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and function
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T cell development and function depend on precise remodeling of the actin

cytoskeleton, which regulates migration, cell division, immunological synapse

formation, and signal transduction. Regulators of actin include nucleators (Arp2/

3, Formins) and binding proteins (coronins, cofilin, myosin) that orchestrate

cytoskeletal dynamics to ensure efficient antigen recognition and signaling,

while Rho GTPases (Rac1, Cdc42, RhoA) link extracellular cues to actin

rearrangements, influencing both conventional T cell activation and function.

Dysregulated actin dynamics contribute to immunodeficiencies and autoimmunity,

and thus understanding how the actin cytoskeleton is regulated in T cells has

important implications.
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Introduction

The actin cytoskeleton is a dynamic filamentous (F)-actin network that shapes T cell

morphology, motility and immunological function (1, 2). Constant F-actin polymerization

and depolymerization enable T cells to migrate, exit the thymus, navigate lymphoid organs,

and scan antigen-presenting cells (APCs) for the recognition of antigens. Upon recognizing

a peptide–Major Histocompatibility complex (MHC), a T cell forms an immunological

synapse (3, 4). The mature immunological synapse consists of a central supramolecular

activation clusters (cSMAC) enriched in the T cell receptor (TCR) and an integrin-rich

peripheral (p)SMAC ring (5, 6). Actin polymerization is essential for assembling and

maintaining this structure. TCR engagement triggers a burst of actin filament assembly that

drives large-scale reorganization of the T cell lamellipodium region (7, 8). There is

continuous flow of actin at the synapse. F-actin polymerizes at the periphery and flows

inward – corralling TCR micro-clusters towards the center and facilitating signal

amplification and APC-contact stabilization (9–12). In cytotoxic T cells, actin also

facilitates directed secretion of lytic granules (1). Beyond motility, actin is important for

signal transduction, converting receptor engagement into structural reorganization

essential for T cell function and activation (8).
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Understanding the function of actin regulators is crucial for

elucidating mechano-transduction in T cell biology and exploring

the role of cytoskeletal dysfunction in immune tolerance and

autoimmunity. T cell development and activation depend on

precise actin regulation, controlled by proteins that mediate

filament nucleation, stabilization, and turnover. Key regulators,

including coronins, actin nucleators, actin-binding proteins and

Rho GTPases, coordinate cytoskeletal remodeling for migration,

synapse formation, and signaling. This review will address the roles

of these regulators in T cells as highlighted in Figure 1.
Actin nucleators: Arp2/3 complex and
formins

T cells rely on two primary actin nucleation systems: the actin-

related protein (Arp)2/3 complex, which drives branched actin
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polymerization, and formin proteins, which generate linear actin

filaments. The Arp2/3 complex is a seven-subunit complex that

binds to the side of existing “mother” filaments and initiates the

growth of a new filaments at ~70° angle, thereby creating branched

actin network (13). Arp2/3 on its own has low activity; it requires

nucleation-promoting factors (NPFs) such as the Wiskott-Alrich

Syndrome protein (WASP) and the WAVE2 complex (also called

SCAR) to trigger branch formation (1, 14). T cells express a

hematopoietic-specific as well as the hematopoietic WAVE

complex subunit Hem-1 (Nap1) (1). Upon TCR stimulation,

these NPFs are activated by upstream signals (e.g. small GTPases)

and recruit Arp2/3 to form the branched actin meshwork in the

lamellipodium of the immunological synapse (15, 16).

The importance of Arp2/3-mediated actin polymerization

in T cell activation is highlighted by WAS, an X-linked

immunodeficiency caused by WASP mutation (17, 18). Patients

with WAS have defective T cell activation and cytoskeletal
FIGURE 1

Actin Cytoskeletal Dynamics at the T Cell-APC Interface. (A) Actin remodeling and tension Generation: Myosin II generates contractile forces along
the actin cytoskeleton, providing cortical tension necessary for immune synapse stability, T cell migration, and force-dependent signaling. Filamin A
crosslinks actin filaments, stabilizing the branched architecture and reinforcing mechanical strength at T cell-APC contact site to facilitate membrane
receptor anchoring. (B) Branched actin assembly and network stabilization: The Arp2/3 complex, activated by WASp, promotes the formation of
branched actin networks that drive lamellipodia extension and immune synapse formation. (C) Actin polymerization and depolymerization: G-actin
monomers polymerize at the plus (barbed) end in an ATP-dependent manner, a process facilitated by Formins. Formin-mediated nucleation and
elongation generate linear actin filaments that serve as the foundation for cytoskeletal remodeling during T cell activation. Cofilin and coronins
regulate actin filament turnover by promoting filament severing and depolymerization at the pointed ends.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1622928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lam and Chong 10.3389/fimmu.2025.1622928
organization, and present with autoimmunity, highlighting

the importance of actin dynamics in immune function and

tolerance (18, 19). At the cellular level, WASP-deficient T cells

(but not B cells) to polymerize actin at the synapse, leading to the

impaired TCR clustering, PLCg1 activation, and calcium signaling

(1, 19, 20).

