
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chiara Agostinis,
Institute for Maternal and Child Health Burlo
Garofolo (IRCCS), Italy

REVIEWED BY

Michal Silber,
University of Pennsylvania, United States
Venkateshwari Ananthapur,
Osmania University, India

*CORRESPONDENCE

Zhongjun Li

Zhongjun@gdmu.edu.cn

Xinsheng Peng

xspeng@gdmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 06 May 2025
ACCEPTED 05 June 2025

PUBLISHED 25 June 2025

CITATION

Zhu Y, Xiang Y, Swamiappan S, Li Z and
Peng X (2025) Pyroptosis as a therapeutic
target in preeclampsia: current research and
future directions.
Front. Immunol. 16:1622550.
doi: 10.3389/fimmu.2025.1622550

COPYRIGHT

© 2025 Zhu, Xiang, Swamiappan, Li and Peng.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 25 June 2025

DOI 10.3389/fimmu.2025.1622550
Pyroptosis as a therapeutic
target in preeclampsia: current
research and future directions
Yongchun Zhu1†, Yuting Xiang2,3†, Sathiskumar Swamiappan1,
Zhongjun Li2,3,4* and Xinsheng Peng1*

1School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong Province, China,
2Department of Obstetrics, the Tenth Affiliated Hospital, Southern Medical University, Dongguan, China,
3Key Laboratory of Obstetrics and Gynecology for Major Diseases in Dongguan, Dongguan, China, 4The
First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
Preeclampsia (PE) is a severe pregnancy-specific disorder characterized by new-

onset hypertension and proteinuria after the 20th week of gestation, posing

significant threats to maternal and fetal health. Globally, approximately 4 million

women are diagnosed with PE annually, resulting in over 70,000maternal deaths

and 500,000 infant deaths. The exact pathogenesis of PE remains unclear and is

associated with multiple factors, including obesity, diabetes, and chronic kidney

disease. Pyroptosis, a newly discovered form of programmed cell death, is

characterized by plasma membrane rupture and the release of numerous

inflammatory mediators. Studies have shown that trophoblast pyroptosis is

closely related to PE, potentially hindering trophoblast invasion, causing

abnormal remodeling of uterine spiral arteries, and inducing systemic

inflammatory responses. This review summarizes the latest research progress

on the correlation between trophoblast pyroptosis and the pathogenesis of PE. It

explores the regulatory roles of NLRP3 Inflammasome,oxidative stress, T helper

type 1 (Th1)/T helper type 2 (Th2) cell imbalance, microRNAs and other factors in

trophoblast pyroptosis, providing potential targets for the development of early

diagnostic biomarkers and therapeutic strategies for PE.
KEYWORDS
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Introduction

Preeclampsia (PE) is a pregnancy-specific complication characterized primarily by

hypertension and proteinuria, typically occurring after 20 weeks of gestation. This disease is

an significant cause of maternal and fetal mortality (1). The diagnostic criteria for PE

include the development of new-onset hypertension (defined as systolic blood pressure

≥140 mmHg and/or diastolic blood pressure ≥90 mmHg) after 20 weeks of gestation, as

well as proteinuria or visceral organ dysfunction (2). This change in definition reflects a

deeper understanding of the disease. Historically, PE was usually defined as the

combination of hypertension and proteinuria, however it is now recognized that
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hypertension alone, coupled with significant visceral organ

dysfunction, is also sufficient for diagnosis (3). Furthermore, the

pathogenesis of PE is complex, involving multiple pathological

processes (Figure 1). PE not only affects the health of pregnant

women but also poses a serious threat to the fetus. Maternal

complications may include hypertension, hepatic impairment,

renal insufficiency, cerebral injury, and even death (3, 4). For the

fetus, restricted maternal blood flow and nutrient supply may lead

to risks such as intrauterine growth restriction, preterm birth, and

fetal death (5). In terms of long-term health impacts, women who

have experienced PE may face a higher risk of cardiovascular

diseases and chronic hypertension later in life (6).

In addition, PE is one of the leading causes of maternal and

perinatal mortality. It is estimated that worldwide, approximately 4

million women are diagnosed with PE annually, resulting in the

deaths of over 70,000 women and 500,000 infants (7, 8). The

occurrence of PE is closely related to a variety of risk factors (9).

