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The impact of the intratumoral microbiome (ITM) on the treatment and prognosis

of gastric cancer (GC) remains controversial. Our study analyzed the differential

ITM in GC tissues and identified nine bacterial genera significantly associated with

overall survival (OS), with seven as risk factors and two as protective factors.

Three distinct clusters with varying survival outcomes were defined,

demonstrating correlations with pathological stage and immune features. An

immune-related gene-based RiskScore model incorporating genes such as

Apolipoprotein D (APOD), Stanniocalcin 1 (STC1), Coagulation Factor II

Thrombin Receptor (F2R), Angiotensinogen (AGT), Fatty Acid Binding Protein 4

(FABP4), Inhibin Subunit Beta A (INHBA), Caspase Recruitment Domain Family

Member 11 (CARD11), and Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1)

was established and validated in The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) datasets. When combined with clinical factors, this

RiskScore model formed a Nomogram model achieving Areas Under the Curve

(AUCs) of 0.72, 0.76, and 0.79 for 1, 3, and 5-year OS predictions, respectively.

This model exhibited robust predictive accuracy over time and correlated with

mutation frequency, drug sensitivity, and immunotherapy response.

Furthermore, single-cell analysis revealed that tumor-associated fibroblasts
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may play a pivotal role in immune-microbial interactions. The results were

confirmed using quantitative real-time polymerase chain reaction (qPCR) and

immunohistochemistry (IHC). In conclusion, the prognostic model incorporating

ITM and immune-related genes aids in risk stratification and provides valuable

insights and targets for GC treatment.
KEYWORDS
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1 Introduction

Gastric cancer (GC) remains a significant health burden

globally, with an estimated 1 million new cases and 783,000

deaths annually, making it the fifth most common malignancy

and the third leading cause of cancer-related deaths worldwide (1).

The burden is especially heavy in Eastern Asia, attributed to dietary,

environmental, and genetic factors (2). Despite advancements in

diagnostic techniques and treatment modalities, the prognosis for

advanced GC remains dismal, with a 5-year survival rate of less than

30%. This poor prognosis is often due to late-stage diagnosis, high

rates of metastasis, and the tumor’s complex and heterogeneous

nature, presenting significant therapeutic challenges (3).

The tumor microenvironment (TME) plays a crucial role in

cancer progression and patient outcomes (4). The TME comprises

various cellular components, including immune cells, fibroblasts,

endothelial cells, and emerging evidence highlights the significant

role of the tumor-associated microbiome within the tumor and its

immediate surroundings (5). The intratumoral microbiome (ITM)

influences numerous physiological processes and has been implicated

in the pathogenesis of various cancers (6). In particular, alterations in

the microbiome have been associated with tumorigenesis through

mechanisms such as chronic inflammation, immune modulation, and

production of carcinogenic metabolites (7, 8) Studies have shown that

specific bacterial species, such as Helicobacter pylori, play a crucial role

in the development of GC by inducing chronic gastritis, leading to

atrophic gastritis, intestinal metaplasia, dysplasia, and eventually

carcinoma (9, 10). However, beyond H. pylori, the broader

spectrum of tumor-associated microbiome and its impact on GC

prognosis remains controversial (11–13). Increasing evidence

indicates that the microbiome present in saliva, gastric juice, tumor

tissues, and the gut are associated with the occurrence, development,

treatment, and prognosis of GC (14). Recent advancements in high-

throughput sequencing and bioinformatics have enabled

comprehensive characterization of the microbiome, providing new

insights into its role in cancer biology (7, 15).

This study aimed to analyze the differential ITM in GC tissues,

assess its prognostic value, and explore immune-microbiome

interactions to identify prognostic biomarkers and enhance

therapeutic strategies.
02
2 Methods

2.1 Data collection and initial processing

GC microbiome data, along with RNA-seq and survival

information, were downloaded from the TCGA database in

March 2024. Preprocessing steps involved excluding genes with

missing values or not expressed in >50% of samples, removing

samples with >50% unexpressed genes, and log2 transforming

expression values. Libraries were prepared with the TruSeq

Stranded mRNA Kit (Illumina) and sequenced on an Illumina

NovaSeq 6000 (150 bp paired-end). Reads were aligned to the

human genome (GRCh38) using STAR (v2.7.10a). Post-

preprocessing, 350 GC and paired normal samples were retained.

Fresh frozen gastric cancer (GC) tissues and paired adjacent normal

tissues were collected from Tianjin Medical University Cancer

Institute and Hospital. The GSE62254 dataset with clinical data

was downloaded from NCBI GEO, retaining 300 GC samples after

excluding those with zero or missing survival data. Dataset

GSE183904 was used for single-cell analysis. Additional validation

samples were collected from Tianjin Medical University Cancer

Institute and Hospital, with study approval (Approval No.

