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Drug-induced Sweet’s syndrome:
pharmacovigilance insights from
FAERS with a cross-database
consistency assessment in
VigiBase via LASSO and
multivariable logistic regression
Yuhan Xie1†, Qinxiao Li2†, Jing Zhou3, Xiangqi Qin3, Zhe Zhang3

and Ruimin Bai1*

1Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
Shaanxi, China, 2Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, Shaanxi, China, 3Xi’an Jiaotong University, Xi’an, Shaanxi, China
Background: Drug-induced Sweet’s syndrome (DISS), a rare but serious adverse

drug reaction characterized by acute febrile neutrophilic dermatosis, remains

difficult to identify due to its low incidence and diverse drug triggers.

Methods: Drugs associated with DISS were systematically identified and

characterized using data from the U.S. Food and Drug Administration Adverse

Event Reporting System (FAERS; Q1 2004–Q4 2024). Reports were analyzed for

baseline characteristics, comorbidities, time-to-onset, drug class distributions, and

polypharmacy patterns assessed through drug co-occurrence network analysis.

Disproportionality analysis identified candidate drugs, which were refined using the

least absolute shrinkage and selection operator (LASSO) regression and

multivariable logistic regression. The main analysis excluded malignancy- and/or

immune-related indications, with two sensitivity analyses to assess robustness. A

cross-database consistency assessment was conducted in VigiBase, supplemented

by PubMed literature review and product label examination.

Results: A total of 2,018 DISS cases involving 342 drugs were identified. Themedian

time to onset was 22 (interquartile range: 7–98) days, with 55.60% occurring within

30 days. Ninety drugs demonstrated positive disproportionality signals; a similar

pattern was observed in the subset of reports submitted by medical doctors. Of

these, 24 remained significant in themainmodel (area under the curve = 0.815, 95%

confidence interval: 0.775–0.856), predominantly comprising antineoplastic and

anti-infective agents. Sensitivity analyses produced comparable results. Cross-

database assessment in VigiBase identified overlap for 10 signals, while literature

review supported associations for 15 drugs and 9 were documented as associated

with SS in the product labels.
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Conclusion: This study provides a comprehensive evaluation of drugs associated

with DISS using real-world pharmacovigilance data. The results reveal both

established and previously unrecognized drug triggers, offering important

insights to support early detection, clinical management, and improved drug

safety monitoring from statistical and clinical perspectives.
KEYWORDS
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1 Introduction

Sweet’s syndrome (SS), also known as acute febrile neutrophilic

dermatosis, was first described by Dr. Robert Douglas Sweet in 1964

(1). It is a rare inflammatory dermatosis characterized clinically by

the abrupt onset of fever and painful erythematous plaques or

nodules, typically affecting the upper limbs, trunk, and head or

neck, and histopathologically by a dense neutrophilic infiltrate in

the upper dermis (2). The pathogenesis of SS is considered

multifactorial, involving dysregulated cytokine signaling, immune

dysregulation, genetic susceptibility, and various external triggers,

including infections, malignancies (particularly hematologic),

autoimmune disorders, and pharmacologic agents (3). Based on

etiologic factors, SS is classified into three clinical subtypes: classical

(idiopathic), malignancy-associated, and drug-induced Sweet’s

syndrome (DISS). Among these, DISS represents an especially

important yet underrecognized subtype that presents unique

diagnostic challenges and distinct therapeutic implications. A

definitive diagnosis of DISS requires fulfillment of all of the

following criteria: (A) abrupt onset of painful erythematous skin

lesions; (B) histopathologic evidence of dense neutrophilic

infiltration without leukocytoclastic vasculitis; (C) fever >38°C;

(D) a clear temporal relationship between drug exposure and

symptom onset, or recurrence upon rechallenge; and (E)

resolution of lesions following drug withdrawal or treatment with

systemic corticosteroids (4). To date, an increasing number of drugs

have been implicated in the development of DISS, with granulocyte

colony-stimulating factors (G-CSFs), azathioprine, all-trans

retinoic acid (ATRA), and Fms-like tyrosine kinase 3 (FLT3)

inhibitors among the most frequently reported (3, 5). Notably,

clinical improvement and symptom resolution can often be

achieved by discontinuation of the suspected agent alone.

However, the current understanding of drug-related risk in DISS

remains limited, as most data are derived from individual case

reports or small case series (3, 5–7). The absence of large-scale,

systematic investigations limits accurate assessment of the

incidence and causality of DISS across different drug classes.

Therefore, real-world pharmacovigilance data are urgently needed

to expand our knowledge of drug-induced triggers and to improve

early recognition and clinical management.
02
The U.S. Food and Drug Administration Adverse Event

Reporting System (FAERS) is one of the largest publicly available

pharmacovigilance databases, designed to collect reports on adverse

drug events (ADEs), medication errors, and product quality issues

related to both pharmaceutical drugs and biologic therapies. FAERS

plays a critical role in post-marketing surveillance, supporting

signal detection, risk evaluation, and regulatory decision-making

(8). It enables identification of potential drug safety concerns that

may not be evident during pre-approval clinical trials.

To our knowledge, this is the first FAERS-based study to

systematically evaluate drugs associated with DISS while

accounting for polypharmacy and key confounding factors.

Disproportionality analysis, least absolute shrinkage and selection

operator (LASSO) regression, and multivariable logistic regression

were applied, supplemented by sensitivity analyses, external

assessment using VigiBase, targeted literature review, and product

label examination, to generate robust real-world evidence. These

findings provide valuable evidence to support early identification

and prevention of DISS and offer critical insights to inform clinical

risk stratification and pharmacovigilance strategies.
2 Methods

2.1 Data source

Data were extracted from FAERS via publicly available ASCII

files provided on the OpenFDA platform (https://open.fda.gov/

data/faers/). FAERS consists of seven relational tables:

Demographics (DEMO), Drug Information (DRUG), Adverse

Reactions (REAC), Outcomes (OUTC), Report Sources (RPSR),

Therapy Dates (THER), and Indications (INDI).