The mother’s health status is an important factor affecting the risk

of PE. For example, research has shown that obesity may increase

the risk of PE by influencing inflammatory responses, hormone

levels, and vascular function (10, 11). In addition to women with

pre-existing hypertension having a significantly increased risk of

developing PE during pregnancy, women with pre-pregnancy

diabetes, whether type 1 or type 2, may also have an increased

risk of complications during pregnancy, which can trigger PE (12).

Moreover, patients with chronic kidney disease also face a higher

risk of PE, which may be related to the role of the kidneys in

regulating blood pressure (13). In addition to maternal health

status, family history is also associated with the risk of PE. If a

mother or sister has experienced PE, the individual’s risk of

developing the disease significantly increases, highlighting the

importance of genetic factors in PE (13). Among pregnancy-

related factors, the risk of multiple pregnancies is higher than that

of singleton pregnancies, partly because placental growth and

development are more complex (14, 15).

However, pyroptosis is a form of programmed cell death

distinct from apoptosis and necrosis. The Gasdermin protein

family mediates pyroptosis and depends on inflammatory

caspases (16). The main characteristics of pyroptosis include

plasma membrane bubbling, cytoplasmic swelling, rupture of the

cell membrane, and the release of large amounts of inflammatory
Abbreviations: PE, Preeclampsia; GSDMD, Gasdermin D; IL-1b, Interleukin-1b;

IL-18, Interleukin-18; IL-11, Interleukin-11; Th1, T helper type 1; Th2, T helper

type 2; IL-4, Interleukin-4; IL-10, Interleukin-10; Nrf2, Nuclear factor erythroid

2-related factor 2; IFN-g, Interferon-gamma; NF-kb, Nuclear Factor kappa-light-

chain-enhancer of activated B cells; ASC, Apoptosis-associated speck-like

protein; ROS, Reactive oxygen species; AIM2, Absent in melanoma 2; CARD,

Caspase recruitment domain; ATP, Adenosine triphosphate; PYD, PYrin

domain; HIN, HIN domain; LRR, Leucine-rich repeat; NBD, Nucleotide-

binding domain; MAVS, Mitochondrial antiviral signaling protein; LPS,

Lipopolysaccharides; HELLP, Hemolysis, elevated liver enzymes, and low

platelet count; CASP-1 Caspase-1; CASP-4/5/11, Caspase-4/5/11.
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mediators, such as IL-1b and IL-18 (17). Studies have shown that in

the placental tissues of patients with PE, the levels of active caspase-

1 (CASP-1) and its substrates or cleavage products, Gasdermin D

(GSDMD), Interleukin-1b (IL-1b) and Interleukin-18 (IL-18) are

elevated and significantly higher than those in healthy controls.

This indicates that trophoblast pyroptosis plays a vital role in the

development of PE (18). Moreover, the mechanisms of pyroptosis

in PE may involve multiple signaling pathways. For example, under

hypoxia and endoplasmic reticulum stress conditions, the activation

of the NLRP3 inflammasome can induce trophoblast pyroptosis

(18). Additionally, the imbalance of T helper type 1 (Th1)/T helper

type 2 (Th2) cell ratios may also promote trophoblast pyroptosis,

thereby affecting the pathogenesis of PE. These findings provide a

new perspective for understanding the immune-inflammatory

mechanisms of pyroptosis in PE (19). In terms of maternal

health, pyroptosis is associated with endothelial cell dysfunction.

The release of inflammatory factors can lead to the activation and

damage of endothelial cells, resulting in endothelial dysfunction. In

PE, this manifests as increased vascular contraction, platelet

aggregation, and thrombosis. These changes may lead to elevated

maternal blood pressure and exacerbate the symptoms of PE (20).

