 
sample size, stemming from our single - center study and the 
scarcity of specimens meeting our criteria. This challenge weakened 
our study’s statistical power and robustness. Also, the heterogeneity 
of extensive stage II disease (N0), encompassing tumors confined to 
the serosa (T3) and those extending beyond it (T4), representing 
diverse histopathological risks. Additionally, even when an 
adequate number of lymph nodes are examined, there is a 
possibility of lymph node micrometastasis, as conventional 
histopathological examination cannot detect the presence of 
isolated tumor cells (ITCs) or micrometastases (MMs) within 
regional lymph nodes, and we did not perform ultra-staging for 
all these cases. Despite the limitations, we are committed to 
promoting multi - center, large - sample studies and employing 
multi - omics analysis in future research to better uncover the 
mechanisms underlying lymph node - independent distant 
metastasis and offer more reliable insights. 

In summary, we integrated proteomics, multi-omics analysis, 
and machine learning to identify molecular features and developed 
an LIMGs signature based on nine genes, effectively predicting 
synchronous distant metastasis risk in stage I-II CRC patients. We 
also analyzed associations between the LIMG Score and 
pathological features, immune microenvironment and activity, 
and drug responses, offering insights into precise stratification 
and personalized therapy for CRC. Our findings also position 
ITGA11 as a crucial prognostic indicator for CRC metastasis. 
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