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The impact of the intratumoral microbiome (ITM) on the treatment and prognosis 
of gastric cancer (GC) remains controversial. Our study analyzed the differential 
ITM in GC tissues and identified nine bacterial genera significantly associated with 
overall survival (OS), with seven as risk factors and two as protective factors. 
Three distinct clusters with varying survival outcomes were defined, 
demonstrating correlations with pathological stage and immune features. An 
immune-related gene-based RiskScore model incorporating genes such as 
Apolipoprotein D (APOD), Stanniocalcin 1 (STC1), Coagulation Factor II 
Thrombin Receptor (F2R), Angiotensinogen (AGT), Fatty Acid Binding Protein 4 
(FABP4), Inhibin Subunit Beta A (INHBA), Caspase Recruitment Domain Family 
Member 11 (CARD11), and Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) 
was established and validated in The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) datasets. When combined with clinical factors, this 
RiskScore model formed a Nomogram model achieving Areas Under the Curve 
(AUCs) of 0.72, 0.76, and 0.79 for 1, 3, and 5-year OS predictions, respectively. 
This model exhibited robust predictive accuracy over time and correlated with 
mutation frequency, drug sensitivity, and immunotherapy response. 
Furthermore, single-cell analysis revealed that tumor-associated fibroblasts 
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may play a pivotal role in immune-microbial interactions. The results were 
confirmed using quantitative real-time polymerase chain reaction (qPCR) and 
immunohistochemistry (IHC). In conclusion, the prognostic model incorporating 
ITM and immune-related genes aids in risk stratification and provides valuable 
insights and targets for GC treatment. 
KEYWORDS 

gastric cancer, intratumoral microbiome, prognostic biomarkers, therapeutic 
responses, drug sensitivity, comprehensive analysis 
1 Introduction 

Gastric cancer (GC) remains a significant health burden 
globally, with an estimated 1 million new cases and 783,000 
deaths annually, making it the fifth most common malignancy 
and the third leading cause of cancer-related deaths worldwide (1). 
The burden is especially heavy in Eastern Asia, attributed to dietary, 
environmental, and genetic factors (2). Despite advancements in 
diagnostic techniques and treatment modalities, the prognosis for 
advanced GC remains dismal, with a 5-year survival rate of less than 
30%. This poor prognosis is often due to late-stage diagnosis, high 
rates of metastasis, and the tumor’s complex and heterogeneous 
nature, presenting significant therapeutic challenges (3). 

The tumor microenvironment (TME) plays a crucial role in 
cancer progression and patient outcomes (4). The TME comprises 
various cellular components, including immune cells, fibroblasts, 
endothelial cells, and emerging evidence highlights the significant 
role of the tumor-associated microbiome within the tumor and its 
immediate surroundings (5). The intratumoral microbiome (ITM) 
influences numerous physiological processes and has been implicated 
in the pathogenesis of various cancers (6). In particular, alterations in 
the microbiome have been associated with tumorigenesis through 
mechanisms such as chronic inflammation, immune modulation, and 
production of carcinogenic metabolites (7, 8) Studies have shown that 
specific bacterial species, such as Helicobacter pylori, play a crucial role 
in the development of GC by inducing chronic gastritis, leading to 
atrophic gastritis, intestinal metaplasia, dysplasia, and eventually 
carcinoma (9, 10). However, beyond H. pylori, the broader 
spectrum of tumor-associated microbiome and its impact on GC 
prognosis remains controversial (11–13). Increasing evidence 
indicates that the microbiome present in saliva, gastric juice, tumor 
tissues, and the gut are associated with the occurrence, development, 
treatment, and prognosis of GC (14). Recent advancements in high-
throughput sequencing and bioinformatics have enabled 
comprehensive characterization of the microbiome, providing new 
insights into its role in cancer biology (7, 15). 

This study aimed to analyze the differential ITM in GC tissues, 
assess its prognostic value, and explore immune-microbiome 
interactions to identify prognostic biomarkers and enhance 
therapeutic strategies. 
02 
2 Methods 

2.1 Data collection and initial processing 

GC microbiome data, along with RNA-seq and survival 
information, were downloaded from the TCGA database in 
March 2024. Preprocessing steps involved excluding genes with 
missing values or not expressed in >50% of samples, removing 
samples with >50% unexpressed genes, and log2 transforming 
expression values. Libraries were prepared with the TruSeq 
Stranded mRNA Kit (Illumina) and sequenced on an Illumina 
NovaSeq 6000 (150 bp paired-end). Reads were aligned to the 
human genome (GRCh38) using STAR (v2.7.10a). Post-
preprocessing, 350 GC and paired normal samples were retained. 
Fresh frozen gastric cancer (GC) tissues and paired adjacent normal 
tissues were collected from Tianjin Medical University Cancer 
Institute and Hospital. The GSE62254 dataset with clinical data 
was downloaded from NCBI GEO, retaining 300 GC samples after 
excluding those with zero or missing survival data. Dataset 
GSE183904 was used for single-cell analysis. Additional validation 
samples were collected from Tianjin Medical University Cancer 
Institute and Hospital, with study approval (Approval No. 
E20210132) and informed consent from all patients. 
2.2 Identifying prognostic microorganisms 
and GC subtypes 