For the fetus, placental pyroptosis in PE affects maternal vascular

function and the placenta’s blood supply. Inflammation and cell

death in the placenta can lead to reduced placental function,

affecting fetal development. The increased demand for maternal

blood flow in the placenta, combined with reduced blood flow due

to pyroptosis, may result in fetal hypoxia and growth restriction

(21). Although there is a preliminary understanding of the

mechanisms of pyroptosis in PE, further research is needed to

elucidate its specific mechanisms and clinical significance.
Preeclampsia pathophysiology

Two-stage model of preeclampsia

The “ two-stage” model is widely accepted as the

pathophysiological mechanism of PE (22). The pathophysiological

development of PE is generally understood as a two-stage process.

In the first stage, also known as the preclinical stage, trophoblasts

fail to adequately invade the uterine decidua, resulting in

incomplete remodeling of the uterine spiral arteries, shallow

placental implantation, and insufficient blood supply. This leads

to placental ischemia and hypoxia (23). This condition stimulates

the placenta to produce large amounts of factors, such as placental

and vascular endothelial growth factors (24). In the second stage,

the clinical phase, the ischemic and hypoxic condition of the

placenta worsens, leading to placental tissue damage and cellular

necrosis. This impairs the body’s antioxidant capacity, causing an

imbalance between oxidation and antioxidation, and triggering an

oxidative stress response (25). The byproducts of oxidative stress

and placental factors enter the systemic circulation and affect the

entire body, leading to clinical manifestations such as endothelial

dysfunction, abnormal coagulation, imbalance of vasoactive

substances, and lipid metabolism disorders (26).
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The role of immune cells and inflammatory
factors in preeclampsia

Immune cells and mediators both play essential roles in the

development of PE (27). During pregnancy, immune cells in the

decidua are vital to the maternal-fetal interface. These immune cells

include T cells, decidual natural killer cells, macrophages, and

dendritic cells, which account for approximately 30% to 40% of

the total decidual cells in early pregnancy (28). In normal

pregnancy, the balance of T helper cells leans toward a Th2-type

response, which is crucial for preventing immune attacks on the

fetus. The cytokines produced by Th2-type immune responses, such

as interleukin-4(IL-4)and interleukin-10(IL-10), enhance antibody-

mediated immune responses, thereby protecting the fetus from

maternal immune system attacks and maintaining immune

tolerance in a dynamic equilibrium (29). However, in PE, this

immune tolerance is disrupted, with increased immune system

activation, leading to a significant reduction in regulatory T cells
Frontiers in Immunology 03
and a shift toward a Th1-dominant response, thereby reducing

maternal immune tolerance to the embryo. This imbalance in

immune tolerance is associated with the pathogenesis of PE,

particularly in the maternal immune response to the placenta (30).
Molecular mechanisms of pyroptosis

Pyroptosis is a form of programmed cell death accompanied by

an inflammatory response. Depending on the type of caspase

involved, pyroptosis can be classified into canonical and non-

canonical pathways (Figure 2). The canonical pathway of

pyroptosis mainly relies on the activation of CASP-1. Under

stimulation by bacterial, viral, or other signals, inflammasomes

form and activate CASP-1. Activated CASP-1 cleaves GSDMD to

form the N-terminal fragment of GSDMD, creating pores in the cell

membrane. It also cleaves the precursors of IL-1b and IL-18 to form

active IL-1b and IL-18, both of which are released as inflammatory
FIGURE 1

Preeclampsia pathogenesis diagram. The diagram illustrates the pathogenesis of PE, divided into early and late stages of pregnancy. The early stage
includes insufficient trophoblast invasion, failure of spiral artery remodeling, placental ischemia, hypoxia reperfusion injury, and endothelial
dysfunction. The late stage leads to complications such as PE, hypertension, kidney damage, proteinuria, HELLP syndrome, and fetal growth
restriction. The diagram also indicates associations with PE-related immune diseases, genetic factors, and cardiovascular diseases.
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mediators into the extracellular space, thereby amplifying the

inflammatory response (31). The inflammasome is a multiprotein

complex within the cell, primarily composed of pattern recognition

receptors, such as NOD-like receptors and absent in melanoma 2, as

well as apoptosis-associated speck-like protein (ASC) and pro-

CASP-1 (32).

