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Background: T cells are crucial in destroying pancreatic b cells, resulting in 
insulitis in type 1 diabetes (T1D). However, only 1% to 2% of infiltrating CD8+ T 
cells are specific for islet autoantigens. The mechanisms driving non-cognate T 
cells to the islets and their potential pathogenic roles remain unclear. 

Methods: We analyzed the frequency and function of circulating gut-tropic 
immune cells in 99 patients with T1D and 57 healthy controls. We also analyzed 
single-cell RNA sequencing on pancreata from 10 T1D donors, 11 autoantibody-
positive donors, and 15 non-diabetic controls. Correlation analysis was 
performed to elucidate the relationship between gut-tropic cells and clinical 
variables. In NOD mice, we examined gut-tropic T cell frequencies, cytokine 
profiles, and cytotoxicity at different disease stages. Additionally, we investigated 
the role of integrin a4b7 on gut-tropic T cells function and migration. 

Results: Gut-tropic CD8+ T cells are reduced in peripheral blood but elevated in 
pancreatic islets of patients with T1D, correlating with impaired b-cell function. 
Gut-tropic CD8+ T cells exhibited stronger cytokine production than non-gut-
tropic counterparts. In NOD mice, gut-tropic cells increased in the islets and 
decreased in the blood during insulitis progression. Gut-tropic CD8+ T cells 
showed augmented cytokine production and cytotoxicity against islet cells. 
Integrin a4b7 was a key mediator of the pathogenicity of CD8+ T cells and 
upregulated by the inflammatory signals. Insulitis directly drove gut-tropic CD8+ 

T cells migrating to inflamed islets. 

Conclusions: Gut-tropic CD8+ T cells bridge the intestinal immune system and 
the pathogenesis of T1D, offering potential biomarkers and therapeutic targets. 
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1 Introduction 

Type 1 diabetes (T1D) is an organ-specific autoimmune disease 
that results in the progressive destruction of insulin-producing 
pancreatic b-cells, leading to symptomatic hyperglycemia and 
lifelong exogenous insulin dependency (1). Insulitis, a hallmark of 
T1D, is characterized by infiltration of inflammatory immune cells 
in the islets of Langerhans (2–5). T cells are the predominant 
subpopulation in insulitis of T1D patients (2, 6). Previous studies 
have suggested that the accumulation of T cells is governed by the 
presence of islet autoantigens (7). However, only 1% to 2% of 
infiltrating CD8+ T cells represent islet autoantigen specificities (8, 
9). On the contrary, non-cognate T cells can be recruited to the 
inflammatory foci by proinflammatory and chemotactic signals in 
the islet microenvironment (10). These findings indicate an 
essential role of non-cognate T cells in the pathogenesis of T1D. 

Increasing evidence highlights the pivotal role of the gut 
immune system in the development of T1D (11–13). Gut-tropic 
T cells represent a unique subset of T cells, characterized by their 
selective expression of gut-homing receptors, particularly integrin 
a4b7 (14). The induction of these receptors occurs in gut-associated 
lymphoid tissue (GALT) and MLN (15, 16). Gut-tropic T cells could 
circulate between the peripheral blood and the gut, a process known 
as gut homing, which is essential for maintaining intestinal 
homeostasis (17). Under physiological conditions, gut-tropic T 
cells preferentially accumulate in the gut rather than in 
extraintestinal organs. However, emerging evidence suggests that 
gut-tropic T cells also play significant roles in certain extra-
intestinal immune-related diseases, including multiple sclerosis 
(18), autoimmune liver diseases (19), glaucoma (20) and

autoimmune arthritis (21). In T1D, T cells within the islets of 
OVA-transgenic mice express a4b7 integrin, driving islet 
infiltration and diabetes development (22). Additionally, tellurium 
compounds can prevent and reverse diabetes in NOD mice by 
inhibiting a4b7 integrin activity (23). The aforementioned evidence 
from animal models indicates a role of a4b7 in T1D. However, the 
expression of a4b7 integrin in peripheral and pancreatic T cells 
from patients with T1D, its correlation with clinical indicators, and 
the differences between a4b7+ and a4b7- T cells in their attack on 
pancreatic b cells remain unclear. 