E20210132) and informed consent from all patients.
2.2 Identifying prognostic microorganisms
and GC subtypes

Using the limma package, we compared GC tissues with

adjacent normal controls from TCGA to identify differentially

abundant microorganisms. Univariate Cox regression determined

which of these microorganisms were significantly associated with

patient survival. From the identified prognostic microorganisms, we

performed unsupervised hierarchical clustering using Consensus

Cluster Plus to classify GC patients into subtypes. The optimal

number of clusters was statistically determined. Survival prognosis

for each cluster was assessed via Kaplan-Meier curves, and

correlations with clinical factors (age, gender, stage, etc.)

were investigated.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1622959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1622959
2.3 Immune infiltration and molecular
mechanisms

Using single-sample Gene Set Enrichment Analysis (ssGSEA),

we conducted immune infiltration analysis to quantify immune cell

types in tumor samples. Estimation of Stromal and Immune cells in

Malignant Tumors using Expression data (ESTIMATE) scores

assessed the TME. Wilcoxon tests evaluated differences in

immune cell proportions across clusters. Gene Set Enrichment

Analysis (GSEA) and Gene Set Variation Analysis (GSVA)

analyzed pathway and gene set enrichment across GC clusters.
2.4 Establishing and validating a prognostic
risk model based on immune-related gene

Differential expression and Weighted Gene Co-expression

Network Analysis (WGCNA) identified gene modules correlated

with GC phenotypes. Cross-referencing these with the ImmPort

database revealed immune genes linked to microorganisms.

Univariate Cox regression selected genes significantly linked to

patient survival. We developed a prognostic signature (Risk Score)

using Least Absolute Shrinkage and Selection Operator (LASSO)-COX

regression: Risk Score = b1X1 + b2X2 +… + bnXn, where b is the

regression coefficient and X is the gene expression value. Patients in

TCGA and GEO were categorized by their Risk Score into High- and

Low-risk groups. Kaplan-Meier curves and log-rank tests confirmed

the prognostic value of this signature. Incorporating clinical factors

(age, gender, stage, etc) into univariate and multivariate COX

regression models, we confirmed the independent prognostic value

of the identified genes. We constructed a nomogram integrating these

factors to aid clinicians in survival prognosis and decision-making.
2.5 Mutation status and immune-microbial
interactions

Analyzing mutation data, we identified the top 20 most mutated

genes (TOP20) and calculated Tumor Mutation Burden (TMB).

Using Multiple Alignment of Fasta (maftools) and Generalized

Gene Correlation analysis (ggcor) in R, we examined TMB

distribution across risk groups and correlations between risk

scores, microbial abundance, and immune cell populations.

Differences in immune checkpoint molecule expression [PD1

(PDCD1), PD-L1 (CD274), CTLA-4 (CTLA4), CD278 (ICOS),

TIM3 (HAVCR2), LAG3, CD47, BTLA, TIGIT, MYD1 (SIRPA),

OX40 (TNFRSF4), 4-1BB (TNFRSF9), B7-H4 (VTCN1)] were also

analyzed between risk groups.
2.6 Chemotherapy and immunotherapy
efficacy

Using the Genomics of Drug Sensitivity in Cancer (GDSC)

database and Predictive Response to Therapy (pRRophetic) package
Frontiers in Immunology 03
in R, we estimated chemotherapy sensitivity (IC50) and differences

between risk groups. Tumor Immune Dysfunction and Exclusion

(TIDE) database predicted immune checkpoint therapy responses,

quantified by TIDE scores. We further analyzed Cytolytic Activity

(CYT), Tertiary Lymphoid Structure (TLS) scores, and CD8A/PD-

L1 ratios between risk groups using Wilcoxon tests.
2.7 Single-cell analysis

Based on the GC single-cell dataset GSE183904, we selected the

top 2000 highly variable genes for UMAP dimensionality reduction

and clustering analysis, ultimately obtaining 31 cell clusters. Cell

Ranger (v6.1.2) was used for alignment and UMI counting. By

referencing cell marker genes, we annotated these 31 cell clusters

and successfully distinguished 8 cell types, specifically including B

cells, endothelial cells (endo), epithelial cells, fibroblasts, mast cells,

myeloid cells, smooth muscle cells, and T cells. Next, we compared

the percentage differences of these 8 cell types between the tumor

group and the normal group. Furthermore, we analyzed the

expression of 8 genes in various cells within the risk model,

conducted cell communication analysis, and explored the

activation of ligand-receptor pairs during the interaction of

different immune cells. Seurat (v4.3) for clustering and CellChat

(v1.6.0) for ligand-receptor interaction analysis.
2.8 Validation of bioinformatics analysis
results by qPCR and IHC

To validate bioinformatics analysis results, we performed qPCR

and IHC experiments. For qPCR, we validated the expression levels

of APOD, STC1, F2R, and AGT using 10 pairs of fresh cancerous

and adjacent normal tissue samples. Total RNA was extracted,

followed by cDNA synthesis and qPCR amplification using specific

primers (Supplementary Materials). Fresh gastric cancer (GC)

tissues and paired adjacent normal tissues (n = 10 pairs) were

collected, snap-frozen in liquid nitrogen, and stored at −80°C. Total

RNA was extracted using TRIzol Reagent, with purity (A260/A280:

1.8–2.0) and integrity verified. cDNA was synthesized from 1 µg

RNA using PrimeScript RT Reagent Kit. TqRT-PCR was performed

in triplicate with SYBR Green Premix (TB Green™) on a

QuantStudio 5 system using gene-specific primers (APOD, STC1,

F2R, AGT, ACTA2 and) and b-actin as the housekeeping gene.