However, the non-canonical pathway of pyroptosis primarily

relies on activating caspase-4/5/11 (CASP-4/5/11). Under

stimulation by bacterial signals, human CASP-4 and CASP-5, and

murine CASP-11 can directly recognize lipopolysaccharide (LPS)

within the cell. The acylated lipid A component of LPS binds to the

Caspase Recruitment Domain (CARD) domain of pro-CASP-4/5/

11, forming a non-canonical inflammasome. CASP-4, -5, and -11

are activated and cleave GSDMD to form the N-terminal fragment

of GSDMD, which creates pores in the cell membrane, leading to

pyroptosis (33). Additionally, studies have shown that the

membrane hemichannel protein pannexin-1 can open its channel

to release intracellular Adenosine triphosphate (ATP) into the

extracellular space or allow extracellular ATP to enter the cell,

thereby participating in the non-canonical pathway (34, 35).
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Regulation of pyroptosis in
preeclampsia

Regulation of pyroptosis by the nlrp3
inflammasome in preeclampsia

The NLR family protein 3 (NLRP3) inflammasome is a

multiprotein complex within the cell, composed of NLRP3, the

adaptor protein ASC, and the protease CASP-1 (36). The activation

of the NLRP3 inflammasome is a two-step process. First, the

priming phase involves the activation of the NF-kB signaling

pathway by Toll-like receptor ligands, cytokines, and other

factors, which upregulates the expression of NLRP3 and IL-1b,
laying the foundation for subsequent activation (37). Subsequently,

upon stimulation by various activating signals, NLRP3 undergoes

oligomerization, recruiting ASC and pro-CASP-1 to form an active

inflammasome complex, activating CASP-1 (38). The activation of

the NLRP3 inflammasome depends on multiple stimulating signals,

including potassium ion efflux, Nuclear Factor kappa-light-chain-

enhancer of activated B cells (NF-kB), autophagy, and mitophagy
FIGURE 2

Schematic of intracellular inflammasome activation and pyroptosis mechanism. This diagram describes the molecular mechanisms of intracellular
inflammatory responses and pyroptosis. It illustrates how pathogen-associated molecules such as double-stranded DNA and LPS activate AIM2 and
NLRP3 inflammasomes, activating CASP-1, leading to the cleavage of GSDMD protein and triggering pyroptosis. Additionally, the diagram shows the
lysosomal pathway and the process of MAVs and viral RNA activating the NLRP3 inflammasome.
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(39). Additionally, the activation of NLRP3 relies on its phase

separation properties. Studies have shown that the phase

separation of NLRP3 depends on palmitoylation mediated by

Zinc finger, DHHC-type containing 7 and exhibits liquid-liquid

phase separation characteristics. This phase separation process

involves the intrinsically disordered region in the Fish-specific

NACHT-associated domain of NLRP3, where conserved

hydrophobic residues mediate multivalent weak interactions,

promoting the phase separation and activation of NLRP3 (40).

Activating the NLRP3 inflammasome directly leads to

pyroptosis, a form of inflammatory cell death. Activated NLRP3

inflammasomes can activate the protease CASP-1, which in turn

induces gasdermin-dependent pyroptosis and promotes the release

of IL-1b and IL-18 (41). The release of these cytokines is essential

for innate immune defense and homeostasis maintenance, but their

overactivation is closely related to the development of chronic

inflammatory diseases (42). The hallmarks of pyroptosis,

including the release of cellular contents and the secretion of

inflammatory factors, are consistent with the cellular responses

following inflammasome activation (43). Moreover, various cell

death effectors can also regulate the activation of the NLRP3

inflammasome, indicating a close relationship between cell death

and inflammasome activation (44).