Similarly, mutations in ARPC1B, a core Arp2/3 subunit, results

in severe immunodeficiency, autoimmunity, and defective cytotoxic

function due to aberrant actin polymerization (21–23). T cells from

these patients cannot generate normal lamellipodia and instead

form aberrant actin spikes and filopodia, leading to unstable T cell-

APC conjugates and defective cytotoxic function (23, 24). These

findings underscore the importance of Arp2/3-mediated branched

actin networks for T cell activation and effector functions.

In parallel, T cells rely on formin proteins (e.g., mDia1, mDia3)

to generate linear actin filaments by stabilizing initial actin dimers

and promoting barbed-end elongation, often producing long

unbranched filaments (25). At the T cell synapse, formins

cooperate with Arp2/3 to pattern the actin cytoskeleton. Live-cell

imaging studies have shown that arc-like structures in the inner

synapse (lamellar region) are composed of linear actin filaments

generated by formin activity (26). These actin arcs are aligned

concentric rings that undergo a myosin II-dependent contraction,

helping to transport TCR clusters inward (26). These actomyosin

arcs originate from formin-nucleated filaments behind the leading-

edge synapse (25). When formin function is inhibited, these actin

arcs are disorganized and TCR micro-cluster movement perturbed,

indicating that formin-mediated filament elongation is required to

scaffold proper synaptic architecture, Hong and colleagues also

showed that the formation of organized actomyosin arcs

depends on the strength of TCR signal and the activity of myosin

II motor proteins (26). Strong agonist peptides induce robust

formin-dependent arc formation, which correlates with higher

mechanical forces (evidence by the tension-sensitive molecule

phosphorylation) and enhanced central accumulation of signaling

complexes (26). By contrast, weak TCR ligands lead to only patchy,

irregular arcs. Notably, blocking myosin II contractility abrogates

the difference between strong vs weak ligand responses, suggesting

that formin-based actin structures and myosin-generated tension

together amplify signals for potent antigens (25, 26). This is a form

of mechano-transduction that formins facilitate. Consistently with a

role in regulating the synapse, mDia1 (Diap1) knockout mice

exhibit T cell activation defects, and one study found that T cells

lacking both mDia1 and mDia3 had impaired division and

migration (13). However, unlike Arp2/3, the role of formin

proteins in T cell development has yet to be addressed.

Together, Arp2/3 and formins serve distinct yet complementary

roles in T cell cytoskeletal remodeling. Arp2/3 drives broad

membrane protrusions and receptors clustering, while formins

stabilize actin arcs and filopodial structure. Their coordinated

activity is thus essential for T cell activation, migration, and

immune regulation (Figure 2).

Beyond the nucleation of filaments, numerous actin-binding

proteins (ABPs) regulate filament turnover, organization, and linkage

to other cellular structures. These are few exemplars with known
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importance in T cells: myosin motors, the filament-severing protein

cofilin, the actin crosslinker filamin A, and the Ezrin-Radixin-Moesin

(ERM) family that links actin to the plasma membrane.
Myosins

Myosins are motor proteins that bind F-actin and use ATP to

generate force and movement along filaments (10). T cells express

non-muscle myosin II, especially Myosin IIA (encoded by MYH9),

which assembles into bipolar filaments that can slide actin filaments

relative to each other. In the immunological synapse, myosin II

localizes to the medial zone, overlapping with the formin-derived

arcs, and generates contractile tension that drives the movement of

TCR micro-clusters toward the synapse center, thus sustain synapse

structure (27). Kumari and colleagues showed that Myosin IIA is

required for full immune synapse maturation (28). T cells lacking

Myosin IIA (or treated with myosin inhibitors) formed

asymmetrical or unstable synapses and had reduced central

clustering of signaling molecules (28).

Myosin II also contributes to the retrograde flow of actin, where

the motor pulls on filaments, adding to the inward movement

initiated by polymerization at the periphery. The forces exerted by

myosin II are a key part of T cell mechano-sensing, enabling the cell

to probe the stiffness of the APC interface and to discriminate

between strong and weak TCR signals (up to differences on the

order of a few piconewtons) (26).