All quarterly FAERS datasets from the first quarter of 2004 (Q1

2004) to the fourth quarter of 2024 (Q4 2024) were included. Duplicate

reports were removed in accordance with U.S. Food and Drug

Administration (FDA) deduplication guidelines: for entries with the

same CASEID, the record with the most recent FDA_DT (date of FDA

receipt) was retained; if both CASEID and FDA_DT were identical, the

record with the highest PRIMARYID was selected to ensure

data integrity.
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As FAERS is a publicly available, de-identified, and anonymized

dataset, the use of these data does not require ethical approval or

institutional review board oversight.
2.2 Definition of adverse events and
suspect drugs

Cases of DISS were identified using the Preferred Term (PT)

“Sweet syndrome” (MedDRA code: 10042458) from the REAC

table. To minimize confounding from concomitant or non-

implicated medications, only drugs labeled as the Primary Suspect

(role code: PS) were included.

Drug names were standardized using the World Health

Organization (WHO) Drug Dictionary to ensure consistency

across reports. Standardized names were further mapped to the

Anatomical Therapeutic Chemical (ATC) Classification System at

both Leve l 1 (anatomica l main group) and Leve l 2

(therapeutic subgroup).
2.3 Statistical analyses

2.3.1 Time-to-onset analysis
For reports with complete information on both therapy start

and adverse event onset dates, time-to-onset was calculated as the

number of days from the initiation of the suspected drug to the

occurrence of SS. Results were summarized using medians and

interquartile ranges (IQRs).

2.3.2 Signal detection via disproportionality
analysis

Disproportionality analysis was conducted using the reporting

odds ratio (ROR) and its 95% confidence interval (CI) to identify

potential pharmacovigilance signals (8). ROR compares the

frequency of a specific adverse event for a given drug with that

for all other drugs using a 2×2 contingency table (Supplementary

Table S1). The ROR was calculated as: ROR = a=c
b=d . The 95% CI for

the ROR was computed as:  ROR95%CI = elnðRORÞ ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1a+1
b+

1
c+

1
dÞ

p
. A

signal was considered positive if the number of reported cases

exceeded 3 and the lower limit of the 95% CI of the ROR was greater

than 1. P-values were calculated using Fisher’s exact test, and

multiple comparisons were adjusted using the false discovery rate

(FDR) method (9).

2.3.3 Identification of risk factors
To address potential indication-related confounding from

malignancy- or immune-associated SS subtypes, three analytical

datasets were predefined: The main analysis excluded all reports

with malignancy-related and/or immune-related indications;

Sensitivity analysis A excluded only malignancy-related indications;

Sensitivity analysis B excluded only immune-related indications. For

each dataset, disproportionality analysis was conducted independently

to identify candidate drug signals, applying the same predefined

criteria (≥3 reports and a lower 95% CI of the ROR > 1).
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Demographic variables (age and sex) and drug variables identified

as positive signals in the disproportionality analysis were considered

candidate predictors. The LASSO was employed for variable selection

and to prevent overfitting. Ten-fold cross-validation was used to

determine the optimal regularization parameter (l), with two

criteria evaluated: l_min [yielding the highest cross-validated area

under the curve (AUC)] and l_1se (the most parsimonious model

within one standard error of the minimum AUC). Variables retained

by the LASSO model were subsequently included in a multivariable

logistic regression analysis, with overall model discrimination assessed

by AUC.

2.3.4 Cross-database and external evidence
assessment of drug signals

Disproportionality analysis was replicated in VigiBase, the

WHO’s global pharmacovigilance database. A signal was

considered positive if the drug had at least three reported cases

and the lower bound of the 95% CI of the ROR exceeded 1. In

parallel, a targeted literature review was conducted in PubMed by

combining each drug name with terms such as “Sweet’s syndrome”

or “acute febrile neutrophilic dermatosis”. Finally, official product

labels were examined to assess whether SS was listed as an adverse

reaction. Label information was sourced from the FDA database

and European Medicines Agency (EMA). A drug was considered

labeled if either condition, or a synonymous term, appeared in the

adverse reactions section of the prescribing information.

All data processing and statistical analyses were performed

using PostgreSQL (version 14.4) and R software (version 4.4.2).

LASSO regression was conducted using the “glmnet” package, and

multivariable logistic regression was implemented with the base R

function “glm()” (family = binomial). A two-sided adjusted P value

< 0.05 was considered statistically significant.
3 Results

3.1 Descriptive overview of DISS reports in
FAERS

From Q1 2004 to Q4 2024, a total of 21,964,449 adverse event

reports were recorded in the FAERS database, of which 18,278,243

unique cases were remained after deduplication. Among these,

2,018 cases were identified as associated with DISS. The cohort

included 772 (38.26%) males and 1,038 (51.44%) females, with sex

information missing in 208 cases (10.31%). After excluding 22.60%

of cases with missing age data, the median age was 55 years (IQR:

41–68). Following the exclusion of 84.54% of cases lacking body

weight data, the median body weight was 70 kg (IQR: 60.95–85.29).

The majority of reports were submitted by medical doctors

(41.23%), followed by health professionals (19.47%) and

consumers (9.71%). The majority of cases originated from the

United States (35.68%), followed by France (12.04%) and Canada

(7.09%) (Table 1).

Temporal trends revealed a steady rise in DISS reports over the

past two decades, with the number of cases in 2024 more than six
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times that in 2004. The proportion of DISS cases among all FAERS

reports remained extremely low and fluctuated over time without a

clear increasing or decreasing trend (Figure 1A). Age-stratified

analysis indicated that reports were most frequent among

individuals aged 40–75 years (Figure 1B). Among the underlying

indications, neoplastic diseases accounted for the largest proportion

(37.0%), followed by autoimmune/rheumatic conditions (13.2%)

and infectious diseases (10.7%) (Supplementary Figure S1). The

most commonly reported underlying indications included Crohn’s

disease (CD), acute myeloid leukemia (AML), plasma cell myeloma,

rheumatoid arthritis (RA), ulcerative colitis (UC), and

myelodysplastic syndrome (MDS) (Figure 1C). In terms of

clinical outcomes, hospitalization was the most frequently

reported consequence, whereas death, life-threatening conditions,

and disability were relatively uncommon (Figure 1D). Among the

top 10 drugs reported in the six countries with the highest case

counts, adalimumab was implicated in five countries, excluding

Japan. Other commonly reported drugs included infliximab and

azacitidine. Notably, in Canada, infliximab and methotrexate

accounted for 17.48% and 16.08% of DISS reports, respectively. In

Spain, gabapentin was the most frequently implicated agent

(14.71%), whereas in Japan, azacitidine was the leading drug

(12.77%) (Supplementary Table S2).
3.2 Time-to-onset distribution of DISS

Among the 2018 reported cases of DISS, time-to-onset data

were available for 473 cases (23.4%). The median time to onset was

22 days (IQR: 7–98 days). Of these, 55.60% occurred within the first

30 days following drug exposure, 11.21% between 31 and 60 days,

and 6.77% between 61 and 90 days (Figure 2A). Notably, the

frequency of reported cases declined substantially with increasing

time to onset. A Weibull model was fitted to the time-to-onset data,

revealing a right-skewed distribution consistent with acute onset in

most cases (Figure 2B). Additionally, a small number of outliers

exhibited markedly delayed onset, with intervals exceeding

1,000 days.
3.3 Descriptive analysis of drug spectrum
and therapeutic classifications