In PE, the overactivation of the NLRP3 inflammasome is one of

the key pathological mechanisms. Studies have shown that the

activity of NLRP3, CASP-1, and GSDMD is significantly increased

in the placental tissues of PE patients, which is closely related to the

overactivation of the inflammasome (45). Multiple factors,

including hypoxia, endoplasmic reticulum stress, and the

unfolded protein response, may contribute to this overactivation

(46). Hypoxia is one of the characteristic pathological features of PE

and activates the NLRP3 inflammasome through various pathways

(47). Under hypoxic conditions, the expression of NLRP3, CASP-1,

and GSDMD in placental trophoblasts is significantly increased,

along with elevated levels of the inflammatory factors IL-1b and IL-

18 (48). Additionally, hypoxia can promote the activation of the

NLRP3 inflammasome by activating Thioredoxin-interacting

protein (49).
Regulation of pyroptosis by oxidative stress
in preeclampsia

Oxidative stress is defined as the imbalance between the

generation and accumulation of reactive oxygen species (ROS) in

cells and tissues and the capacity of antioxidant mechanisms to

neutralize these reactive species (50). In the pathogenesis of PE,

oxidative stress plays a pivotal role, significantly driving disease

progression through multiple mechanisms (51). First, PE is

frequently associated with elevated oxidative stress and the

accumulation of ROS (52). Excessive ROS not only disrupt

normal mitochondrial function (53), leading to abnormalities in

the electron transport chain and the accumulation of superoxide

anion and hydrogen peroxide (54), but also weaken the cellular

antioxidant defense system, particularly by downregulating Nuclear
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factor erythroid 2-related factor 2 (Nrf2) expression, thereby

reducing the cell’s ability to clear ROS (55). ROS can also attack

cell membranes, inducing lipid peroxidation and generating toxic

products such as malondialdehyde and 4-hydroxynonenal, further

damaging cell structure and function (56).

Oxidative stress directly activates the NLRP3 inflammasome

through multiple pathways. ROS oxidize the thiol groups of NLRP3,

promoting its binding to NIMA-related kinase 7 and thereby

activating the inflammatory response (57). Additionally, oxidative

stress induces the release of mitochondrial DNA, typically through

the opening of the mitochondrial permeability transition pore (58).

These events collectively activate CASP-1, which cleaves GSDMD

to form membrane pores, triggering pyroptosis and the release of

IL-1b and IL-18, thereby amplifying the inflammatory response

(59–61). Clinical studies have confirmed that the expression of

NLRP3, CASP-1, and GSDMD is significantly elevated in the

placental tissues of PE patients, indicating that oxidative stress-

induced inflammation and pyroptosis play essential roles in the

pathogenesis of PE (62). Moreover, antioxidants such as N-

acetylcysteine can reduce pyroptosis, further confirming the role

of oxidative stress in PE (63).

Several key regulatory pathways are closely related to oxidative

stress in the pathogenesis of PE. The Long Intergenic Non-Protein

Coding RNA 240/MicroRNA-155/Nrf2 axis is an important

regulatory network, in which MicroRNA-155 enhances oxidative

stress by inhibiting Nrf2 expression. Simultaneously, Long

Intergenic Non-Protein Coding RNA 240 antagonizes the effect of

MicroRNA-155, thereby regulating Nrf2 expression and activity

(64). Additionally, PTEN-induced putative kinase 1/Parkin-

mediated mitophagy is crucial for maintaining mitochondrial

health and function; defects in mitophagy can lead to ROS

accumulation and exacerbated oxidative stress (65). The synthesis

of ceramide is also regulated by ROS, which promotes ceramide

synthesis by activating sphingomyelinase, and ceramide can directly

activate the NLRP3 inflammasome, further driving the

inflammatory response and pyroptosis (66).
Regulation of pyroptosis by Th1/Th2 cell
imbalance in preeclampsia

The pathogenesis of PE is complex, involving multiple

pathological processes, among which immune imbalance and

abnormal pyroptosis of placental trophoblasts are key features

(67). Th1 cells secrete cytokines such as interferon-gamma (IFN-

g), which can activate inflammatory signaling pathways, including

the NLRP3 inflammasome pathway. Activation of the NLRP3

inflammasome leads to the activation of CASP-1, which cleaves

GSDMD into its active form, triggering pyroptosis and exacerbating

the inflammatory response. In contrast, Th2 cells secrete anti-

inflammatory cytokines such as IL-10 and IL-4, which can inhibit

inflammatory responses. In PE patients, the levels of these anti-

inflammatory cytokines are significantly reduced, failing to

effectively suppress pyroptosis-inducing factors related to

inflammation (68–70). Studies have confirmed that this immune
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imbalance may further exacerbate the pathophysiological processes