Relative expression (2−DDCt method) and statistical significance

(Student’s t-test, p < 0.05) were analyzed. Conditions: 95°C for 10

min, 40 cycles of 95°C for 15 sec, 60°C for 1 min. For IHC, formalin-

fixed, paraffin-embedded (FFPE) tissues were used. We conducted a

co-localization analysis of STC1 and CD56 on serial sections

utilizing 50 paraffin-embedded tissue samples. Formalin-fixed,

paraffin-embedded (FFPE) GC and adjacent normal tissues were

sectioned (4 µm), deparaffinized, and subjected to antigen retrieval

(10 mM citrate buffer, pH 6.0, 95°C, 20 min). Endogenous

peroxidase was blocked with 3% H2O2 (15 min, RT). These tissue

sections were subsequently stained for STC1(Proteintech, 20621-1-
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AP, 1:200 dilution) and CD56 (Servicebio, GB12041, 1:100

dilution). Signal was developed with DAB (Dako, 5 min),

counterstained with hematoxylin, and visualized under bright-

field microscopy. Slides were scanned with a Leica Aperio AT2

scanner and analyzed using ImageScope (v12.4). Negative controls

omitted primary antibody. Staining intensity (0–3) and percentage

of positive cells were scored independently by two pathologists. The

STC1 expression levels were scored, classified into high and low

expression groups, and their correlation with CD56 was analyzed

using Spearman’s analysis.
2.9 Statistical analysis

All statistical tests were performed in R (v4.3.1) with packages

cited in the original manuscript. Data manipulation was conducted

using dplyr and tidyr. For statistical testing, the stats package

facilitated Wilcoxon and log-rank tests. Survival analyses,

including Kaplan-Meier estimates and Cox models, were done

using the survival package and visualized with survminer and

ggplot2. Hierarchical clustering and heatmaps were generated

using pheatmap. Data partitioning and model training were

performed with caret, while glmnet was used for LASSO and

Ridge regression. Differential expression was analyzed using

limma, and additional analyses utilized Consensus Cluster Plus,

ESTIMATE, cluster Profiler, GSVA, WGCNA, rms, maftools,

ggcor, pRRophetic and CellChat. Graphs were created with

ggplot2 and GraphPad Prism 10.0. Significant differences were set

at p < 0.05 or p < 0.001.
3 Results

3.1 Prognostic intratumoral
microorganisms and microbial clustering
analysis

Through comparative analysis of tumor and normal samples, we

identified 229 differentially expressed genera in GC: 67 upregulated and

162 down regulated (Figure 1A). Univariate Cox regression analysis

revealed nine bacterial genera significantly associated with OS. Genera

such as Serinicoccus, Desulfomicrobium, Brachybacterium, Dietzia,

Alishewanella, Kytococcus, and Rheinheimera were linked to

increased risk, while Klebsiella and Achromobacter correlated with

decreased risk (p < 0.05) (Figure 1B).

Using these nine prognostic bacterial genera, unsupervised

clustering analysis determined an optimal K value of 3, resulting in

distinct microbial clusters labeled as C1, C2, and C3, comprising 183, 77,

and 90 GC samples, respectively (Figures 1C, D). Principal component

analysis (PCA) underscored the segregation among these clusters,

highlighting their underlying differences (Figure 1E). In detail, the

distribution of nine prognostic bacterial genera we have identified was

analyzed across different clusters, with Kytococcus, Klebsiella and

Achromobacter enriched in cluster C2 and some genera such as

Desulfomicrobium and Brachybacterium was observed more in
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cluster C3 (Figure 1F). Correlation analysis with clinical data showed

no significant differences in sub-type (p = 0.24), age (p = 0.26), gender

(p = 0.31), grade (p = 0.24), and Pathologic N stage (p = 0.06) across

three clusters. However, microbial clusters significantly correlated with

Pathologic M (p =0.01), Pathologic T (p < 0.0001), and Stage (p < 0.000)

(Table 1). The differential levels of the 9 prognostic bacterialgenera

across different clusters was shown in Figure 1G. Theatmap analysis

revealed distinct microbial composition patterns across tumor stages,

pathological features, and clinical subgroups (Figure 1G). Notably,

Kaplan-Meier analysis demonstrated significant disparities in survival

prognosis among the clusters (p < 0.0001), with cluster C3 showing the

poorest outcomes (Figures 1H, I). This comprehensive analysis

underscores the prognostic significance of ITM and their associations

with clinical features.
3.2 Potential immune-microbe interactions
and molecular mechanisms

The analysis of Stromal Score, Immune Score, ESTIMATE

Score, and Tumor Purity across the three clusters (C1, C2, C3)

revealed that C3 is predominantly comprised of tumor cells, with

significantly lower infiltration of stromal and immune cells

compared to C1 (p < 0.05) and C2 (p < 0.001). Conversely, C2

exhibits greater immune cell infiltration than C1 (p < 0.001)

(Figure 2A), emphasizing distinct stromal, immune, and overall

microenvironmental characteristics among the clusters, which may

influence gastric cancer (GC) prognosis and treatment strategies.