From Q1 2004 to Q4 2024, a total of 342 distinct drugs were

reported in association with SS in the FAERS database. The most

frequently implicated agents included azathioprine (n = 84),

sulfamethoxazole/trimethoprim (n = 79), adalimumab (n = 76),

infliximab (n = 76), azacitidine (n = 69), hydralazine (n = 50),

lenalidomide (n = 41), filgrastim (n = 36), pegfilgrastim (n = 35), and

methotrexate (n = 32) (Supplementary Table S3). A drug co-occurrence

network was constructed to illustrate commonly co-reported

medications in DISS cases, reflecting real-world polypharmacy

patterns (Supplementary Figure S2). Frequent combinations included

azathioprine or infliximab with corticosteroids (e.g., prednisone,
frontiersin.o
TABLE 1 Demographic and clinical characteristics of drug-induced
Sweet’s syndrome reports in the FAERS database.

Characteristic Number Proportion (%)

Number of Cases 2018 100%

Sex

Male 772 38.26%

Female 1038 51.44%

Missing 208 10.31%

Age (year)

Mean (SD) 53.37 (18.31)

Median [Q1, Q3] 55 [41, 68]

Missing 456 22.60%

Weight (kg)

Mean (SD) 72.85 (20.05)

Median [Q1, Q3] 70 [60.95, 85.29]

Missing 1706 84.54%

Reported Person

Medical Doctor 832 41.23%

Health Professional 393 19.47%

Consumer 196 9.71%

Pharmacist 77 3.82%

Lawyer 2 0.10%

Registered Nurse 1 0.05%

Others 425 21.06%

Missing 92 4.56%

Reported Country (Top Six)

United States 720 35.68%

France 243 12.04%

Canada 143 7.09%

Spain 102 5.05%

Japan 94 4.66%

United Kingdom 92 4.56%

Others 564 27.95%

Missing 60 2.97%

Indications

Observed 1890 93.66%

Missing 128 6.34%

Outcome

Observed 1989 98.56%

Missing 29 1.44%
FAERS, U.S. Food and Drug Administration adverse event reporting system.
rg

https://doi.org/10.3389/fimmu.2025.1622736
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1622736
methylprednisolone), celecoxib with cyclobenzaprine, ciprofloxacin

with nitrofurantoin, and the chemotherapeutic pair carboplatin with

docetaxel. Other commonly co-reported agents included acetylsalicylic

acid, amoxicillin/clavulanic acid, allopurinol, and cisplatin.

Reports submitted by medical doctors were analyzed separately,

identifying 215 distinct drugs. The most frequently reported agents

included sulfamethoxazole/trimethoprim (n = 52), infliximab (n =

34), adalimumab (n = 33), azacitidine (n = 27), bortezomib (n = 18),

lenalidomide (n = 18), pegfilgrastim (n = 18), azathioprine (n = 16),

hydralazine (n = 16), and levofloxacin (n = 16). Among these, 7 of

the top 10 drugs overlapped with those in the overall dataset.

Furthermore, 29 of the top 30 and 39 of the top 50 most

frequently reported drugs were shared between the two datasets

(Supplementary Table S4).

Based on the ATC classification system, the 342 identified drugs

were categorized into 14 pharmacological groups: antineoplastic and

immunomodulating agents (n = 135), anti-infectives for systemic use (n

= 44), alimentary tract and metabolism drugs (n = 30), cardiovascular

system drugs (n = 27), nervous system drugs (n = 26), dermatologicals

(n = 23), musculoskeletal system drugs (n = 13), blood and blood-

forming organ drugs (n = 11), genito-urinary system and sex hormones

(n = 10), systemic hormonal preparations excluding sex hormones and

insulins (n = 7), various (n = 7), respiratory system drugs (n = 6),

antiparasitic products, insecticides, and repellents (n = 2), and sensory
Frontiers in Immunology 05
organ drugs (n = 1) (Supplementary Table S5). In terms of case

distribution, antineoplastic and immunomodulating agents accounted

for the highest proportion of DISS reports (1,083/2,018, 53.67%), with

549 reports attributed to antineoplastic agents and 405 to

immunosuppressants. This was followed by anti-infectives for

systemic use (257/2,018, 12.73%), the majority of which were

antibacterials (221/257). Among cardiovascular system drugs (152/

2,018, 7.53%), the most frequently reported subclasses included

antihypertensives (53/152), cardiac therapy agents (31/152), and

diuretics (27/152). For alimentary tract and metabolism drugs (152/

2,018, 7.53%), the leading categories were stomatological preparations

(68/152) and antidiarrheals, intestinal anti-inflammatory/anti-infective

agents (56/152). In contrast, drugs targeting the respiratory system and

sensory organs were least frequently reported (Supplementary Table S5).

After excluding cases with missing sex or age information, a

total of 1,547 DISS reports were included in the stratified analysis.

Antineoplastic and immunomodulating agents remained the most

frequently implicated drug class in both males and females,

followed by anti-infectives for systemic use, alimentary tract and

metabolism drugs, and cardiovascular system drugs (Figure 3A).