of PE, leading to increased inflammation and pyroptosis. For

example, in PE patients, the immune imbalance is characterized

by an elevated Th1/Th2 ratio (Th1 predominance), with significant

increases in T-bet expression in peripheral blood Cluster of

Differentiation 4-positive T cells (71), increased IFN-g expression

in placental tissues compared to normal pregnancies (72), and

reduced IL-4 and IL-10 cells in the decidua (73). Th1-type factors

may play a significant role in PE. For instance, in studies of other

diseases, IFN-g has been shown to upregulate NLRP3

inflammasome genes by activating Signal Transducer and

Activator of Transcription 1, thereby promoting CASP-1

activation (74), while Tumor Necrosis Factor-alpha synergizes

with hypoxia-induced Hypoxia-Inducible Factor 1-Alpha to

enhance GSDMD transcription (75). However, Th2-type factors

such as IL-4 can inhibit the assembly of the NLRP3 inflammasome,

reducing its mediated inflammatory response (76).
Regulation of pyroptosis by microRNAs
and other factors in preeclampsia

MicroRNAs are ubiquitously present in mammalian cells and

constitute a class of non-coding single-stranded RNAs encoded by

endogenous genes, with lengths ranging from 18 to 24 nucleotides

(77). MicroRNAs play important roles in pyroptosis and PE-related

biological pathways. For example, melatonin may inhibit HtrA

serine peptidase 1 transcription through the MicroRNA-520c-3p/

SET domain containing (lysine methyltransferase) 7 axis, thereby

promoting the invasion and migration of trophoblasts in PE and

reducing trophoblast pyroptosis (78). Similarly, MicroRNA-223-3p

inhibits the activation of the NLRP3 inflammasome, the secretion of

downstream inflammatory factors, and pyroptosis in LPS-induced

HTR8/SVneo cells, indicating that miR-223-3p can function as an

anti-inflammatory factor in PE (79). MicroRNA-124-3p is

upregulated in PE and targets placental growth factor to suppress

the proliferation, migration, and invasion of trophoblast HTR-8/

SVneo cells while promoting trophoblast pyroptosis (80).

Beyond the aforementioned mechanisms, other placental

factors may also participate in the regulation of pyroptosis. For

example, a study using a PE mouse model and treating human first-

trimester villi with Interleukin-11(IL-11) demonstrated that IL-11

activates placental inflammasomes, resulting in villous pyroptosis in

human placentas and PE in the mouse model (81). Metformin

suppresses Toll-like receptor 4/NF-kB/6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase 3 signaling pathways, correcting

glucose metabolic reprogramming in trophoblasts and NLRP3

inflammasome-induced pyroptosis, demonstrating potential

therapeutic value (82). Furthermore, a study employing hypoxia/

reoxygenation models to stimulate human and rat trophoblasts

revealed that under H/R conditions, chemerin expression is

upregulated via Homeobox A9. Chemerin subsequently activates

the Chemerin Chemokine-Like Receptor 1/AMP-activated protein

kinase/Thioredoxin Interacting Protein/NLRP3 inflammasome

pathway, thereby promoting trophoblast pyroptosis and
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inflammation and exacerbating PE (83). Urotensin II levels in the

placentas of PE patients are positively correlated with pyroptosis

markers. This suggests that Urotensin II may promote pyroptosis in

PE, thereby amplifying inflammation and impairing normal

placental development and function, thus exacerbating PE (84).
Potential applications of pyroptosis in
the diagnosis and treatment of
preeclampsia

Biomarker detection

Pyroptosis plays a crucial role in the pathogenesis of PE, and its

related molecules can serve as potential biomarkers for early

diagnosis, disease monitoring, and prognosis assessment. For

instance, studies have shown that the NLRP3 inflammasome and

ASC expression are significantly elevated in PE patients’ placental

tissues. Activation of the NLRP3 inflammasome promotes the

release of downstream pro-inflammatory factors such as IL-1b
and IL-18, which may serve as potential diagnostic biomarkers

and positively correlate with disease severity. Detection methods

include immunoblotting, immunohistochemistry, and quantitative

real-time PCR to quantify or qualitatively analyze NLRP3 and ASC

in serum or placental tissues, providing a basis for disease

classification and prognosis assessment (85). Compared with

other biomarkers, IL-1b and IL-18 have the advantage of mature

detection methods (e.g., routine Enzyme-Linked Immunosorbent

Assay) and high feasibility for clinical translation (86).