Besides Myosin II, T cells also have unconventional myosin,

such as Myosin1g (Myo1g), which is a membrane-binding myosin

implicated in forming membrane protrusions and regulating

cortical tension in lymphocytes (29). Myo1g-defecient T cells

exhibit altered spreading and migration, suggesting that this

myosin helps T cell maintain proper cell cortex stiffness during

squeezing through tissues (29, 30). Overall, myosin in T cells act as

force generators and organizers, ensuring that actin filaments are

appropriately positioned and tensioned for effective interaction with

signaling complexes and adhesion molecules.
Cofilin

Cofilin (also known as cofilin-1 or CFL1 in T cells) is a small

protein that binds to actin filaments to promote their disassembly.

Cofilin increases the off rate of actin monomers from the pointed

end and can sever filaments, creating new barbed ends for

polymerization. By depolymerizing actin, cofilin replenishes the

pool of G-actin monomers and allows actin turnover, which is

critical for dynamic processes like cell migration and synapse

recycling. The importance of cofilin in T cell development was

strikingly demonstrated by a genetic study in mice where Cfl1 was

replaced with a non-functional mutant specifically in T cells. This

results in a severe early block in thymocyte development (31).

Cofilin-deficient thymocytes were arrested at the double negative

(DN) stage before successful TCRb surface expression, leading to an

absence of peripheral ab T cells (31). These cofilin-mutant
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thymocytes accumulates F-actin, indicating a failure to dismantle

actin structures, which likely interfered with cell division, migration

within the thymus, or passage through the b-selection checkpoint.

Interestingly, gd T cells (which develop via a parallel pathway) were

unaffected, highlighting that cofilin’s role is especially critical for

conventional ab T cells (31, 32).

In mature T cells, cofilin is required for effective migratory

responses and synapse disassembly (33, 34). During immunological

synapse formation, cofilin is initially inhibited by phosphorylation,

which results in actin accumulation, but later gets activated to

break down actin filaments and enable synapse dissolution and cell

disengagement (10). If cofilin cannot perform this function, T cells

may form overly stable contacts and fail to recycle components to

interact with other APCs (35). There is also evidence that cofilin

activity influences TCR signaling by facilitating actin turnover and
Frontiers in Immunology 04
preventing excessive F-actin build-up that could physically

constrain signalosomes (36). Indeed, antigen-experienced

conventional CD4 T cells have higher cofilin activity and a softer

cellular cortex than naïve T cells, correlating with stronger TCR

signaling (35, 37).
Filamin A

Filamin A (FLNA) is a large actin-crosslinking protein that

organizes actin filaments into orthogonal networks and links them

to membrane proteins. FLNA is expressed in T cells and interacts

with integrin b-chains, essentially acting as a scaffold connecting

integrins like LFA-1 to actin cytoskeleton (38–40). This linkage is

crucial when T cells need to apply force or resist shear stress while
FIGURE 2

Rho GTPase-mediated signaling pathways regulating actin polymerization in T cells. Summary of the major signaling cascades initiated by surface
receptors (e.g., GPCRs, cytokine receptors, TCRs) that activate Rho family GTPases via Rho GEFs. RhoA activate Formins, such as mDia1 and mDia3,
to promote stress fiber formation and cortical contractility, supporting T cell squeezing and immune synapse stability. Rac1 activates WAVE2, and
Cdc42 activates WASp, both of which stimulate the Arp2/3 complex, driving actin polymerization. These cascades coordinate T cell migration,
activation, trafficking, polarization, and immunological synapse formation via dynamic actin remodeling.
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adhering to other cells or the endothelium. Fagerholm and

colleagues found that in T cell-specific FLNA-deficient mice

primary T cells, FLNA is required for optimal integrin function,

which is contrary to some earlier in vitro findings suggesting filamin

is an inhibitor of integrin activation (38, 41). FLNA-/- T cells

displayed impaired adhesion under flow conditions and reduced

homing to lymph nodes and sites of inflammation (38, 40). In

essence, without FLNA, T cells could still activate LFA-1 to some

degree but could not transmit forces effectively in vivo (38). FLNA

tethers integrins to retrograde flowing actin, functioning as part of

the “molecular clutch that allows force coupling (42). In line with

this, FLNA-/- T cells have altered distribution of LFA-1 at the

synapse and may form less stable immune synapse (43).

There is also evidence that FLNA can impact TCR signaling.