The ssGSEA analysis of three clusters (C1, C2, C3) revealed

distinct immune cell compositions. Cluster C2 shows higher

enrichment of activated CD8+ T cells (p < 0.01), effector memory

CD4 T cells (p < 0.01), Type 1 T helper cells (p < 0.01), regulatory T

cells (Tregs) (p < 0.01)), indicating a robust cytotoxic, helper T cell,

and memory response. Cluster C1 is characterized by higher levels

of activated B cells (p < 0.05), activated dendritic cells (p < 0.05), and

plasmacytoid dendritic cells (p < 0.05), suggesting an active antigen-

presenting cell response. Cluster C3 exhibits a higher presence of

M2 macrophages (p < 0.01), indicating a potential promotion of

tumor growth and metastasis (Figure 2B).

The variations in gene expression patterns and the enrichment of

hallmark gene sets among different clusters were analyzed to promote a

deeper understanding of their biological differences. As shown in

Figure 2C, some set of genes associated with the progression of

gastric cancer such as KRAS signaling and Protein secretion were up-

regulated especially in cluster C3. Besides, the GSEA analysis revealed

that cluster C1 exhibits significant enrichment in oxidative

phosphorylation, ribosome activity, and Parkinson’s disease pathways.

This reflected the cells’ elevated energy demands and rapid proliferation,

which might favor the activation and expansion of immune cells.

Cluster C2 is notably enriched in the systemic lupus erythematosus

pathway, indicating active immune responses within the TME. Cluster

C3 shows significant enrichment in the Notch signaling, which points to

its underlying role in regulating the differentiation and proliferation of

tumor cells and promote cancer progress (Figures 2D–F).
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3.3 Identification of microbiome-associated
immune genes with prognostic value

Considering the above evidence, we conducted that the different

tumor-bacteria clusters were related to immune microenvironment

reshaping. Therefore, we performed a comparative analysis and
Frontiers in Immunology 05
identified 1206 differentially expressed genes (DEGs) related to

immune (Figure 3A). Using WGCNA with phenotypic markers C1,

C2, and C3, we optimized the network’s ‘power’ parameter at 3 to

meet scale-free topology conditions (Figure 3B). Genes with high

correlations were clustered into five distinct modules. Among these,

the turquoise module, consisting of 561 genes, showed the strongest
FIGURE 1

Intratumoral microorganisms and microbial clustering analysis. (A) Differential microbial volcano plot, where blue represents downregulated
microbes and red represents upregulated microbes. (B) Forest plot of prognostic microbes. (C) Cumulative distribution function (CDF) of consensus
clustering for k = 2-9. (D) Consensus clustering matrix for the optimal k = 3. (E) PCA curve analysis. (F) Clinical correlation heatmap of 9 prognostic
bacterial genera, where red represents high expression and blue represents low expression. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (G)
Differential levels of the 9 prognostic bacterial genera across different clusters. (H, I) KM survival curves for different clusters.
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correlation with phenotypic markers and was selected for further

analysis as a set of intra-tumoral microbiome-related genes

(Figures 3C, D).

To explore host-microbiome interactions, we cross-referenced

immune genes from the ImmPort database with those in the

turquoise module, identifying 82 immune genes closely linked to
Frontiers in Immunology 06
the intra-tumoral microbiome (Figure 3E). Survival analysis then

revealed eleven significant genes, including APOD (p=0.001,

HR=1.133), STC1 (p=0.001, HR=1.309), and others, as shown in

Figure 3F, suggesting that they may be key immune gene targets

associated with intratumoral microbial signature and influence

gastric cancer prognosis.
TABLE 1 Relationship between cluster and clinicopathological characteristics.

Characteristics C1 (N=183) C2 (N=77) C3 (N=90) Total (N=350) P value

Sub-type 0.24

MSI-H 34 (9.71%) 12 (3.43%) 13 (3.71%) 59 (16.86%)

MSI-L 21 (6.00%) 17 (4.86%) 13 (3.71%) 51 (14.57%)

MSS 128 (36.57%) 48 (13.71%) 64 (18.29%) 240 (68.57%)

Age 0.26

Mean ± SD 65.85 ± 10.81 63.86 ± 9.77 66.24 ± 10.91 65.51 ± 10.62

Median[min-max] 68.00[35.00,90.00] 65.00[41.00,83.00] 67.00[41.00,90.00] 67.00[35.00,90.00]

Gender 0.31

FEMALE 68 (19.43%) 30 (8.57%) 26 (7.43%) 124 (35.43%)

MALE 115 (32.86%) 47 (13.43%) 64 (18.29%) 226 (64.57%)

Grade 0.44

G1 3 (0.86%) 2 (0.57%) 4 (1.14%) 9 (2.57%)

G2 63 (18.00%) 24 (6.86%) 38 (10.86%) 125 (35.71%)

G3 111 (31.71%) 50 (14.29%) 46 (13.14%) 207 (59.14%)

GX 6 (1.71%) 1 (0.29%) 2 (0.57%) 9 (2.57%)

Pathologic_M 0.01

M0 164 (46.86%) 72 (20.57%) 75 (21.43%) 311 (88.86%)