Beyond these specific markers, some non-specific molecules

associated with pyroptosis may also serve as auxiliary diagnostic

tools for PE. For example, lactate dehydrogenase, a general marker

of cell damage, is often elevated in PE patients due to placental cell

pyroptosis. However, it lacks specificity and should be used in

combination with other indicators for comprehensive judgment

(87). Studies have suggested that incorporating lactate

dehydrogenase and uric acid measurements into routine clinical

practice may aid in early detection and intervention, ultimately

improving outcomes in pregnancies complicated by PE (88).

Additionally, the high-mobility group box 1, a damage-associated

molecular pattern released by pyroptotic cells, can further amplify

inflammatory responses and promote vascular endothelial damage

in PE. Its levels may serve as a novel indicator for predicting disease

severity (89). Future research could further develop biological

markers such as mitochondrial DNA and GSDMD fragments to

more accurately monitor the state of pyroptosis (90). However,

there is currently a lack of biomarkers that specifically reflect

pyroptosis in PE, increasing the difficulty of clinical diagnosis and

posing challenges for research. Therefore, identifying and validating

specific pyroptosis biomarkers is crucial, as they can provide a basis

for early diagnosis and disease monitoring in PE. Integrating large-

scale clinical sample analysis with basic research holds promise for

discovering new biomarkers that accurately reflect the state of

pyroptosis in PE (91).
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Therapeutic approaches targeting
pyroptosis pathways

The mechanisms underlying pyroptosis in PE have gradually been

elucidated, and therapeutic strategies targeting its regulatory pathways

have demonstrated significant potential. For example,research on

NLRP3 inflammasome inhibitors for treating PE is gradually

revealing their potential. These inhibitors reduce the activation of the

NLRP3 inflammasome, effectively decreasing the occurrence of

pyroptosis, which is crucial for controlling the inflammatory response

in PE. NLRP3 activation leads to the production of pro-inflammatory

cytokines such as IL-1b, exacerbating the condition (92). Notably, 1,25-
dihydroxyvitamin D3 protects the placenta from inflammation by

inhibiting NLRP3-mediated IL-1b production and activating the Nrf2

signaling pathway (93). Additionally, MCC950 sodium, an inhibitor of

the NLRP3 inflammasome, can directly suppress the inflammatory

response (94). CASP-1 inhibitors, another potential therapeutic

strategy, reduce pyroptosis by preventing the cleavage of GSDMD.

CASP-1 plays a central role in the processing and release of pro-

inflammatory cytokines such as IL-1b, and its increased activity in the

placentas of PE patients highlights the potential therapeutic effects of

CASP-1 inhibitors (95). GSDMD is a promising target in precision

medicine, with broad applications in treating inflammation-related

diseases and cancer. Its potential application in PE treatment also

provides an important theoretical basis for future research (96).

Therapeutic strategies targeting oxidative stress show significant

potential in the management of PE. For example, resveratrol reduces

oxidative stress by scavenging ROS (97). Exploring combination

therapies of antioxidants and anti-inflammatory drugs, as well as

personalized treatment plans, may help more effectively manage and

treat PE (98, 99). Therapeutic strategies targeting Th1/Th2 cell

imbalance have also shown great potential in the treatment of PE.

For example,magnesium sulfate may inhibit pyroptosis by affecting the

production of Th2 cytokines, such as blocking Ca²+ influx, thereby

indirectly influencing Th2 cell activity and reducing Th2 cytokine levels

(100, 101). Low molecular weight heparin can improve immune

imbalance and reduce inflammatory responses by modulating Th1/

Th2 cytokine levels. These findings provide important evidence for the

application of low molecular weight heparin in immune regulation and

the treatment of inflammation-related diseases (102). Future research

directions include the development of nanobodies targeting Interleukin-

6, which indeed demonstrates the potential of nanobodies in targeting

cytokines. This provides a theoretical basis for developing nanobodies

targeting other cytokines, such as Th1-polarizing IFN-g. Specifically, the
development of anti-IFN-g nanobodies could leverage the synthetic

phage display library technology mentioned in the study for rapid

screening and generation of high-affinity nanobodies (103).