Using the limma package, we compared GC tissues with 
adjacent normal controls from TCGA to identify differentially 
abundant microorganisms. Univariate Cox regression determined 
which of these microorganisms were significantly associated with 
patient survival. From the identified prognostic microorganisms, we 
performed unsupervised hierarchical clustering using Consensus 
Cluster Plus to classify GC patients into subtypes. The optimal 
number of clusters was statistically determined. Survival prognosis 
for each cluster was assessed via Kaplan-Meier curves, and 
correlations with clinical factors (age, gender, stage, etc.) 
were investigated. 
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2.3 Immune infiltration and molecular 
mechanisms 

Using single-sample Gene Set Enrichment Analysis (ssGSEA), 
we conducted immune infiltration analysis to quantify immune cell 
types in tumor samples. Estimation of Stromal and Immune cells in 
Malignant Tumors using Expression data (ESTIMATE) scores 
assessed the TME. Wilcoxon tests evaluated differences in 
immune cell proportions across clusters. Gene Set Enrichment 
Analysis (GSEA) and Gene Set Variation Analysis (GSVA) 
analyzed pathway and gene set enrichment across GC clusters. 
2.4 Establishing and validating a prognostic 
risk model based on immune-related gene 

Differential expression and Weighted Gene Co-expression 
Network Analysis (WGCNA) identified gene modules correlated 
with GC phenotypes. Cross-referencing these with the ImmPort 
database revealed immune genes linked to microorganisms. 
Univariate Cox regression selected genes significantly linked to 
patient survival. We developed a prognostic signature (Risk Score) 
using Least Absolute Shrinkage and Selection Operator (LASSO)-COX 
regression: Risk Score = b1X1 + b2X2 +… + bnXn, where b is the 
regression coefficient and X is the gene expression value. Patients in 
TCGA and GEO were categorized by their Risk Score into High- and 
Low-risk groups. Kaplan-Meier curves and log-rank tests confirmed 
the prognostic value of this signature. Incorporating clinical factors 
(age, gender, stage, etc) into univariate and multivariate COX 
regression models, we confirmed the independent prognostic value 
of the identified genes. We constructed a nomogram integrating these 
factors to aid clinicians in survival prognosis and decision-making. 
 

2.5 Mutation status and immune-microbial 
interactions 

Analyzing mutation data, we identified the top 20 most mutated 
genes (TOP20) and calculated Tumor Mutation Burden (TMB). 
Using Multiple Alignment of Fasta (maftools) and Generalized 
Gene Correlation analysis (ggcor) in R, we examined TMB 
distribution across risk groups and correlations between risk 
scores, microbial abundance, and immune cell populations. 
Differences in immune checkpoint molecule expression [PD1 
(PDCD1), PD-L1 (CD274), CTLA-4 (CTLA4), CD278 (ICOS), 
TIM3 (HAVCR2), LAG3, CD47, BTLA, TIGIT, MYD1 (SIRPA), 
OX40 (TNFRSF4), 4-1BB (TNFRSF9), B7-H4 (VTCN1)] were also 
analyzed between risk groups. 
2.6 Chemotherapy and immunotherapy 
efficacy 

Using the Genomics of Drug Sensitivity in Cancer (GDSC) 
database and Predictive Response to Therapy (pRRophetic) package 
Frontiers in Immunology 03 
in R, we estimated chemotherapy sensitivity (IC50) and differences 
between risk groups. Tumor Immune Dysfunction and Exclusion 
(TIDE) database predicted immune checkpoint therapy responses, 
quantified by TIDE scores. We further analyzed Cytolytic Activity 
(CYT), Tertiary Lymphoid Structure (TLS) scores, and CD8A/PD
L1 ratios between risk groups using Wilcoxon tests. 
2.7 Single-cell analysis 

Based on the GC single-cell dataset GSE183904, we selected the 
top 2000 highly variable genes for UMAP dimensionality reduction 
and clustering analysis, ultimately obtaining 31 cell clusters. Cell 
Ranger (v6.1.2) was used for alignment and UMI counting. By 
referencing cell marker genes, we annotated these 31 cell clusters 
and successfully distinguished 8 cell types, specifically including B 
cells, endothelial cells (endo), epithelial cells, fibroblasts, mast cells, 
myeloid cells, smooth muscle cells, and T cells. Next, we compared 
the percentage differences of these 8 cell types between the tumor 
group and the normal group. Furthermore, we analyzed the 
expression of 8 genes in various cells within the risk model, 
conducted cell communication analysis, and explored the 
activation of ligand-receptor pairs during the interaction of 
different immune cells. Seurat (v4.3) for clustering and CellChat 
(v1.6.0) for ligand-receptor interaction analysis. 
2.8 Validation of bioinformatics analysis 
results by qPCR and IHC 

To validate bioinformatics analysis results, we performed qPCR 
and IHC experiments. For qPCR, we validated the expression levels 
of APOD, STC1, F2R, and AGT using 10 pairs of fresh cancerous 
and adjacent normal tissue samples. Total RNA was extracted, 
followed by cDNA synthesis and qPCR amplification using specific 
primers (Supplementary Materials). Fresh gastric cancer (GC) 
tissues and paired adjacent normal tissues (n = 10 pairs) were 
collected, snap-frozen in liquid nitrogen, and stored at −80°C. Total 
RNA was extracted using TRIzol Reagent, with purity (A260/A280: 
1.8–2.0) and integrity verified. cDNA was synthesized from 1 µg 
RNA using PrimeScript RT Reagent Kit. TqRT-PCR was performed 
in triplicate with SYBR Green Premix (TB Green™) on a