M1 7 (2.00%) 4 (1.14%) 12 (3.43%) 23 (6.57%)

Pathologic_N 0.06

N0 53 (15.14%) 29 (8.29%) 20 (5.71%) 102 (29.14%)

N1 46 (13.14%) 20 (5.71%) 29 (8.29%) 95 (27.14%)

N2 39 (11.14%) 18 (5.14%) 16 (4.57%) 73 (20.86%)

N3 41 (11.71%) 10 (2.86%) 19 (5.43%) 70 (20.00%)

Pathologic_T 5.70E-03

T1 7 (2.00%) 2 (0.57%) 8 (2.29%) 17 (4.86%)

T2 34 (9.71%) 22 (6.29%) 16 (4.57%) 72 (20.57%)

T3 85 (24.29%) 35 (10.00%) 43 (12.29%) 163 (46.57%)

T4 57 (16.29%) 18 (5.14%) 19 (5.43%) 94 (26.86%)

Stage 0.00044

I 24 (6.86%) 10 (2.86%) 13 (3.71%) 47 (13.43%)

II 61 (17.43%) 29 (8.29%) 18 (5.14%) 108 (30.86%)

III 86 (24.57%) 28 (8.00%) 34 (9.71%) 148 (42.29%)

IV 10 (2.86%) 7 (2.00%) 17 (4.86%)
MSI-H, Microsatellite Instability-High; MSI-L, Microsatellite Instability-Low; MSS, Microsatellite Stability.
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FIGURE 2

Immune infiltration and pathway enrichment analysis. (A) Violin plot comparing immune scores and stromal scores across different Cluster groups.
** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001; ns indicates no significance. (B) Comparison of immune cell types with
significant differences between different Cluster groups using the ssGSEA algorithm. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p <
0.001; **** indicates p < 0.0001. (C) Heatmap of enrichment differences for hallmark gene sets. (D-F) Significantly different KEGG pathways between
different Cluster groups with a threshold of p < 0.05 and an absolute NES value greater than 1.
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3.4 Prognostic intratumoral
microorganisms and microbial clustering
analysis

Using the LASSO regression algorithm, we developed an eight-

gene RiskScore model significantly associated with GC prognosis

(Figures 4A, B): RiskScore = 0.0607 * APOD + 0.1345 * STC1 +

0.0455 * F2R + 0.0017 * AGT + 0.0082 * FABP4 + 0.0185 * INHBA +

0.0354 * CARD11 + 0.034 * DKK1.
Frontiers in Immunology 08
This model effectively distinguished low-risk from high-risk

patients in the TCGA training dataset, with significant survival

differences (p < 0.0001). High-risk groups had a 5-year survival rate

of 25%, compared to 60% in low-risk groups. The model’s predictive

performance improved over time, with AUC values increasing from

0.661 at 1 year to 0.760 at 5 years (Figures 4C, D; Supplementary

Figure S1A). Validation using an independent GEO dataset confirmed

consistent predictive accuracy (Supplementary Figure S1B-D).

Notably, riskscores were significantly different in distinct microbial
FIGURE 3

Identification of microbiome-associated immune genes with prognostic value. (A) Differential gene volcano plot, where blue represents
downregulated genes and red represents upregulated genes. (B) Left: Plot for selecting the weight parameter “power” in the adjacency matrix. The
x-axis represents the weight parameter “power,” and the y-axis represents the square of the correlation coefficient between log(k) and log(p(k)) in
the corresponding network. A higher value of the square of the correlation coefficient indicates that the network is closer to a scale-free
distribution. The red line indicates the standard line where the square of the correlation coefficient reaches 0.85. Right: Schematic diagram of the
average gene connectivity under different “power” parameters in the adjacency matrix. The red line indicates the average connectivity of network
nodes at the “power” parameter value selected in the left plot. (C) Dendrogram of module partitioning. Each color represents a different module.
(D) Heatmap showing the correlation between each module and phenotypic traits. (E) Venn diagram of intersections. (F) Univariate Cox forest plot.
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characterization groups, especially the cluster 3 with poor microbe-

associated immune infiltration obtained the elevated riskscores

(Figure 4E). This highlights the strong correction among

introtumoral microbes, immune microenvironment and our

RiskScore model.

Univariate Cox regression identified Age, Pathologic M, N, and

T, Stage, and the RiskScore model as significant prognostic factors

(p < 0.005). Multivariate analysis confirmed Age (HR = 1.031, p <

0.001), Stage (HR = 1.419, p =0.015), and the RiskScore model

(HR = 6.190, p < 0.001) as independent predictors, with RiskScore

having the highest hazard ratios (Figure 4F). To enhance predictive

accuracy, a Nomogram model integrating RiskScore, age, and tumor

stage was constructed and validated. Kaplan-Meier survival analyses

revealed significant differences between high and low-risk groups (p <

0.0001). The Nomogram’s C-index was 0.752, and ROC curves for 1-

year (AUC = 0.724), 3-year (AUC = 0.757), and 5-year (AUC = 0.78)
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survival rates underscored the model’s robustness in long-term

survival prediction, supporting its use in clinical risk assessment

and personalized treatment strategies (Figures 4H–J).
3.5 Mutation status analysis and
investigation of immune-microbial
interactions