One study reported that knocking-down FLNA impaired PKC-q
recruitment to the immunological synapse and subsequent IL-2

production, possibly because cytoskeletal anchoring of signaling

complexes was affected. Notably, regulatory T cells (Tregs) express

higher LFA-1 than conventional T cells and use it to form

aggregates with dendritic cells (44). Tregs with compromised

FLNA might not sustain these aggregates under blood flow or in

the dynamic lymph node environment, potentially reducing their

suppressive capacity (38, 44).
Ezrin-Radixin-Moesin

The Ezrin-Radixin-Moesin (ERM) proteins are membrane-

cytoskeletal linkers that tether actin filaments to the plasma

membrane. T cells predominantly express Ezrin and Moesin (with

little Radixin) (45). In resting T cells, ERM proteins are

phosphorylated (active state) and help form microvilli and a rigid

cortical actin shell, which maintains cell shape and spatial distribution

of receptors (46). Upon T cell activation, ERMs undergo a transient

dephosphorylation and re-localization, where they are briefly

inactivated at the contact site to allow actin reorganization and

receptor clustering and later concentrate at the distal pole complex

(the face of the T cell opposite the synapse) (47). ERM proteins

organize the distal pole by anchoring transmembrane proteins (like

CD43 and PD-1) and preventing them from entering the synapse

(47). This segregation of inhibitory or bulky molecules away from the

synapse is important for efficient TCR signaling. Perturbing ERM

function indeed leads to defects in T cell activation (46). For example,

overexpression of dominant-negative Ezrin in Jurkat T cells causes

poorly focused synapses and reduce IL-2 production (48).

Conversely, T cells from Ezrin Moesin double-knockdown mice

show impaired proliferation and motility (48). Upon antigen

recognition, ERM proteins are rapidly inactivated via a Vav1-Rac1

signaling pathway leading to the disassociation of the cortical actin

cytoskeleton from the plasma membrane (49). This un-anchoring

reduces cellular rigidity, facilitating the formation of stable T cell–

APC conjugates (49). Thus, ERM proteins act as architects of the T

cell actin cortex, ensuring that during synapse formation certain

regions of the membrane are scaffolded and others are permissive

to movement.
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Coronins

Coronins are a family of WD-repeat actin-binding proteins that

coordinate actin filament branching and disassembly. In mammals,

Coronin-1a (CORO1A) is the best-studied member, especially in T

cells where it is abundantly expressed (50–53). CORO1A localizes

to F-actin-rich regions and can bind the Arp2/3 complex as well as

actin filaments, positioning it to modulate actin dynamics (52, 53).

Gene-knockout mouse models and the analysis of human

mutations have revealed that CORO1A is essential for T cell

homeostasis (54). CORO1A deficient mice have a profound T cell

lymphopenia. Thymocyte development proceeds relatively

normally, but thymic egress is impaired and mature naïve T cells

fail to survive in the periphery (52). This phenotype mirrors a form

of severe combined immunodeficiency (SCID) in humans –

Immunodeficiency 8 – caused by biallelic CORO1A mutation

(54). Shiow and colleagues found that a CORO1A point mutant

(K26E), identified in an N-ethyl-N-nitrosourea mutagenesis screen

form mice with T cell lymphopenia, disrupts thymic egress, with

mutant T cells exhibiting impaired migration, abnormal actin-rich

protrusions, and retention in the thymus (54). Mechanistically, this

mutation enhanced CORO1A’s ability for inhibition of Arp2/3,

leading to excessive actin branching that mis-localized CORO1A

away from the leading edge of migrating T cells. The same study

identified Coro1A gene mutations in a SCID patient, establishing a

crucial role for T cell development in humans (51, 54). In the

absence of functional CORO1A, T cells abnormally accumulate F-

actin and cannot respond properly to chemokine cues for egress.

Aside from the egress defect, Coro1a-/- T cells have intrinsic

signaling anomalies, exhibiting abnormal TCR-induced actin

dynamics and impaired calcium and NF-kB signaling (55).

CORO1A thus links cytoskeletal dynamics to TCR signaling, helping

to tune the strength and duration of signals (55). Notably, CORO1A

deficient T cells form overly stable synapses with prolonged contact

time, correlating with hyper-accumulation of F-actin and Arp2/3 at the

synapse (55). This suggests CORO1A normally promotes actin

turnover at the synapse, preventing excessive actin buildup that

could dampen signaling or cellular mobility.