Here, we characterized circulating and pancreatic gut-tropic 
immune cells in patients with T1D and evaluated the correlation 
between these cells and clinical variables. Our results revealed that 
gut-tropic T cells in T1D patients exhibit significantly higher levels 
of proinflammatory cytokines compared to those in healthy 
controls. Furthermore, we found that gut-tropic CD8+ T cells

possess a stronger ability to kill pancreatic b cells than non-gut-
tropic CD8+ T cells. Neutralizing antibody blockade experiments 
showed that integrin a4b7 positively regulates the function of CD8+ 

T cells. Additionally, we observed that inflammatory cytokines 
could enhance the expression of a4b7 on gut-tropic CD8+ T cells. 
Collectively, our findings elucidate a mechanistic link between the 
intestinal immune system and the pathogenesis of T1D, thereby 
offering promising therapeutic targets for the immunotherapy of 
this disease. 
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2 Materials and methods 

2.1 Study population 

The present study cohort comprised 99 patients diagnosed with 
T1D at the First Affiliated Hospital of Nanjing Medical University 
and 57 age-matched healthy controls (HC). Diabetes was diagnosed 
according to American Diabetes Association criteria. The criteria 
for patients classified into T1D were detailed as follows (1): 
positivity for at least one islet autoantibodies: glutamic acid 
decarboxylase antibodies (GADA), insulin autoantibodies (IAA), 
islet cell cytoplasmic autoantibodies (ICA), insulinoma associated 
protein 2 antibodies (IA-2A), and zinc transporter 8 antibodies 
(ZnT8A); (2) insulin dependence from the time of disease onset; (3) 
fasting C-peptide ≤ 200 pmol/L. Healthy controls were euglycemia 
and showed no evidence of islet autoimmunity. Exclusion criteria 
included the following items: other autoimmune diseases, e.g., 
systemic lupus erythematosus and rheumatoid arthritis; malignant 
tumor; history of immune suppressive treatment for more than 7 
days; allergic diseases and pregnancy. 

The study was approved by the Human Ethics Committee of the 
First Affiliated Hospital of Nanjing Medical University in 
accordance with the principles of the Declaration of Helsinki. 
Informed consent was obtained from all participants or their legal 
guardians in this study. The demographic and clinical features of 
the enrolled subjects are shown in Supplementary Table S1. 

A publicly available single-cell RNA sequencing (scRNA-seq) 
data of human pancreatic islets from the Human Pancreas Analysis 
Program (https://hpap.pmacs.upenn.edu) was used and imported 
in R version 4.4.3. 
2.2 Peripheral blood mononuclear cell 
preparation and flow cytometry analysis 

Fresh peripheral blood mononuclear cells (PBMCs) from 
patients with T1D and healthy controls were isolated according to 
the manufacturer’s instructions. 

For surface marker immunostaining, PBMCs were then labelled 
in PBS containing 5% FCS with the following panel of 
fluorochrome-labelled monoclonal antibodies (mAbs): anti-
human CD3 (UCHT1, cat. no. 300426, RRID: AB_830755), anti-
human CD49d/Integrin a4 (9F10, cat. no. 304304, RRID: 
AB_314430), anti-human Integrin b7 (FIB504, cat. no. 321208, 
RRID: AB_571965) from BioLegend (San Diego, CA, USA) and 
anti-human CD8 (OKT8, cat. no. 53-0086-42), anti-human CD20 
(2H7, cat. no. 56-0209-42) from eBiosciences (Thermo Fisher 
Scientific, Carlsbad, CA, USA) for 20 min at 4°C in the dark. 

For detection of intracellular cytokines, PBMCs were activated 
with phorbol myristate acetate (PMA) (50 ng/ml; Sigma-Aldrich, 
MO, USA) and ionomycin (1 mg/ml; Sigma-Aldrich) in the 
presence of brefeldin A (10 mg/ml; Sigma-Aldrich) for 5h at 37°C 
in RPMI medium supplemented with 10% FCS. After surface 
staining, PBMCs were fixed and permeabilized using the Fixation/ 
Permeabilization Buffer, then washed and stained for 30 min at 4°C 
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in the dark, with the following mAbs: anti-human IFN-g (4S.B3, cat. 
no. 45-7319-42) from eBiosciences, anti-human IL-17 (BL168, cat. 
no. 512322, RRID: AB_ 11218604) and TNF-a (MAb11, cat. no. 
502950, RRID: AB_2565860) from BioLegend. 