Research has demonstrated that TMB is associated with the

efficacy of immunotherapy and the prognosis of various cancers

(16). Therefore, this study conducted an analysis of TMB status and

found a prevalence of single nucleotide polymorphisms, particularly

C>T transitions, with missense mutations being the most frequent

(Figure 5A). Notably, key genes such as TTN, MUC16, and TP53

are frequently mutated (Figure 5B). Additionally, a higher TMB is
FIGURE 4

Prognostic model development and validation. (A) Distribution of LASSO coefficients. (B) Likelihood deviation of the LASSO coefficient distribution,
with two vertical dashed lines representing lambda.min (left black line) and lambda.1se (right black line), respectively. (C) Distribution of RiskScore
(top), survival time status (middle), and gene expression pattern of the model (bottom) in the TCGA training set. (D) KM curve for prognosis
prediction based on the RiskScore model. (E) Differences in RiskScore distribution between different Clusters. * indicates p < 0.05; *** indicates p <
0.001; ns indicates no significance. (F) Forest plot of univariate and multivariate Cox regression analysis for clinical information. (G) Nomogram for
predicting survival rates using independent prognostic factors. (H) Calibration plot for 1-year, 3-year, and 5-year survival predictions from the
nomogram, with the x-axis representing predicted survival rates and the y-axis representing actual survival rates. (I) KM curve for prognosis
prediction based on the nomogram model. (J) ROC curves for 1-year, 3-year, and 5-year predictions based on the nomogram.
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associated with a lower risk (Figure 5C). Survival analysis revealed

that patients with low TMB and low risk have the highest survival

probability (Figure 5D), indicating that TMB plays a crucial role in

prognosticating patient outcomes and enhancing the accuracy of

survival assessments.

Figure 5E reveals significant variability in RiskScores among

clusters. High-risk groups exhibit higher expression levels of

immune checkpoint molecules compared to low-risk groups,

suggesting a potential correlation with increased disease risk. Our

analysis identified significant correlation patterns between eight genes

(STC1, INHBA, FABP4, F2R, DKK1, CARD11, APOD, AGT),

RiskScore, immune cell types, and bacterial species. Notably,
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RiskScore has strong positive correlations with numerous immune

cell types, such as activated CD8 T cells, regulatory T cells, and NK

cells (p < 0.01), indicating its role in immune modulation. STC1 and

INHBA showed strong positive correlations with Effector memory

CD4 T cells (p < 0.01) and NK cells (p < 0.01), respectively. FABP4

and F2R were associated with Activated B cells and Macrophages (p <

0.05) (Figure 5F). Additionally, STC1 exhibited a significant positive

correlation with Alishewanella (p < 0.05). DKK1 showed a significant

positive correlation with Dietzia (p < 0.05), whereas AGT was

significantly negatively correlated with Desulfomicrobium and F2R

with Rheinheimera (p < 0.05). CARD11 positively correlated with

Kytococcus (p < 0.05), and AGT showed negative correlation with
FIGURE 5

Mutation status and immune-microbial interactions analysis. (A, B) Mutation waterfall plots of Top20 genes in different risk groups. (C) Box plot of
TMB differences. (D) Combined KM curve. (E) Box plot of differences in immune checkpoint expression. (F) and (G) Heatmaps of correlation between
RiskScore and immune cells. (H, I) IHC validation shows colocalization and positive correlation of STC1 and CD56 expression in tumor tissues (*
indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001); **** indicates p < 0.0001.
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Desulfomicrobium (p < 0.05) (Figure 5G). IHC confirmed a positive

correlation between the expression of STC1 and CD56 (Figures 5H, I).
3.6 Therapeutic implications

For the high-risk group, the top five drugs with highest

sensitivity are: Midostaurin (p = 2.72E-21), AP.24534 (p = 2.88E-

20), DMOG (p = 7.68E-20), AZD6482 (p = 1.41E-18), and BX.795

(p = 1.82E-17) (Figures 6A–E). Common gastrointestinal cancer

drugs show no significant difference, except Docetaxel (p = 1.05E-

05) (Figure 6F). The high-risk group has a significantly higher

median TIDE score (p < 0.001) (Figure 6I), indicating greater

immune dysfunction and exclusion. The high-risk group also

shows higher CD8A/PD-L1 ratios (p < 0.05) and TLS scores (p <

0.0001) (Figures 6G, J), but lower MSI scores (p < 0.0001)

(Figure 6H) compared to the low-risk group. No significant

differences in CYT values.
3.7 Single-cell analysis

Finally, based on the annotation of 31 cell clusters, we found

significant differences in the proportions of 8 cell types between tumor

and normal tissues (Figures 7A, B). Further analysis revealed that

APOD, STC1, F2R, and AGT genes are mainly expressed in tumor-

associated fibroblasts (Figure 7D). qPCR confirmed their higher

expression in cancer tissues (Figure 7E). Cell communication

analysis showed strong interactions between fibroblasts and other

cells (Figure 7C), with ligand-receptor pairs like MIF - (CD74+CD44)

activated (Figure 7F). Thus, we speculate that the influence of the ITM

on immune gene expression differences associated with prognosis is

probably mediated by tumor-associated fibroblasts.