QuantStudio 5 system using gene-specific primers (APOD, STC1, 
F2R, AGT, ACTA2 and) and b-actin as the housekeeping gene. 
Relative expression (2−DDCt method) and statistical significance 
(Student’s t-test, p < 0.05) were analyzed. Conditions: 95°C for 10 
min, 40 cycles of 95°C for 15 sec, 60°C for 1 min. For IHC, formalin

fixed, paraffin-embedded (FFPE) tissues were used. We conducted a 
co-localization analysis of STC1 and CD56 on serial sections 
utilizing 50 paraffin-embedded tissue samples. Formalin-fixed, 
paraffin-embedded (FFPE) GC and adjacent normal tissues were 
sectioned (4 µm), deparaffinized, and subjected to antigen retrieval 
(10 mM citrate buffer, pH 6.0, 95°C, 20 min). Endogenous 
peroxidase was blocked with 3% H2O2 (15 min, RT). These tissue 
sections were subsequently stained for STC1(Proteintech, 20621-1
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AP, 1:200 dilution) and CD56 (Servicebio, GB12041, 1:100 
dilution). Signal was developed with DAB (Dako, 5 min), 
counterstained with hematoxylin, and visualized under bright-
field microscopy. Slides were scanned with a Leica Aperio AT2 
scanner and analyzed using ImageScope (v12.4). Negative controls 
omitted primary antibody. Staining intensity (0–3) and percentage 
of positive cells were scored independently by two pathologists. The 
STC1 expression levels were scored, classified into high and low 
expression groups, and their correlation with CD56 was analyzed 
using Spearman’s analysis. 
2.9 Statistical analysis 

All statistical tests were performed in R (v4.3.1) with packages 
cited in the original manuscript. Data manipulation was conducted 
using dplyr and tidyr. For statistical testing, the stats package 
facilitated Wilcoxon and log-rank tests. Survival analyses, 
including Kaplan-Meier estimates and Cox models, were done 
using the survival package and visualized with survminer and 
ggplot2. Hierarchical clustering and heatmaps were generated 
using pheatmap. Data partitioning and model training were 
performed with caret, while glmnet was used for LASSO and 
Ridge regression. Differential expression was analyzed using 
limma, and additional analyses utilized Consensus Cluster Plus, 
ESTIMATE, cluster Profiler, GSVA, WGCNA, rms, maftools, 
ggcor, pRRophetic and CellChat. Graphs were created with 
ggplot2 and GraphPad Prism 10.0. Significant differences were set 
at p < 0.05 or p < 0.001. 
3 Results 

3.1 Prognostic intratumoral 
microorganisms and microbial clustering 
analysis 

Through comparative analysis of tumor and normal samples, we 
identified 229 differentially expressed genera in GC: 67 upregulated and 
162 down regulated (Figure 1A). Univariate Cox regression analysis 
revealed nine bacterial genera significantly associated with OS. Genera 
such as Serinicoccus, Desulfomicrobium, Brachybacterium, Dietzia, 
Alishewanella, Kytococcus, and Rheinheimera were linked to 
increased risk, while Klebsiella and Achromobacter correlated with 
decreased risk (p < 0.05)  (Figure 1B). 

Using these nine prognostic bacterial genera, unsupervised 
clustering analysis determined an optimal K value of 3, resulting in 
distinct microbial clusters labeled as C1, C2, and C3, comprising 183, 77, 
and 90 GC samples, respectively (Figures 1C, D). Principal component 
analysis (PCA) underscored the segregation among these clusters, 
highlighting their underlying differences (Figure 1E). In detail, the 
distribution of nine prognostic bacterial genera we have identified was 
analyzed across different clusters, with Kytococcus, Klebsiella and 
Achromobacter enriched in cluster C2 and some genera such as 
Desulfomicrobium and Brachybacterium was observed more in 
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cluster C3 (Figure 1F). Correlation analysis with clinical data showed 
no significant differences in sub-type (p = 0.24), age  (p = 0.26), gender  
(p = 0.31), grade (p = 0.24), and Pathologic N stage (p = 0.06)  across  
three clusters. However, microbial clusters significantly correlated with 
Pathologic M (p =0.01), Pathologic T (p < 0.0001), and Stage (p < 0.000)  
(Table 1). The differential levels of the 9 prognostic bacterialgenera

across different clusters was shown in Figure 1G. Theatmap  analysis
revealed distinct microbial composition patterns across tumor  stages,
pathological features, and clinical subgroups (Figure 1G). Notably, 
Kaplan-Meier analysis demonstrated significant disparities in survival 
prognosis among the clusters (p < 0.0001), with cluster C3 showing the 
poorest outcomes (Figures 1H, I). This comprehensive analysis 
underscores the prognostic significance of ITM and their associations 
with clinical features. 
3.2 Potential immune-microbe interactions 
and molecular mechanisms 

The analysis of Stromal Score, Immune Score, ESTIMATE 
Score, and Tumor Purity across the three clusters (C1, C2, C3) 
revealed that C3 is predominantly comprised of tumor cells, with 
significantly lower infiltration of stromal and immune cells 
compared to C1 (p < 0.05) and C2 (p < 0.001). Conversely, C2 
exhibits greater immune cell infiltration than C1 (p < 0.001) 
(Figure 2A), emphasizing distinct stromal, immune, and overall 
microenvironmental characteristics among the clusters, which may 
influence gastric cancer (GC) prognosis and treatment strategies. 