Chi-square analysis revealed a significant association between sex

and drug class distribution (c² = 34.97, df = 13, P < 0.001), with

certain classes disproportionately reported by one sex over the other

(Supplementary Table S6). Age- and sex-specific analysis revealed
FIGURE 1

Baseline characteristics of drug-induced Sweet’s syndrome reports in the FAERS database. (A) Annual number of reported DISS cases (bars) with the
proportion among all adverse event reports in FAERS (line). (B) Age distribution of affected individuals. (C) Top 20 underlying indications associated
with DISS. (D) Clinical outcomes of reported adverse events. DISS, drug-induced Sweet’s syndrome; FAERS, FDA adverse event reporting system.
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FIGURE 2

Time-to-onset distribution of drug-induced Sweet’s syndrome. (A) Stacked bar chart showing the proportion (%) and number of cases across
defined latency intervals. (B) Histogram with an overlaid density curve illustrating the overall distribution of latency durations, accompanied by a
boxplot above to indicate the spread and potential outliers. A Weibull model was fitted to the data to characterize the temporal pattern.
FIGURE 3

Distribution of drug classes in DISS reported in the FAERS database based on ATC classification. (A) Proportional distribution of reported drug
classes. (B) Stratification of reported cases by age and sex. (C) Annual trend in the number of reports by drug class. A consistent color scheme is
used across all panels. FAERS, U.S. Food and Drug Administration Adverse Event Reporting System; ATC, Anatomical Therapeutic Chemical.
Frontiers in Immunology frontiersin.org06
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that DISS was most commonly reported in males aged 50–75 years

and females aged 35–70 years. The association between drug class

and age group was statistically significant (c² = 714.1, df = 234, P <

2.2×10-16) (Supplementary Table S7). Antineoplastic and

immunomodulating agents were consistently implicated across all

age groups in both sexes. By contrast, anti-infectives for systemic

use and nervous system drugs were mainly reported in individuals

aged 25–75 years, while cardiovascular system drugs were more

frequently reported in cases aged 40–75 years. Notably, antiparasitic

products, insecticides, and repellents were disproportionately

reported among younger and middle-aged females, with very few

cases observed in males. Similarly, blood and blood-forming organ

drugs were primarily reported in older females, with limited

representation among males (Figure 3B). Linear regression

analysis was performed to assess temporal trends over the 2004–

2024 period. Antineoplastic and immunomodulating agents

exhibited the most pronounced upward trend (slope = 2.87, R² =

0.704, P < 0.001), followed by drugs targeting the alimentary tract

and metabolism (slope = 0.50, P < 0.001) and cardiovascular system

(slope = 0.69, P = 0.007) (Supplementary Table S8). In contrast, the

reporting frequency of other drug classes remained relatively stable

and low throughout the study period (Figure 3C).
Frontiers in Immunology 07
3.4 Disproportionality analysis

Disproportionality analysis was conducted to detect potential

drug-related safety signals. A drug was identified as a positive signal

if reported cases ≥3 and a lower bound of the 95% CI for ROR >1.

Based on this criterion, 90 drugs were identified as significantly

associated with SS (Supplementary Table S3), and blue shading in

the table denotes drugs with a positive signal. Interestingly, several

drugs with a relatively high number of reports—such as

adalimumab (n = 76), lenalidomide (n = 41), etanercept (n = 19),

rituximab (n = 11), and vedolizumab (n = 11)—did not meet the

threshold for signal detection due to insufficient disproportionality

(the lower bound of the 95% CI of the ROR ≤ 1) (Figure 4A). A

volcano plot was generated based on disproportionality analysis.

Each point represents a drug, with the x-axis indicating the base-2

logarithm of the ROR (log2 ROR) and the y-axis showing the

negative logarithm of the FDR-adjusted P value. Among the drugs

most strongly associated were azathioprine, sulfamethoxazole/

trimethoprim, hydralazine, and azacitidine (Figure 4B).

A subset disproportionality analysis restricted to medical doctor–

submitted reports identified 57 positive signals among 215 drugs. The

most frequently implicated agents were sulfamethoxazole/
FIGURE 4

Drug signals associated with DISS identified through disproportionality analysis. (A) Top 50 drugs ranked by the number of reported cases. Each bar
represents the number of reports submitted by medical doctors (left) or all reporters (right). Blue bars indicate drugs with a positive signal, defined as
≥3 cases and a lower bound of the 95% confidence interval for the ROR > 1, while grey bars represent drugs that did not meet the criteria.
(B) Volcano plot visualizing the distribution of drug signals. The x-axis represents the log2-transformed ROR, and the y-axis displays the –log10-
transformed adjusted P values. The color gradient reflects the log10-transformed number of cases. DISS, drug-induced Sweet’s syndrome; ROR,
reporting odds ratio; adjusted P, false discovery rate-adjusted P value.
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trimethoprim (n = 52), infliximab (n = 34), adalimumab (n = 33),

azacitidine (n = 27), bortezomib (n = 18), lenalidomide (n = 18),

pegfilgrastim (n = 18), azathioprine (n = 16), hydralazine (n = 16), and

levofloxacin (n = 16) (Figure 4A). Notably, several frequently reported

drugs did not meet the disproportionality threshold for a positive

signal, including lenalidomide (n = 18), etanercept (n = 10),

dupilumab (n = 8), methotrexate (n = 7), acetaminophen (n = 7),

and ruxolitinib (n = 6). A complementary external assessment was

performed using disproportionality analysis in VigiBase, a targeted

literature review, and examination of regulatory product labels.

Lenalidomide demonstrated a positive signal in VigiBase.

Lenalidomide, ruxolitinib, paracetamol, tocilizumab, lamotrigine,

and dupilumab were supported by published case reports. However,

none of the drugs were listed as associated with SS in product labels

approved by the FDA or EMA (Supplementary Table S9).
3.5 Identification of risk-associated drugs
via LASSO and multivariable regression

A total of 71 candidate variables—including patient age, sex,

and 69 drugs identified as positive signals from disproportionality

analysis—were included in the main analysis (Supplementary Table

S10). LASSO regression was applied for variable selection. Using the

optimal regularization parameter (l_min), 62 variables were

retained, yielding an AUC of 0.815 (95% CI: 0.775–0.856). Under

the more conservative l_1se criterion, 15 variables were retained

with an AUC of 0.702 (95% CI: 0.664–0.741) (Figures 5A, B;

Supplementary Table S11). The 62 variables selected by l_min

were subsequently included in a multivariable logistic regression

model, maintaining identical predictive performance (AUC = 0.815,

95% CI: 0.775–0.856) (Figure 6; Supplementary Table S12).