Despite these broad peripheral T cell defects, regulatory T cells

appear relatively preserved in Coro1a-/- mice. One study reported

that Coro1a-/- mice were resistant to experimental autoimmune

encephalomyelitis (EAE) due to loss of effector T cells, and this

resistance persisted even after Treg depletion, indicating Tregs were

not the main cause (56, 57). In fact, Coro1a-/- Tregs appear

functionally competent in vitro, suggesting that primary role of

CORO1A is in maintaining the naive T cell pool rather than for

Treg function (57). Nonetheless, Tregs in CORO1A SCID patients

have not been extensively profiled. It is possible that subtle Treg

migratory or homeostatic abnormalities exist but are overshadowed

by the dramatic loss of conventional T cells.

There are other members of the coronin family that may also

have roles in T cells. CORO2A (also known as coronin-2 or IRF-3

binding protein) is a type II coronin and has been shown in

fibroblasts to localizes to stress fibers and focal adhesions rather

than the leading edge (58). In non-immune cells, CORO2A
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regulates focal adhesion turnover and cell motility (58, 59). Its

function in T cells is less well-characterized. Type I coronins, like

CORO1A, can coordinate Arp2/3 and ADF/cofilin to ensure

efficient actin turnover at the leading edge (60). It will be

interesting to determine if type II coronins also plays a similar

regulatory role in T cell development.
Regulatory pathways: Rho family
GTPases (Rac1, Cdc42, RhoA)

Upstream of the actin regulators are signaling pathways that

respond to extracellular cues to orchestrate cytoskeletal changes

(Figure 2). Among these are the Rho family GTPases – molecular

switches that cycle between an active GTP-bound state and an inactive

GDP-bound state, controlling the organization of actin cytoskeleton

necessary for T cell activation, polarization and migration (61). Their

activation is tightly regulated by guanine nucleotide exchange factors

(GEFs), which promote the exchange of GDP for GTP, and GTPase-

activating proteins (GAPs), which enhance GTP hydrolysis, thereby

returning them to an inactive state (62).

Rac1 is crucial for actin polymerization and lamellipodia

formation, which are essential for T cell motility and

immunological synapse formation (63). Upon TCR stimulation,

Rac1 is activated by GEFs, such as Vav1, leading to the recruitment

of WAVE2, which in turn activates the Arp2/3 complex to promote

actin branching and cell spreading (14). This process is necessary

for effective T cell activation, as Rac1 deficient T cells exhibit

impaired TCR clustering and reduced IL-2 production (64, 65).

Additionally, Rac1 facilitates T cell migration by regulating

integrin-mediated adhesion and actin remodeling, which are

crucial for T cell trafficking within lymphoid organs (66).

Cdc42 is another key regulator of actin dynamics and cell polarity

in T cells. It controls filopodia formation, which enhances cell

migration and antigen scanning (67). Cdc42 interacts with the

Par3/Par6 polarity complex and atypical protein kinase C (aPKC),

establishing front-rear polarity during T cell migration (68). It also

plays a role in centrosome reorientation and TCR clustering at the

immunological synapse, ensuring efficient signaling and sustained T

cell activation (2). Loss of Cdc42 impairs the ability of T cells to form

stable interactions with antigen-presenting cells (APCs), leading to

defective immune responses (69).

RhoA primarily regulates actomyosin contractility through the

Rho-associated kinase (ROCK) pathway, facilitating T cell

contraction and immune synapse stabilization (70). It promotes

stress fiber formation and cortical tension, which are necessary for T

cell squeezing through tight endothelial barriers during migration

(71). RhoA also controls the phosphorylation of myosin light chain,

contributing to T cell shape changes required for trans-endothelial

migration (71, 72). Additionally, RhoA signaling is critical for

maintaining the stability of the immunological synapse, ensuring

prolonged TCR signaling and proper effector function (72, 73).

Rac1 and Cdc42 generally promote actin polymerization and

membrane protrusions, whereas RhoA modulates actomyosin

contractility and synapse stabilization (74, 75). Dysregulation of
Frontiers in Immunology 06
these pathways has been implicated in immune deficiencies and

autoimmunity, underscoring the importance of Rho GTPase-

mediated cytoskeletal control in T cell biology (74, 75).
Concluding comments

Actin-binding proteins work in concert to shape the

cytoskeleton throughout both T cell development and mature T

cell function. These proteins are essential for processes such as

migration, thymic selection, immune synapse formation, and signal

transduction. In mature T cells, dynamic actin remodeling supports

polarization, effector function, and trafficking within tissues.

Despite advances in understanding these mechanisms, important

questions remain, particularly regarding how specific cytoskeletal

regulators coordinate with signaling pathways at distinct stages and

how these dynamics influence long-term T cell fate and function.

Further research is needed to fully define the roles of actin

regulators across the T cell lifespan.
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