The ssGSEA analysis of three clusters (C1, C2, C3) revealed 
distinct immune cell compositions. Cluster C2 shows higher 
enrichment of activated CD8+ T cells (p < 0.01), effector memory 
CD4 T cells (p < 0.01), Type 1 T helper cells (p < 0.01), regulatory T 
cells (Tregs) (p < 0.01)), indicating a robust cytotoxic, helper T cell, 
and memory response. Cluster C1 is characterized by higher levels 
of activated B cells (p < 0.05), activated dendritic cells (p < 0.05), and 
plasmacytoid dendritic cells (p < 0.05), suggesting an active antigen-
presenting cell response. Cluster C3 exhibits a higher presence of 
M2 macrophages (p < 0.01), indicating a potential promotion of 
tumor growth and metastasis (Figure 2B). 

The variations in gene expression patterns and the enrichment of 
hallmark gene sets among different clusters were analyzed to promote a 
deeper understanding of their biological differences. As shown in 
Figure 2C, some set of genes associated with the progression of 
gastric cancer such as KRAS signaling and Protein secretion were up-
regulated especially in cluster C3. Besides, the GSEA analysis revealed 
that cluster C1 exhibits significant enrichment in oxidative 
phosphorylation, ribosome activity, and Parkinson’s disease  pathways.  
This reflected the cells’ elevated energy demands and rapid proliferation, 
which might favor the activation and expansion of immune cells. 
Cluster C2 is notably enriched in the systemic lupus erythematosus 
pathway, indicating active immune responses within the TME. Cluster 
C3 shows significant enrichment in the Notch signaling, which points to 
its underlying role in regulating the differentiation and proliferation of 
tumor cells and promote cancer progress (Figures 2D–F). 
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3.3 Identification of microbiome-associated 
immune genes with prognostic value 

Considering the above evidence, we conducted that the different 
tumor-bacteria clusters were related to immune microenvironment 
reshaping. Therefore, we performed a comparative analysis and 
Frontiers in Immunology 05 
identified 1206 differentially expressed genes (DEGs) related to 
immune (Figure 3A). Using WGCNA with phenotypic markers C1, 
C2, and C3, we optimized the network’s ‘power’ parameter at 3 to 
meet scale-free topology conditions (Figure 3B). Genes with high 
correlations were clustered into five distinct modules. Among these, 
the turquoise module, consisting of 561 genes, showed the strongest 
FIGURE 1 

Intratumoral microorganisms and microbial clustering analysis. (A) Differential microbial volcano plot, where blue represents downregulated 
microbes and red represents upregulated microbes. (B) Forest plot of prognostic microbes. (C) Cumulative distribution function (CDF) of consensus 
clustering for k = 2-9. (D) Consensus clustering matrix for the optimal k = 3. (E) PCA curve analysis. (F) Clinical correlation heatmap of 9 prognostic 
bacterial genera, where red represents high expression and blue represents low expression. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (G) 
Differential levels of the 9 prognostic bacterial genera across different clusters. (H, I) KM survival curves for different clusters. 
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correlation with phenotypic markers and was selected for further 
analysis as a set of intra-tumoral microbiome-related genes 
(Figures 3C, D). 

To explore host-microbiome interactions, we cross-referenced 
immune genes from the ImmPort database with those in the 
turquoise module, identifying 82 immune genes closely linked to 
Frontiers in Immunology 06
the intra-tumoral microbiome (Figure 3E). Survival analysis then 
revealed eleven significant genes, including APOD (p=0.001, 
HR=1.133), STC1 (p=0.001, HR=1.309), and others, as shown in 
Figure 3F, suggesting that they may be key immune gene targets 
associated with intratumoral microbial signature and influence 
gastric cancer prognosis. 
TABLE 1 Relationship between cluster and clinicopathological characteristics. 

Characteristics C1 (N=183) C2 (N=77) C3 (N=90) Total (N=350) P value 

Sub-type 0.24 

MSI-H 34 (9.71%) 12 (3.43%) 13 (3.71%) 59 (16.86%) 

MSI-L 21 (6.00%) 17 (4.86%) 13 (3.71%) 51 (14.57%) 

MSS 128 (36.57%) 48 (13.71%) 64 (18.29%) 240 (68.57%) 

Age 0.26 

Mean ± SD 65.85 ± 10.81 63.86 ± 9.77 66.24 ± 10.91 65.51 ± 10.62 

Median[min-max] 68.00[35.00,90.00] 65.00[41.00,83.00] 67.00[41.00,90.00] 67.00[35.00,90.00] 

Gender 0.31 

FEMALE 68 (19.43%) 30 (8.57%) 26 (7.43%) 124 (35.43%) 

MALE 115 (32.86%) 47 (13.43%) 64 (18.29%) 226 (64.57%) 

Grade 0.44 

G1 3 (0.86%) 2 (0.57%) 4 (1.14%) 9 (2.57%) 

G2 63 (18.00%) 24 (6.86%) 38 (10.86%) 125 (35.71%) 

G3 111 (31.71%) 50 (14.29%) 46 (13.14%) 207 (59.14%) 

GX 6 (1.71%) 1 (0.29%) 2 (0.57%) 9 (2.57%) 