To further validate the presence and activation of cancer-

associated fibroblasts, we examined the expression of the CAF

markers a-SMA and vimentin. qRT-PCR analysis revealed that

both ACTA2 and VIM were significantly upregulated in gastric

cancer tissues compared to adjacent normal tissues (p < 0.01,

Supplementary Figure S2). These findings confirm the activation

status of fibroblasts in GC tissues and support the role of tumor-

associated fibroblasts in the immune-microbiome interaction

framework described in this study.
4 Discussion

This study enhances our understanding of the prognostic

significance of intratumoral microorganisms and their interactions

with immune responses in GC. Our comprehensive analysis identified

229 differentially expressed genera, with nine bacterial genera

significantly associated OS, emphasizing the prognostic value of the

tumor-associated microbiome. These findings align with recent

studies highlighting the crucial role of the microbiome in cancer

prognosis and therapy response (17–19). Our research indicates that

Serinicoccus, Desulfomicrobium, Brachybacterium, Dietzia,
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Alishewanella, Kytococcus, and Rheinheimera are associated with

increased risk, while Klebsiella and Achromobacter are correlated

with decreased risk. This is different from a recently reported

literature, which identified five bacterial genera associated with poor

prognosis of GC but did not discover protective bacterial genera that

reduce risk (20). Moreover, upon closer comparison, the harmful

bacterial genera are also different. This suggests that there may be

significant variations in the ITM of GC across different regions and

populations, highlighting the need for further research.

Further analysis revealed three distinct microbial clusters with

unique survival outcomes and immune profiles, reinforcing the

heterogeneity of GC. This echoes with recent findings that

microbiome composition can stratify patients into subgroups with

different prognoses (20, 21). Specifically, Cluster C1 with the best

prognosis is distinguished by elevated levels of activated B cells,

activated dendritic cells, and plasmacytoid dendritic cells,

suggesting an active antigen-presenting cell response. This

phenotype is reminiscent of the robust immune activation

observed in autoimmune diseases or during acute immune

challenges (22). The enrichment of oxidative phosphorylation and

ribosome activity in C1 supports heightened metabolic activity and

protein synthesis (23), suggesting involvement in rapid immune

responses. C2 demonstrates robust cytotoxic, helper T cell, and

memory responses, aligning with the importance of these cells in

eliminating infected or transformed cells (24, 25). C3, with poor

prognosis, is characterized by higher M2 macrophages and

neutrophils, indicating potential tumor promotion (26–28).

Compared to C2, C3 shares six high-abundance bacterial genera

but lacks Kytococcus, Klebsiella, and Achromobacter. This suggests

these three may be associated with better immune infiltration and

prognosis, requiring further evidence.

Immune-microbe interaction analysis emphasized the complex

relationships within the TME. The positive correlation between certain

microbial genera and immune cell infiltration supports the hypothesis

that the microbiome can modulate immune responses (29, 30). For

instance, high levels of Bifidobacterium were associated with increased

T-cell infiltration and improved survival, suggesting its potential role in

immunotherapy enhancement (31). Cluster 3 with poor microbe-

associated immune infiltration had higher risk scores, indicating a

strong correlation between intratumoral microbes, immune

microenvironment, and our RiskScore model. This model, based on

microbiome-related immune genes, functioned as an independent

prognostic factor and, combined with clinical factors, formed a

Nomogram model. Its predictive performance improved over time,

supporting its use in clinical risk assessment and personalized

treatment strategies. This aligns with the interest in developing

microbiome-based biomarkers for cancer prognosis (32, 33).

High TMB has been associated with better responses to

immunotherapy due to the higher neoantigen load. Studies have

indicated that TMB can predict survival after immunotherapy

across multiple cancer types (16). Our mutation analysis

demonstrated the genetic variability impacting TMB and survival.

The L_TMB+High risk group have the lowest survival probability

over time. This analysis demonstrates that integrating TMB into

prognostic models provides a more accurate assessment of patient
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survival. Immune checkpoint molecule expression analysis

indicated immune evasion mechanisms in high-risk groups,

which is crucial for identifying patients who may benefit from

immune checkpoint inhibitors (34).

Therapeutic implications highlight the importance of personalized

treatment based on microbiome and immune profiles. The

microbiome’s potential to modulate responses to chemotherapy,

radiation, and immunotherapy enhances treatment efficacy (35, 36).

Our study shows no significant differences in commonly used

chemotherapy drugs for gastrointestinal cancers between groups,

except for Docetaxel. However, notable differences emerged in

immunological markers between High-risk and Low-risk groups,

suggesting potential differences in immunotherapy responsiveness.
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This indicates that GC can be treated by regulating microorganism-

gene-immunity interactions. Modulating the microbiome through

probiotics, prebiotics, or fecal microbiome transplantation offers

promising new therapeutic strategies (37, 38).

AlthoughKlebsiella and Achromobacter are occasionally implicated

in opportunistic infections, especially in immunocompromised hosts or

hospital environments, their role within the gastric tumor

microenvironment appears to be context-dependent and potentially

beneficial (26). In our study, elevated levels of these genera correlated

with improved prognosis and enhanced immune cell infiltration,

particularly CD8+ cytotoxic T cells and helper T cells in Cluster C2.