Additionally, metformin, which dually regulates 5’-AMP-activated

protein kinase/Hypoxia-Inducible Factor 1-Alpha, enhances

autophagy and angiogenesis and reduces inflammatory responses, has

shown therapeutic potential in wound healing in diabetic rats. This

finding suggests that metformin may also have therapeutic potential in

PE (104). Organoid models used to study various diseases, such as

inflammatory bowel disease, colorectal cancer, and liver disease, may

provide new insights for the treatment of PE (105). In summary,
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hold significant value in the management of PE. Future research needs

to further explore their molecular mechanisms and clinical applications.
Summary and outlook

This review summarizes the regulatory role of pyroptosis in PE

and its potential diagnostic and therapeutic applications. PE is a

severe pregnancy-specific disorder with a complex pathogenesis

involving multiple pathophysiological processes, including

abnormal placental development, immune imbalance, oxidative

stress, and inflammatory responses. In recent years, pyroptosis, a

novel form of programmed cell death, has been found to be closely

related to the occurrence and development of PE. Studies have

shown that pyroptosis of trophoblasts can hinder their invasive

capacity, lead to abnormal remodeling of uterine spiral arteries, and

induce local-to-systemic inflammatory responses, thereby

promoting the development of PE.

The regulatory mechanisms of pyroptosis involve multiple

signaling pathways and molecules. The activation of the NLRP3

inflammasome is a key step in pyroptosis, which activates CASP-1 to

cleave GSDMD, forming pores in the cell membrane and releasing

inflammatory factors such as IL-1b and IL-18, thereby amplifying the

inflammatory response. Oxidative stress is significantly elevated in PE

and can activate the NLRP3 inflammasome through various pathways,

promoting pyroptosis. Additionally, Th1/Th2 cell imbalance,

microRNAs, and other factors, such as IL-11 and Urotensin II, also

play important roles in the regulation of pyroptosis. In terms of

diagnosis and treatment, pyroptosis-related molecules such as

NLRP3, ASC, IL-1b, and IL-18 can serve as potential biomarkers for

early disease diagnosis and monitoring disease progression. NLRP3

inflammasome inhibitors, CASP-1 inhibitors, and antioxidants have

shown promising therapeutic effects in animal models, providing new

insights for the clinical treatment of PE.

Although the mechanisms underlying pyroptosis in PE have been

preliminarily elucidated, many unresolved questions remain. Future

research directions should focus on further investigating the functions

and regulatory mechanisms of pyroptosis-related molecules to clarify

their specific roles in PE. For example, techniques such as gene editing

and proteomics can be employed to explore the activation mechanisms

of the NLRP3 inflammasome and its interactions with other signaling

pathways. There is a need to identify and validate specific biomarkers

that reflect the state of pyroptosis in PE to enhance the accuracy of early

disease diagnosis and disease monitoring. Combining large-scale

clinical sample analysis with basic research may lead to the discovery

of new biomarker combinations that provide stronger support for

clinical applications. Research should also explore the combined use of

antioxidants, anti-inflammatory drugs, and existing PE treatment

regimens to investigate their potential value in improving disease

outcomes. For instance, developing combination therapies targeting

the NLRP3 inflammasome, oxidative stress, and immune imbalance

may offer a more comprehensive solution for PE treatment. Expanding

the research scope to include other pregnancy-related disorders, such

as placental abruption and fetal growth restriction, can help explore the
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mechanisms and therapeutic potential of pyroptosis in different

pathological states. Finally, strengthening the translation from basic

research to clinical application is essential to promote clinical trials of

pyroptosis-related diagnostic biomarkers and therapeutic drugs and

accelerate their integration into clinical practice.

In conclusion, research on pyroptosis in PE is still in its

developmental stage, and more studies are needed to deepen our

understanding of its mechanisms and translate this knowledge into

effective diagnostic and therapeutic tools in clinical practice. With

continued research, it is hoped that new breakthroughs will be

achieved in the prevention, diagnosis, and treatment of PE,

ultimately improving maternal and fetal health outcomes.
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