Pathologic_M 0.01 

M0 164 (46.86%) 72 (20.57%) 75 (21.43%) 311 (88.86%) 

M1 7 (2.00%) 4 (1.14%) 12 (3.43%) 23 (6.57%) 

Pathologic_N 0.06 

N0 53 (15.14%) 29 (8.29%) 20 (5.71%) 102 (29.14%) 

N1 46 (13.14%) 20 (5.71%) 29 (8.29%) 95 (27.14%) 

N2 39 (11.14%) 18 (5.14%) 16 (4.57%) 73 (20.86%) 

N3 41 (11.71%) 10 (2.86%) 19 (5.43%) 70 (20.00%) 

Pathologic_T 5.70E-03 

T1 7 (2.00%) 2 (0.57%) 8 (2.29%) 17 (4.86%) 

T2 34 (9.71%) 22 (6.29%) 16 (4.57%) 72 (20.57%) 

T3 85 (24.29%) 35 (10.00%) 43 (12.29%) 163 (46.57%) 

T4 57 (16.29%) 18 (5.14%) 19 (5.43%) 94 (26.86%) 

Stage 0.00044 

I 24 (6.86%) 10 (2.86%) 13 (3.71%) 47 (13.43%) 

II 61 (17.43%) 29 (8.29%) 18 (5.14%) 108 (30.86%) 

III 86 (24.57%) 28 (8.00%) 34 (9.71%) 148 (42.29%) 

IV 10 (2.86%) 7 (2.00%) 17 (4.86%) 
 

MSI-H, Microsatellite Instability-High; MSI-L, Microsatellite Instability-Low; MSS, Microsatellite Stability. 
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FIGURE 2
 

Immune infiltration and pathway enrichment analysis. (A) Violin plot comparing immune scores and stromal scores across different Cluster groups.
 
** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001; ns indicates no significance. (B) Comparison of immune cell types with
 
significant differences between different Cluster groups using the ssGSEA algorithm. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p <
 
0.001; **** indicates p < 0.0001. (C) Heatmap of enrichment differences for hallmark gene sets. (D-F) Significantly different KEGG pathways between
 
different Cluster groups with a threshold of p < 0.05 and an absolute NES value greater than 1.
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3.4 Prognostic intratumoral 
microorganisms and microbial clustering 
analysis 

Using the LASSO regression algorithm, we developed an eight-
gene RiskScore model significantly associated with GC prognosis 
(Figures 4A, B): RiskScore = 0.0607 * APOD + 0.1345 * STC1 + 
0.0455 * F2R + 0.0017 * AGT + 0.0082 * FABP4 + 0.0185 * INHBA + 
0.0354 * CARD11 + 0.034 * DKK1. 
Frontiers in Immunology 08
This model effectively distinguished low-risk from high-risk 
patients in the TCGA training dataset, with significant survival 
differences (p < 0.0001). High-risk groups had a 5-year survival rate 
of 25%, compared to 60% in low-risk groups. The model’s predictive  
performance improved over time, with AUC values increasing from 
0.661 at 1 year to 0.760 at 5 years (Figures 4C, D; Supplementary 
Figure S1A). Validation using an independent GEO dataset confirmed 
consistent predictive accuracy (Supplementary Figure S1B-D). 
Notably, riskscores were significantly  different in  distinct microbial
FIGURE 3 

Identification of microbiome-associated immune genes with prognostic value. (A) Differential gene volcano plot, where blue represents 
downregulated genes and red represents upregulated genes. (B) Left: Plot for selecting the weight parameter “power” in the adjacency matrix. The 
x-axis represents the weight parameter “power,” and the y-axis represents the square of the correlation coefficient between log(k) and log(p(k)) in 
the corresponding network. A higher value of the square of the correlation coefficient indicates that the network is closer to a scale-free 
distribution. The red line indicates the standard line where the square of the correlation coefficient reaches 0.85. Right: Schematic diagram of the 
average gene connectivity under different “power” parameters in the adjacency matrix. The red line indicates the average connectivity of network 
nodes at the “power” parameter value selected in the left plot. (C) Dendrogram of module partitioning. Each color represents a different module. 
(D) Heatmap showing the correlation between each module and phenotypic traits. (E) Venn diagram of intersections. (F) Univariate Cox forest plot. 
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characterization groups, especially the cluster 3 with poor microbe-

associated immune infiltration obtained the elevated riskscores 
(Figure 4E). This highlights the strong correction among 
introtumoral microbes, immune microenvironment and our 
RiskScore model. 

Univariate Cox regression identified Age, Pathologic M, N, and 
T, Stage, and the RiskScore model as significant prognostic factors 
(p < 0.005). Multivariate analysis confirmed Age (HR = 1.031, p < 
0.001), Stage (HR = 1.419, p =0.015), and the RiskScore model 
(HR = 6.190, p < 0.001) as independent predictors, with RiskScore 
having the highest hazard ratios (Figure 4F). To enhance predictive 
accuracy, a Nomogram model integrating RiskScore, age, and tumor 
stage was constructed and validated. Kaplan-Meier survival analyses 
revealed significant differences between high and low-risk groups (p < 
0.0001). The Nomogram’s C-index was 0.752, and ROC curves for 1
year (AUC = 0.724), 3-year (AUC = 0.757), and 5-year (AUC = 0.78) 
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survival rates underscored the model’s robustness in long-term 
survival prediction, supporting its use in clinical risk assessment 
and personalized treatment strategies (Figures 4H–J). 
3.5 Mutation status analysis and 
investigation of immune-microbial 
interactions 