To assess the robustness of our findings, two sensitivity analyses

were conducted. Sensitivity analysis A, which excluded cases with

malignancy-related indications, yielded 74 candidate variables

(Supplementary Table S13). LASSO with l_min retained 34 variables

(AUC = 0.792, 95% CI: 0.757–0.828) (Figures 5C, D; Supplementary

Table S14), whereas l_1se retained 25 variables (AUC = 0.775, 95% CI:

0.739–0.812). The multivariable logistic regression based on the

l_min-selected variables yielded the same AUC of 0.792 (95% CI:

0.757–0.828) (Figure 6; Supplementary Table S15). Sensitivity analysis

B, which excluded cases with immune-related indications, resulted in

91 candidate variables (Supplementary Table S16). Under l_min, 49

variables were selected (AUC = 0.775, 95% CI: 0.737–0.814), while

l_1se retained 37 variables (AUC = 0.773, 95% CI: 0.741–0.806)

(Figures 5E, F; Supplementary Table S17). Multivariable logistic

regression based on the l_min-selected variables achieved an AUC

of 0.776 (95% CI: 0.738–0.815) (Figure 6; Supplementary Table S18).

Forest plots were constructed to visualize odds ratios (ORs) and

95% CIs for variables retained in the multivariable logistic regression

models, highlighting those with statistically significant associations

(adjusted P < 0.05 and lower bound of 95% CI ≥ 1). In the main

analysis, 24 drugs were significantly associated with DISS, most of

which belonged to antineoplastic and immunomodulating agents (11/

24) and anti-infectives for systemic use (6/24) (Figure 7). These
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included immunosuppressants (azathioprine, adalimumab,

infliximab), hematologic agents (azacitidine, decitabine, venetoclax),

colony-stimulating factors (filgrastim, pegfilgrastim), and various anti-

infectives (sulfamethoxazole/trimethoprim, levofloxacin, amoxicillin,

azithromycin, ofloxacin). Additionally, common nonsteroidal anti-

inflammatory drugs (NSAIDs) such as paracetamol and diclofenac

were retained. Sensitivity analysis A (excluding malignancy-related

indications) identified 26 significant drug signals, with a similar ATC

class distribution, and additionally highlighted ciprofloxacin,

sulfasalazine, tocilizumab, and hydralazine (Figure 7). Sensitivity

analysis B (excluding immune-related indications) identified 37

significant drugs, further expanding the list to include cytarabine,

gilteritinib, ibrutinib, ipilimumab, dasatinib, tretinoin, bendamustine,

etoposide, and midostaurin. Notably, the forest plot demonstrates

substantial overlap across the three analyses, with a consistent core

group of drugs—decitabine, ofloxacin, azacitidine, filgrastim,

hydroxycarbamide, hydroxychloroquine, azathioprine, ruxolitinib,

mesalazine, valaciclovir, ethinylestradiol/levonorgestrel, venetoclax,

bortezomib, vedolizumab, sulfamethoxazole/trimethoprim, linezolid,

amoxicillin, diclofenac, azithromycin, paracetamol, infliximab, and

adalimumab—retained as significant signals across all models

(Figure 7). This high degree of concordance underscores the

robustness of the identified associations despite variations in

exclusion criteria. This consistency underscores the robustness of

the identified signals despite varying exclusion criteria.
3.6 Cross-database consistency
assessment, literature review, and label-
based confirmation

To strengthen the credibility of the signals identified in the main

analysis, external assessment was conducted using three independent

sources. Disproportionality analysis in VigiBase identified 10 drugs as

positive signals, including azacitidine, azathioprine, bortezomib,

pegfilgrastim, sulfamethoxazole/trimethoprim, decitabine, filgrastim,

mesalazine, hydroxycarbamide, valaciclovir, and venetoclax—as

positive signals, defined by at least 3 reported cases and a lower 95%

CI of ROR exceeding 1 (Figure 7; Supplementary Table S19). A

targeted literature review was performed to assess prior

documentation of DISS for each of the 24 drugs identified in the

main analysis. Key contextual information was extracted, including the

primary indication, time to onset, diagnostic certainty, concomitant

medications, and publication type. 15 drugs had prior reports in case

studies or observational research (Table 2). Finally, regulatory product

labels from the FDA and EMA were reviewed. Among the 24 drugs, 9

included SS in the adverse reaction sections of their prescribing

information (Supplementary Table S20).
4 Discussion

DISS is an uncommon but clinically significant neutrophilic

dermatosis, typically characterized by acute febrile onset and potential

systemic involvement (5). However, early recognition remains
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challenging due to its heterogeneous clinical manifestations and the

broad spectrum of implicated drugs. In the present study, a

comprehensive pharmacovigilance analysis was conducted using

FAERS data from 2004 to 2024 to clarify drug-associated risks. A

total of 2,018 eligible reports were identified, involving 342 suspected

drugs. Disproportionality analysis was employed as the primary signal

detection method, resulting in 90 drugs disproportionately reported in

association with DISS. To reduce confounding from SS-related

comorbidities, the main analysis was restricted to reports without

malignancy- or immune-related indications. Sensitivity analyses were

subsequently performed by reintroducing these conditions. Across all
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models, consistent results were obtained through LASSO regression and

multivariable logistic analysis, with substantial overlap in identified

signals, thereby reinforcing the robustness and specificity of the

associations. External validation was further conducted using the

VigiBase database, supplemented by a targeted literature review and

product label examination. This multi-step approach not only

confirmed previously recognized associations but also revealed

underreported or novel drug-related risks, underscoring the utility of

pharmacovigilance data in characterizing the safety profile of DISS.