This suggests a potential immunostimulatory role that may help restrain

tumor progression. While the precise mechanisms remain under
FIGURE 6

Prediction of chemotherapy sensitivity and immunotherapy response. (A-E) Comparison of IC50 level differences for six chemotherapy drugs across
different risk groups. (F-I) Comparison of TIDE and immune marker scores across different risk groups. * indicates p < 0.05; *** indicates p < 0.001;
**** indicates p < 0.0001.
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investigation, our analysis identified significant correlations between

these microbes and host immune genes such as CARD11 and AGT,

which are involved in T-cell signaling and renin-angiotensin regulation,

respectively. These interactions may facilitate a more immunologically

active tumor microenvironment that limits cancer progression.

Therefore, Klebsiella and Achromobacter may exert protective effects

not through direct bactericidal action, but by modulating host

immunity. Further studies, including gnotobiotic models and

functional validation, will be essential to elucidate their exact roles

and therapeutic potential in GC.

In addition, although H. pylori infection plays a central role in the

initiation of gastric cancer, its presence is often diminished or absent in
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advanced-stage tumor tissues. This is likely due to progressive mucosal

atrophy and tumor-induced environmental changes that no longer

support H. pylori colonization. Our cohort consisted predominantly of

late-stage GC samples, consistent with previous findings that show a

marked decline in H. pylori detection at later disease stages. These

observations suggest a dynamic shift in the gastric microbial community

during tumor progression, in which other microbial species may become

more dominant and influence prognosis and immune modulation.

The integration of bioinformatics validation through qPCR and

IHC adds robustness to our findings, yet further large-scale validation is

warranted. Our findings lay the groundwork for integratingmicrobiome

and immune signatures into clinical practice, potentially enhancing
FIGURE 7

Single cell analysis. (A) Cell annotation plot. (B) Cell distribution ratio plot. (C) shows the number of ligand-receptor pairs and communication
probability among all cell populations across samples; different colors in the outer circle represent different cell populations, and the size indicates
the number of ligand-receptor pairs in the population. A larger circle indicates a higher ratio of ligand-receptor pairs between cells. (D) Expression of
signature genes in single cells. (E) qPCR confirmation of signature gene expression in tumor tissues. (F) In the bubble plot, the x-axis represents cell
pairs, with colors distinguishing samples; the y-axis represents ligands and receptors. The size of the bubble indicates the p-value, with smaller p-
values corresponding to larger bubbles. The color represents the magnitude of communication probability. * indicates p < 0.05; ** indicates p <
0.01; *** indicates p < 0.001.
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prognostic accuracy and patient outcomes in GC. Future research

should prioritize longitudinal studies to understand microbiome-TME

interactions (7, 39)and mechanistic studies to elucidate the impacts of

specific microbes on cancer progression (40, 41). In particular, the

mechanism of tumor-associated fibroblasts in regulating intratumoral

bacteria-related immunity merits further investigation. However,

limitations exist, including potential biases in publicly available data

and bioinformatics tools, as well as the need for larger cohorts and

longitudinal data for further validation and causal inference.

The identification of nine intratumoral microbial genera associated

with patient prognosis provides novel insight into the microbial

component of the gastric tumor microenvironment. Notably, genera

such as Klebsiella and Achromobacter were enriched in tumor samples

with better survival and stronger immune infiltration, suggesting a

potential immunomodulatory or anti-tumor role. Conversely, risk-

associated genera including Desulfomicrobium and Dietzia were more

prevalent in patients with poorer prognosis, raising the possibility that

they may contribute to immunosuppression or tumor-promoting

inflammation. Although direct causality cannot be established from

our data alone, these microbial signatures are consistent with emerging

evidence that non-Helicobacter pylori bacteria can shape local immune

responses and influence tumor behavior. Thus, the prognostic

associations observed in our study support the concept that the

intratumoral microbiome is not merely a passive bystander but may

represent an integral component of the gastric cancer ecosystem. These

findings warrant further mechanistic investigations and highlight the

potential for microbial profiling to complement existing clinical

parameters in prognostic assessment.

The observed immune heterogeneity among microbiota-based

clusters supports the notion that distinct microbial communities

may shape the tumor immune microenvironment in gastric cancer.

Specifically, the enrichment of Klebsiella and Achromobacter in

Cluster C2 coincided with increased infiltration of activated CD8&+

T cells and helper T cells, suggesting a possible role for these genera

in promoting anti-tumor immune responses. In contrast, Clusters

enriched with genera such as Desulfomicrobium and Dietzia

exhibited immunosuppressive features, including elevated M2

macrophages and reduced T cell activity. These patterns

underscore the potential of intratumoral microbes to modulate

immune surveillance and tumor progression.

In summary, our study highlights the significant role of

microbiome-related immune gene signatures in GC prognosis,

offering a novel approach for risk stratification and personalized

therapy. These findings, supported by recent literature, validate the

potential clinical application of microbiome and immune profiling

in improving patient outcomes.
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