Research has demonstrated that TMB is associated with the 
efficacy of immunotherapy and the prognosis of various cancers 
(16). Therefore, this study conducted an analysis of TMB status and 
found a prevalence of single nucleotide polymorphisms, particularly 
C>T transitions, with missense mutations being the most frequent 
(Figure 5A). Notably, key genes such as TTN, MUC16, and TP53 
are frequently mutated (Figure 5B). Additionally, a higher TMB is 
FIGURE 4 

Prognostic model development and validation. (A) Distribution of LASSO coefficients. (B) Likelihood deviation of the LASSO coefficient distribution, 
with two vertical dashed lines representing lambda.min (left black line) and lambda.1se (right black line), respectively. (C) Distribution of RiskScore 
(top), survival time status (middle), and gene expression pattern of the model (bottom) in the TCGA training set. (D) KM curve for prognosis 
prediction based on the RiskScore model. (E) Differences in RiskScore distribution between different Clusters. * indicates p < 0.05; *** indicates p < 
0.001; ns indicates no significance. (F) Forest plot of univariate and multivariate Cox regression analysis for clinical information. (G) Nomogram for 
predicting survival rates using independent prognostic factors. (H) Calibration plot for 1-year, 3-year, and 5-year survival predictions from the 
nomogram, with the x-axis representing predicted survival rates and the y-axis representing actual survival rates. (I) KM curve for prognosis 
prediction based on the nomogram model. (J) ROC curves for 1-year, 3-year, and 5-year predictions based on the nomogram. 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1622959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1622959 
associated with a lower risk (Figure 5C). Survival analysis revealed 
that patients with low TMB and low risk have the highest survival 
probability (Figure 5D), indicating that TMB plays a crucial role in 
prognosticating patient outcomes and enhancing the accuracy of 
survival assessments. 

Figure 5E reveals significant variability in RiskScores among 
clusters. High-risk groups exhibit higher expression levels of 
immune checkpoint molecules compared to low-risk groups, 
suggesting a potential correlation with increased disease risk. Our 
analysis identified significant correlation patterns between eight genes 
(STC1, INHBA, FABP4, F2R, DKK1, CARD11, APOD, AGT), 
RiskScore, immune cell types, and bacterial species. Notably, 
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RiskScore has strong positive correlations with numerous immune 
cell types, such as activated CD8 T cells, regulatory T cells, and NK 
cells (p < 0.01), indicating its role in immune modulation. STC1 and 
INHBA showed strong positive correlations with Effector memory 
CD4 T cells (p < 0.01) and NK cells (p < 0.01), respectively. FABP4 
and F2R were associated with Activated B cells and Macrophages (p < 
0.05) (Figure 5F). Additionally, STC1 exhibited a significant positive 
correlation with Alishewanella (p < 0.05). DKK1 showed a significant 
positive correlation with Dietzia (p < 0.05), whereas AGT was 
significantly negatively correlated with Desulfomicrobium and F2R 
with Rheinheimera (p < 0.05). CARD11 positively correlated with 
Kytococcus (p < 0.05), and AGT showed negative correlation with 
FIGURE 5 

Mutation status and immune-microbial interactions analysis. (A, B) Mutation waterfall plots of Top20 genes in different risk groups. (C) Box plot of 
TMB differences. (D) Combined KM curve. (E) Box plot of differences in immune checkpoint expression. (F) and (G) Heatmaps of correlation between 
RiskScore and immune cells. (H, I) IHC validation shows colocalization and positive correlation of STC1 and CD56 expression in tumor tissues (* 
indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001); **** indicates p < 0.0001. 
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Desulfomicrobium (p < 0.05) (Figure 5G). IHC confirmed a positive 
correlation between the expression of STC1 and CD56 (Figures 5H, I). 
3.6 Therapeutic implications 

For the high-risk group, the top five drugs with highest 
sensitivity are: Midostaurin (p = 2.72E-21), AP.24534 (p = 2.88E
20), DMOG (p = 7.68E-20), AZD6482 (p = 1.41E-18), and BX.795 
(p = 1.82E-17) (Figures 6A–E). Common gastrointestinal cancer 
drugs show no significant difference, except Docetaxel (p = 1.05E
05) (Figure 6F). The high-risk group has a significantly higher 
median TIDE score (p < 0.001) (Figure 6I), indicating greater 
immune dysfunction and exclusion. The high-risk group also 
shows higher CD8A/PD-L1 ratios (p < 0.05) and TLS scores (p < 
0.0001) (Figures 6G, J), but lower MSI scores (p < 0.0001) 
(Figure 6H) compared to the low-risk group. No significant 
differences in CYT values. 
3.7 Single-cell analysis 

Finally, based on the annotation of 31 cell clusters, we found 
significant differences in the proportions of 8 cell types between tumor 
and normal tissues (Figures 7A, B). Further analysis revealed that 
APOD, STC1, F2R, and AGT genes are mainly expressed in tumor-

associated fibroblasts (Figure 7D). qPCR confirmed their higher 
expression in cancer tissues (Figure 7E). Cell communication 
analysis showed strong interactions between fibroblasts and other 
cells (Figure 7C), with ligand-receptor pairs like MIF - (CD74+CD44) 
activated (Figure 7F). Thus, we speculate that the influence of the ITM 
on immune gene expression differences associated with prognosis is 
probably mediated by tumor-associated fibroblasts. 