Regarding the baseline characteristics of DISS, our analysis revealed

that the majority of cases occurred in middle-aged and older adults,
FIGURE 5

Variable selection for drug−induced Sweet’s syndrome using LASSO across the main and sensitivity analyses. (A, C, E) LASSO coefficient paths for all
candidate variables; coefficients shrink toward zero as log(l) increases. Vertical dashed lines denote l_min (red; minimum cross−validated error) and
l_1se (blue; most regularized model within one SE of the minimum). (B, D, F) Ten−fold cross−validation deviance curves; points show mean
binomial deviance with error bars for ±1 SE, and the numbers above the curve indicate the count of non−zero coefficients. Panels (A, B) correspond
to the main analysis (excluding malignancy− and autoimmune−related indications), (C, D) to Sensitivity Analysis A (excluding malignancy only), and
(E, F) to Sensitivity Analysis B (excluding autoimmune only). LASSO, least absolute shrinkage and selection operator; SE, standard error.
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with a marked female predominance—an epidemiological pattern

consistent with previous reports (28, 29). Due to a high proportion

of missing data on body weight in the FAERS database, further

evaluation of constitutional risk factors was limited. Nearly half of

the reports were submitted by medical doctors, and a

disproportionately number originated from the United States. This

geographic bias likely reflects reporting bias inherent to the FAERS

database, as well as differences in pharmacovigilance systems, drug

accessibility, and healthcare practices across countries. The most

common underlying indications were inflammatory bowel disease

(IBD; including CD and UC), hematologic malignancies (such as

AML, plasma cell myeloma, and MDS), and RA. These conditions

have been well-documented: SS is recognized as a cutaneous

extraintestinal manifestation (EIM) of IBD (30), AML and MDS are

established predisposing factors (31), and SS manifestations have been

observed in RA (32). Given these associations, the potential

confounding effects of underlying diseases and their treatments

should be carefully considered when interpreting positive drug

signals in DISS. In line with the nature of SS as an idiopathic,

chronic systemic inflammatory response syndrome, most DISS cases

in our cohort were associated with prolonged hospitalization or other

non-life-threatening complications, while fatal or disabling outcomes

were rare. The majority of cases occurred within 0–30 days after drug

exposure, and clinical improvement was commonly observed after

discontinuation of the suspected agent (33). Systemic corticosteroids

are generally considered the first-line therapy, whereas potassium
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iodide or colchicine may serve as alternative options for patients

with contraindications to corticosteroids (3).

DISS-associated drugs span a broad spectrum of pharmacological

categories. Antineoplastic and immunomodulating agents accounted

for the highest number of cases and the greatest diversity of implicated

drugs. These agents may contribute to the pathogenesis of SS through

disruption of immune homeostasis, cytokine dysregulation, and

enhanced neutrophil maturation and proliferation (6). Anti-infective

agents, including those for systemic and gastrointestinal use, also

constituted a substantial proportion of DISS cases. The proposed

mechanism involves cytokine-mediated hypersensitivity reactions

(26) triggered either by infectious pathogens, such as Yersinia

enterocolitica (34), or by the pharmacological activity of certain

antibiotics (33), including sulfamethoxazole/trimethoprim (4) and

ciprofloxacin (35). However, distinguishing infection-related from

drug-induced remains a challenge with spontaneous report data.

Several other drug classes were also frequently reported, including

the antihypertensive hydralazine (36), the diuretic furosemide (37), the

gastrointestinal agent mesalazine (20), the antiepileptic drug

gabapentin (38) and the analgesic acetaminophen (17). Despite

unclear mechanisms, growing case-based evidence suggests their

potential role in DISS and highlights the need for further investigation.

To address potential confounding factors, a structured analytical

approach was employed, comprising a main analysis and two

complementary sensitivity analyses. Following initial signal detection

through disproportionality analysis, drugs with positive associations—
FIGURE 6

Receiver operating characteristic curves of multivariable logistic regression models based on LASSO-selected variables. The red, blue, and green
curves represent the main analysis (excluding malignancy- and autoimmune-related indications), Sensitivity Analysis A (excluding malignancy-related
indications), and Sensitivity Analysis B (excluding immune-related indications), respectively. The AUC and corresponding 95% CI are shown for each
model, reflecting their discriminative performance. AUC, area under the curve; CI, confidence interval.
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along with age and sex—were entered into LASSO regression, followed

by multivariable logistic regression. In the main analysis, which

excluded reports involving malignancy- or immune-related

indications, 24 drugs were found to be significantly associated with

DISS. The two sensitivity analyses, which reintroduced each exclusion

criterion independently, identified 26 and 37 significant signals,

respectively. Notably, 22 drugs were consistently detected across all

three models, indicating robust and stable associations unlikely to be

driven by indication-related bias.

To further support our findings, a cross-database consistency

assessment was performed in VigiBase, where 10 of the 24 drugs

identified in the main model were observed as positive signals. This

partial overlap may reflect complementary signal detection across

pharmacovigilance systems, adding contextual value to signal

interpretation. However, this consistency should be interpreted with

caution, as previous comparative studies have reported considerable

redundancy among international pharmacovigilance databases such as

EudraVigilance Data Analysis System (EVDAS), FAERS, and VigiBase,

with signal overlap rates ranging from 85% to 97% (39). In addition, 15

drugs had prior documentation in published case reports or reviews,

and 9 drugs explicitly listed SS in the adverse reaction section of their

regulatory product labels. Taken together, these external sources

provide supportive—but not confirmatory—evidence, which

enhances the plausibility of the detected associations and may help

guide future mechanistic research and clinical risk evaluation.

In the main analysis, we identified 24 drugs associated with DISS.

Among anti-infective agents for systemic use, sulfamethoxazole/

trimethoprim, levofloxacin, and amoxicillin (16) have been

consistently reported in the literature as associated with SS, while

ofloxacin (23) has been sporadically implicated. Notably, valacyclovir,

linezolid, and azithromycin were also identified as positive signals,

suggesting previously unrecognized role in DISS. More than half of

the identified drugs were classified as antineoplastic and

immunomodulating agents. Among hypomethylating agents

commonly used to treat hematologic malignancies such as MDS,

azacitidine has frequently been associated with DISS (10), while

decitabine has recently emerged as a potential trigger (21), with its

underlying mechanisms still unclear. G-CSF agents, such as filgrastim

and pegfilgrastim, are the most commonly reported drugs associated

with DISS. They are thought to excessively amplify the inflammatory

response by promoting the proliferation, maturation, and activation of

neutrophils, thereby substantially increasing the risk of SS following

exogenous administration (6). Ruxolitinib, a Janus kinase (JAK) 1/2

inhibitor, has also been recently implicated in the onset of SS, particularly

in patients with myelofibrosis (19). Azathioprine has been widely

recognized as a significant precipitating factor, especially in patients

with steroid-dependent or refractory IBD (13). In these cases, SS is often

misdiagnosed as a flare of the underlying disease (13); however, oral

rechallenge tests have substantiated a causal relationship between

azathioprine and DISS (40), although the exact immunopathological

mechanisms remain unclear. Additionally, mesalamine, a first-line

therapeutic agent for IBD, has been documented to induce SS

cutaneous manifestations within just 3 days of treatment initiation,

with subsequent rapid progression tomyopericarditis, resulting inmulti-

system involvement (20). Proteasome inhibitors, such as bortezomib
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(25), have also been associated with SS, possibly via inhibition of the b5
and b5i proteasomal subunits, leading to dysregulation of IL-6 and IFN-