To further validate the presence and activation of cancer-
associated fibroblasts, we examined the expression of the CAF 
markers a-SMA and vimentin. qRT-PCR analysis revealed that 
both ACTA2 and VIM were significantly upregulated in gastric 
cancer tissues compared to adjacent normal tissues (p < 0.01, 
Supplementary Figure S2). These findings confirm the activation 
status of fibroblasts in GC tissues and support the role of tumor-

associated fibroblasts in the immune-microbiome interaction 
framework described in this study. 
4 Discussion 

This study enhances our understanding of the prognostic 
significance of intratumoral microorganisms and their interactions 
with immune responses in GC. Our comprehensive analysis identified 
229 differentially expressed genera, with nine bacterial genera 
significantly associated OS, emphasizing the prognostic value of the 
tumor-associated microbiome. These findings align with recent 
studies highlighting the crucial role of the microbiome in cancer 
prognosis and therapy response (17–19). Our research indicates that 
Serinicoccus, Desulfomicrobium, Brachybacterium, Dietzia, 
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Alishewanella, Kytococcus, and Rheinheimera are associated with 
increased risk, while Klebsiella and Achromobacter are correlated 
with decreased risk. This is different from a recently reported 
literature, which identified five bacterial genera associated with poor 
prognosis of GC but did not discover protective bacterial genera that 
reduce risk (20). Moreover, upon closer comparison, the harmful 
bacterial genera are also different. This suggests that there may be 
significant variations in the ITM of GC across different regions and 
populations, highlighting the need for further research. 

Further analysis revealed three distinct microbial clusters with 
unique survival outcomes and immune profiles, reinforcing the 
heterogeneity of GC. This echoes with recent findings that 
microbiome composition can stratify patients into subgroups with 
different prognoses (20, 21). Specifically, Cluster C1 with the best 
prognosis is distinguished by elevated levels of activated B cells, 
activated dendritic cells, and plasmacytoid dendritic cells, 
suggesting an active antigen-presenting cell response. This 
phenotype is reminiscent of the robust immune activation 
observed in autoimmune diseases or during acute immune 
challenges (22). The enrichment of oxidative phosphorylation and 
ribosome activity in C1 supports heightened metabolic activity and 
protein synthesis (23), suggesting involvement in rapid immune 
responses. C2 demonstrates robust cytotoxic, helper T cell, and 
memory responses, aligning with the importance of these cells in 
eliminating infected or transformed cells (24, 25). C3, with poor 
prognosis, is characterized by higher M2 macrophages and 
neutrophils, indicating potential tumor promotion (26–28). 
Compared to C2, C3 shares six high-abundance bacterial genera 
but lacks Kytococcus, Klebsiella, and Achromobacter. This suggests 
these three may be associated with better immune infiltration and 
prognosis, requiring further evidence. 

Immune-microbe interaction analysis emphasized the complex 
relationships within the TME. The positive correlation between certain 
microbial genera and immune cell infiltration supports the hypothesis 
that the microbiome can modulate immune responses (29, 30). For 
instance, high levels of Bifidobacterium were associated with increased 
T-cell infiltration and improved survival, suggesting its potential role in 
immunotherapy enhancement (31). Cluster 3 with poor microbe-

associated immune infiltration had higher risk scores, indicating a 
strong correlation between intratumoral microbes, immune 
microenvironment, and our RiskScore model. This model, based on 
microbiome-related immune genes, functioned as an independent 
prognostic factor and, combined with clinical factors, formed a 
Nomogram model. Its predictive performance improved over time, 
supporting its use in clinical risk assessment and personalized 
treatment strategies. This aligns with the interest in developing 
microbiome-based biomarkers for cancer prognosis (32, 33). 

High TMB has been associated with better responses to 
immunotherapy due to the higher neoantigen load. Studies have 
indicated that TMB can predict survival after immunotherapy 
across multiple cancer types (16). Our mutation analysis 
demonstrated the genetic variability impacting TMB and survival. 
The L_TMB+High risk group have the lowest survival probability 
over time. This analysis demonstrates that integrating TMB into 
prognostic models provides a more accurate assessment of patient 
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survival. Immune checkpoint molecule expression analysis 
indicated immune evasion mechanisms in high-risk groups, 
which is crucial for identifying patients who may benefit from 
immune checkpoint inhibitors (34). 

Therapeutic implications highlight the importance of personalized 
treatment based on microbiome and immune profiles. The 
microbiome’s potential to modulate responses to chemotherapy, 
radiation, and immunotherapy enhances treatment efficacy (35, 36). 
Our study shows no significant differences in commonly used 
chemotherapy drugs for gastrointestinal cancers between groups, 
except for Docetaxel. However, notable differences emerged in 
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immunological markers between High-risk and Low-risk groups, 
suggesting potential differences in immunotherapy responsiveness. 
This indicates that GC can be treated by regulating microorganism

gene-immunity interactions. Modulating the microbiome through 
probiotics, prebiotics, or fecal microbiome transplantation offers 
promising new therapeutic strategies (37, 38). 