g signaling pathways (41). Other newly identified drugs with currently

unclear mechanisms included hydroxycarbamide (an antimetabolite),

venetoclax (a B-cell lymphoma-2 inhibitor). Within the category of

antiparasitic products, insecticides, and repellents, hydroxychloroquine

(22) has been sporadically reported, although the precise mechanism

remains to be clarified. Among NSAIDs, diclofenac was identified in the

present study. Although reports remain limited (18), association between

other NSAIDs, such as celecoxib (42), and SS has been documented,

suggesting a potential class effect. Paracetamol was also identified but

only in isolated cases, and current evidence remains limited. Oral

contraceptives containing ethinylestradiol and levonorgestrel have

been previously reported to increase the risk of SS (27). The proposed

mechanism involves reduced neutrophil apoptosis during hormonal

treatment or pregnancy, resulting in elevated counts of neutrophils,

monocytes, and lymphocytes (27).

This study identified several monoclonal antibodies associated with

DISS, including adalimumab and infliximab (both targeting TNF-a) as
well as vedolizumab (targeting integrins). Although multiple case

reports have implicated adalimumab in the induction of SS (11, 43),

other studies have suggested its potential therapeutic efficacy in

refractory or immune-mediated cases—particularly those associated

with IBD (44, 45). Similarly, Infliximab has also been associated with

both the induction (12, 46) and treatment (47, 48) of SS in clinical

settings. Moreover, vedolizumab has been reported to both induce (24)

and treat (49) SS in patients with UC. This paradoxical “inductive/

therapeutic dual role” appears to be particularly prominent among

anti-TNF-a agents (5, 50). TNF-a is a key pro-inflammatory cytokine

implicated in the pathogenesis of several autoimmune and

inflammatory diseases. Elevated TNF-a levels contribute to chronic

immune activation and tissue damage in IBD and RA, justifying the use

of anti-TNF-a therapies (51). Furthermore, TNF-a has been shown to

promote neutrophil recruitment and activation in SS, suggesting an

overlap in inflammatory pathways (52, 53). Anti-TNF-a agents may

influence SS development through mechanisms involving neutrophil

dysfunction or imbalances in cell-mediated immune regulation (54).

As such, the role of such agents in SS should be understood as complex

and highly individualized clinical phenomenon. These findings

highlight the challenges of translating pharmacovigilance data into

clinical practice and underscore the importance of multifactorial risk

assessments that consider disease background, treatment indications,

and individual susceptibility when evaluating DISS signals.

Additionally, several drugs previously implicated in case reports or

small series, includingminocycline, celecoxib, and thalidomide (33), were

not retained after LASSO selection and multivariable analysis. Potential

explanations include low reporting frequencies, variations in patient

characteristics, and the application of stricter model selection criteria.

To enhance clinical interpretability, we conducted a supplementary

disproportionality analysis based on reports submitted by medical

doctors, which are generally considered to possess higher diagnostic

specificity and may reflect confirmed clinical assessments. Among 215

evaluated drugs, 57 met the disproportionality threshold, and the

distribution of positive signals demonstrated strong concordance

with the full dataset. Although several drugs with high reporting
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frequencies—such as lenalidomide, etanercept, ruxolitinib,

dexamethasone, paracetamol, methotrexate, tocilizumab, lamotrigine,

dupilumab, and amlodipine—did not meet the threshold for a positive

signal in this subset, this may, in part, be attributable to the limited

number of physician-submitted reports, which could reduce the

statistical power to detect disproportionality. Notably, two of these

drugs (lenalidomide and ruxolitinib) were confirmed as positive signals

in the main analysis. Furthermore, six of the ten most frequently

reported but non-signaling drugs in this subset had previously been

documented in the literature, lending additional support to their

clinical relevance. This observation suggests that drugs frequently

reported by clinicians, even if not statistically flagged in restricted

analyses, may still represent clinically suspected signals and warrant

further attention. These findings underscore the potential value of

medical doctor–reported data in guiding signal prioritization for
Frontiers in Immunology 12
pharmacovigilance and follow-up, particularly in the context of rare

adverse events such as DISS.

This study has several notable strengths. It utilized a large, publicly

available pharmacovigilance database (FAERS), capturing a broad and

heterogeneous population over a 20-year period. The substantial sample

size enabled the detection of rare adverse events such as DISS and

supported robust signal estimation based on real-world reporting

patterns. A key methodological strength lies in the implementation of

a comprehensive, multi-step analytical framework. Disproportionality

analysis served as an initial screening tool to identify candidate drug

signals, which were then refined through LASSO regression and

confirmed via multivariable logistic analysis. Specifically, LASSO

regression facilitated efficient variable selection by reducing the

number of candidate signals and minimizing the risk of overfitting.

The subsequent multivariable analysis enabled adjustment for
FIGURE 7

Forest plot of ORs from the main and sensitivity analyses, with corresponding RORs from FAERS and VigiBase. Each row represents a drug retained
as statistically significant in multivariable logistic regression. The main analysis (red circles) excluded reports with malignancy- or autoimmune-
related indications; Sensitivity analysis A (blue triangles) excluded only malignancy-related indications; Sensitivity analysis B (green squares) excluded
only autoimmune-related indications. Horizontal bars indicate 95% CIs, and ORs are presented on a logarithmic scale. The right panel shows the
corresponding ROR values from FAERS (left column) and VigiBase (right column), with color intensity proportional to magnitude. ORs, odds ratios;
ROR, reporting odds ratio; CI, confidence interval; FAERS, U.S. Food and Drug Administration Adverse Event Reporting System.
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TABLE 2 Summary of literature evidence for DISS-associated drug signals identified in the main analysis.

DISS or
Concomitant
medication

Study type Reference

None Case report and literature review (4)

None Case report (10)

s Unclear Case report (11)

Azathioprine Case report (12)

None
Retrospective analysis of 3 cases
and literature review (17 cases)

(13)

None Review (14)

None Case report (15)

None Case report (16)

None Case report (16)

Codeine Case report (17)

None Case report (18)

None Case report (19)

None None None

None Case report (20)

None Case report (21)

None Case report and literature review (22)

None Case report (23)

None Case report (24)

None Case report (25)

None None None

None None None
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Drug name Main disease Time-to-onset comorbid
disease?

Sulfamethoxazole/
Trimethoprim

Hodgkin’s lymphoma (post-autologous bone, marrow
transplantation); Acute diarrhea with high fever

7 days Confirmed DISS

Azacitidine AML 4 months Confirmed DISS

Adalimumab CD 5 days after 2nd injection
Temporal

relationship sugges
causality

Infliximab CD Several months Unclear

Azathioprine IBD (76% of cases) 5–28 days (mean 13.3 days) Confirmed DISS

Filgrastim Not specified Not specified Confirmed DISS

Pegfilgrastim Neutropenia induced by ziprasidone Not specified Confirmed DISS

Levofloxacin Respiratory tract infection 7 days Confirmed DISS

Amoxicillin Acute tonsillitis 7 days Confirmed DISS

Paracetamol Post-op facial fracture 7 days Confirmed DISS

Diclofenac Right knee injury 8–10 hours Confirmed DISS

Ruxolitinib Post-essential thrombocythaemia myelofibrosis Not specified Unclear

Azithromycin None None None

Mesalazine IBD 3 days Confirmed DISS

Decitabine MDS (refractory anemia type)
14 days after the start of the second treatment

cycle (5 days of administration in each 7-day cycle
Confirmed DISS

Hydroxychloroquine
HIV with chronic parvovirus B19; Pancytopenia;

Arthralgia
14 days Confirmed DISS

Ofloxacin CD 3 days Confirmed DISS

Vedolizumab CD 2 hours Unclear

Bortezomib Multiple myeloma Cycle 8 Day 1 of 21-day cycle (1; 3; 8;11 use drug) Confirmed DISS

Hydroxycarbamide None None None

Linezolid None None None
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confounding factors and identification of independently associated drug

signals, thereby strengthening the internal validity of the results.

Moreover, to further reduce bias from underlying conditions

commonly associated with SS, the main analysis excluded reports

involving malignancy- or immune-related indications. Sensitivity

analyses that reintroduced these exclusions yielded consistent findings,

reinforcing the robustness and specificity of the associations. The validity

of the results was further supported by external evidence. Cross-database

validation using VigiBase enhanced the reliability of signal detection

across independent pharmacovigilance systems. Literature review

provided additional clinical support for many of the observed

associations, while product label examination highlighted the potential

of post-marketing surveillance data to uncover underrecognized or

unlabeled adverse events. In addition, co-medication patterns were

explored using network visualization to reflect real-world

polypharmacy, and time-to-onset analysis offered clinically relevant

insights into the temporal profile of DISS across different drug classes.

Collectively, this study presents a rigorous, data-driven, and externally

validated pharmacovigilance assessment, offering a scalable framework

for investigating rare but clinically important drug-related safety signals.

Despite the strengths of this study, several limitations should be

acknowledged. First, as with all analyses based on spontaneous reporting

systems, the FAERS database is subject to well-established biases,

including underreporting, duplicate and selective reporting, lack of

denominator data, and the absence of standardized event adjudication.

These limitations hinder accurate estimation of incidence rates and

constrain the ability to assess the absolute risk of adverse events. Second,

the dataset lacks detailed patient-level clinical information, such as

comorbidities, concomitant medications, disease severity, and time-to-

onset data. The absence or incompleteness of these variables reduced

interpretability in certain domains and limited the ability to perform

more granular subgroup analyses or risk stratification. In particular,

cases not submitted by medical doctors may involve diagnostic

uncertainty, as they are less likely to reflect confirmed clinical

assessments. Third, the core analytical method—disproportionality

analysis—detects statistical associations rather than establishing

biological or causal relationships. Signal detection can be influenced by

external factors such as reporting behavior, masking effects, and patterns

of polypharmacy. This study is exploratory in nature and reflects the

inherent limitations of pharmacovigilance research; the analyses were

intended to generate hypotheses rather than to confirm causality

between drug exposure and adverse outcomes. Although LASSO

regression was used prior to multivariable modeling to reduce

dimensionality and address multicollinearity, the selection of covariates

remained constrained by the structure of the FAERS dataset. Fourth,

while a subset analysis of medical doctor–submitted reports was

performed to enhance clinical interpretability, this approach remains

subject to the inherent limitations of spontaneous reporting data.

Frequently reported drugs that did not meet the disproportionality

threshold should be regarded as clinically suspected signals rather than

confirmed associations, and their interpretation requires caution in the

absence of corroborating evidence. Fifth, despite efforts to mitigate

confounding through indication-based exclusions and sensitivity

analyses, residual confounding—particularly confounding by

indication—cannot be fully excluded. Finally, although external
T
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sources such as VigiBase were incorporated to support the main

findings, potential overlap with FAERS case reports may limit the

independence. Thus, cross-database consistency signals should be

interpreted with caution. Looking ahead, future research should

prioritize well-designed cohort studies and rigorously documented

case series, which are essential for confirming causality, elucidating

underlying mechanisms, and guiding clinical risk assessment.
5 Conclusion

This study systematically identified and characterized drugs

associated with DISS by leveraging the large pharmacovigilance

database FAERS, integrating disproportionality analysis, LASSO

regression, and multivariable modeling. Several previously recognized

drugs, such as sulfamethoxazole/trimethoprim; azacitidine; azathioprine;

filgrastim; pegfilgrastim; levofloxacin; amoxicillin; paracetamol;

diclofenac; mesalazine; decitabine; hydroxychloroquine; ofloxacin;

bortezomib; ethinylestradiol and levonorgestrel were confirmed, while

novel signals, including azithromycin; hydroxycarbamide; linezolid and

venetoclax were newly identified. Despite the inherent limitations of

spontaneous reporting systems and retrospective observational designs,

these findings provide a valuable foundation for future prospective

studies and mechanistic investigations. This study represents a

comprehensive effort to delineate the drug risk landscape of DISS

using real-world data, providing new insights into its pharmacological

triggers and laying the groundwork for improving pharmacovigilance,

early recognition, and management of DISS in clinical practice.
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