Although Klebsiella and Achromobacter are occasionally implicated 
in opportunistic infections, especially in immunocompromised hosts or 
hospital environments, their role within the gastric tumor 
microenvironment appears to be context-dependent and potentially 
beneficial (26).  In  our study,  elevated levels of these  genera  correlated  
FIGURE 6
 

Prediction of chemotherapy sensitivity and immunotherapy response. (A-E) Comparison of IC50 level differences for six chemotherapy drugs across
 
different risk groups. (F-I) Comparison of TIDE and immune marker scores across different risk groups. * indicates p < 0.05; *** indicates p < 0.001;
 
**** indicates p < 0.0001.
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with improved prognosis and enhanced immune cell infiltration, 
particularly CD8+ cytotoxic T cells and helper T cells in Cluster C2. 
This suggests a potential immunostimulatory role that may help restrain 
tumor progression. While the precise mechanisms remain under 
investigation, our analysis identified significant correlations between 
these microbes and host immune genes such as CARD11 and AGT, 
which are involved in T-cell signaling and renin-angiotensin regulation, 
respectively. These interactions may facilitate a more immunologically 
active tumor microenvironment that limits cancer progression. 
Therefore, Klebsiella and Achromobacter may exert protective effects 
Frontiers in Immunology 13 
not through direct bactericidal action, but by modulating host 
immunity. Further studies, including gnotobiotic models and 
functional validation, will be essential to elucidate their exact roles 
and therapeutic potential in GC. 

In addition, although H. pylori infection plays a central role in the 
initiation of gastric cancer, its presence is often diminished or absent in 
advanced-stage tumor tissues. This is likely due to progressive mucosal 
atrophy and tumor-induced environmental changes that no longer 
support H. pylori colonization. Our cohort consisted predominantly of 
late-stage GC samples, consistent with previous findings that show a 
FIGURE 7 

Single cell analysis. (A) Cell annotation plot. (B) Cell distribution ratio plot. (C) shows the number of ligand-receptor pairs and communication 
probability among all cell populations across samples; different colors in the outer circle represent different cell populations, and the size indicates 
the number of ligand-receptor pairs in the population. A larger circle indicates a higher ratio of ligand-receptor pairs between cells. (D) Expression of 
signature genes in single cells. (E) qPCR confirmation of signature gene expression in tumor tissues. (F) In the bubble plot, the x-axis represents cell 
pairs, with colors distinguishing samples; the y-axis represents ligands and receptors. The size of the bubble indicates the p-value, with smaller p-
values corresponding to larger bubbles. The color represents the magnitude of communication probability. * indicates p < 0.05; ** indicates p < 
0.01; *** indicates p < 0.001. 
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marked decline in H. pylori detection at later disease stages. These 
observations suggest a dynamic shift in the gastric microbial community 
during tumor progression, in which other microbial species may become 
more dominant and influence prognosis and immune modulation. 

The integration of bioinformatics validation through qPCR and 
IHC adds robustness to our findings, yet further large-scale validation is 
warranted. Our findings lay the groundwork for integrating microbiome 
and immune signatures into clinical practice, potentially enhancing 
prognostic accuracy and patient outcomes in GC. Future research 
should prioritize longitudinal studies to understand microbiome-TME 
interactions (7, 39)and mechanistic studies to elucidate the impacts of 
specific microbes on cancer progression (40, 41). In particular, the 
mechanism of tumor-associated fibroblasts in regulating intratumoral 
bacteria-related immunity merits further investigation. However, 
limitations exist, including potential biases in publicly available data 
and bioinformatics tools, as well as the need for larger cohorts and 
longitudinal data for further validation and causal inference. 

The identification of nine intratumoral microbial genera associated 
with patient prognosis provides novel insight into the microbial 
component of the gastric tumor microenvironment. Notably, genera 
such as Klebsiella and Achromobacter were enriched in tumor samples 
with better survival and stronger immune infiltration, suggesting a 
potential immunomodulatory or anti-tumor role. Conversely, risk-
associated genera including Desulfomicrobium and Dietzia were more 
prevalent in patients with poorer prognosis, raising the possibility that 
they may contribute to immunosuppression or tumor-promoting 
inflammation. Although direct causality cannot be established from 
our data alone, these microbial signatures are consistent with emerging 
evidence that non-Helicobacter pylori bacteria can shape local immune 
responses and influence tumor behavior. Thus, the prognostic 
associations observed in our study support the concept that the 
intratumoral microbiome is not merely a passive bystander but may 
represent an integral component of the gastric cancer ecosystem. These 
findings warrant further mechanistic investigations and highlight the 
potential for microbial profiling to complement existing clinical 
parameters in prognostic assessment. 

The observed immune heterogeneity among microbiota-based 
clusters supports the notion that distinct microbial communities 
may shape the tumor immune microenvironment in gastric cancer. 
Specifically, the enrichment of Klebsiella and Achromobacter in 
Cluster C2 coincided with increased infiltration of activated CD8&+ 

T cells and helper T cells, suggesting a possible role for these genera 
in promoting anti-tumor immune responses. In contrast, Clusters 
enriched with genera such as Desulfomicrobium and Dietzia 
exhibited immunosuppressive features, including elevated M2 
macrophages and reduced T cell activity. These patterns 
underscore the potential of intratumoral microbes to modulate 
immune surveillance and tumor progression. 

In summary, our study highlights the significant role of 
microbiome-related immune gene signatures in GC prognosis, 
offering a novel approach for risk stratification and personalized 
therapy. These findings, supported by recent literature, validate the 
potential clinical application of microbiome and immune profiling 
in improving patient outcomes. 
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