The analysis was performed using a FACS Aria II Sorp flow 
cytometer (BD Biosciences, San Diego, CA), and FlowJo 10.4 
software (San Carlos, CA, USA) was used to analyze the data. 
2.3 Mice 

Female NOD/ShiLtJ and NOD.Cg-Prkdcscid/J (also referred as 
NOD.scid) mice were purchased from GemPharmatech (Jiangsu, 
China) and housed in the specific pathogen-free animal facility. All 
animal experiments were conducted with the permission of the 
Institutional Animal Care and Use Committee of Nanjing 
Medical University. 
2.4 Generation of gut-tropic CD8+ T cells 

Gut-tropic T cells were generated from splenocytes of 10-week-
old female NOD mice as previously described (24). Splenocytes 
were cultured in the presence or absence of 200 nM RA 
(MedChemExpress, Monmouth Junction, NJ, USA) in RPMI 
1640 complete medium supplemented with 2 mg/mL anti-mouse 
CD3 (OKT3, eBioscience) and 1mg/mL anti-mouse CD28 (CD28.2, 
BD Pharmingen). Half of culture medium was replaced with fresh 
medium every 2–3 days. After 4–5 days, gut tropic cells were 
harvested and analyzed by FACS analysis. Approximately 80% of 
the cells were a4b7+ T cells. Then, CD8+ T cells were isolated by 
magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). 
2.5 T-cell and islet-cell coculture assays 

Dispersed CFSE-labelled islets from NOD.scid mice were 
pulsed with IGRP206–214 peptide followed by co-incubating with 
gut-tropic CD8+ T cells or control T cells at different ratios in the 
presence of 2 mg/mL anti-mouse CD3 and 1mg/mL anti-mouse 
CD28 for 12 hours. Cells were stained with propidium iodide 
(Beyotime, Shanghai, China) before analysis by FACS analysis. 
The cytotoxicity was evaluated as the percentage of dead islet cells 
shown as double positive for CFSE and propidium iodide. 
2.6 Tissue collection and single cell 
suspension preparation 

Mice were euthanized under isoflurane anesthesia. The spleen 
or MLNs of mice were harvested, and single-cell suspensions were 
generated. Erythrocytes were lysed from the splenocytes with red 
blood cell lysis buffer. 

For pancreatic infiltrating immune cell isolation, the pancreas 
was perfused with 3 ml HBSS containing 1 mg/mL collagenase P 
Frontiers in Immunology 03 
(Roche, Basel, Switzerland), quickly removed, and then incubated at 
37°C for 20 min. The digestion was stopped by adding 30 ml HBSS 
containing 10% FBS, followed by one more wash with HBSS buffer. 
Suspended cells were gently layered on the top of Histopauqe 1077 
(Sigma-Aldrich, St. Louis, MO, USA) and centrifuged at 900g for 20 
min with no brake. The middle layer was then collected and washed 
with 5 mL RPMI 1640 complete medium. 

For intestine lamina propria immune cell isolation, intestine 
tissues were cut into small pieces and incubated with digestion 
solution: collagenase I (1 mg/mL; Thermo Fisher Scientific) and 
DNase I (50 µg/mL; Sigma-Aldrich) in RPMI 1640 complete media. 
The sample was incubated for 25 min at 37°C. Single cells were 
obtained by filtering the solution through a 100-mm cell strainer. 
Total cells were then resuspended in a 40% Percoll solution (GE 
Healthcare, Waukesha, WI, USA) and layered on top of an 80% 
Percoll solution. After density gradient centrifugation at 2000 rpm 
for 30 min, cells were collected from the middle layer and prepared 
for further flow cytometry analysis. 

For murine peripheral blood lymphocyte isolation, peripheral 
blood RBCs were lysed by RBC Lysis Buffer (BioLegend) at room 
temperature for 15 minutes. Cell pellets were then resuspended in 
the staining buffer after washing once time. 
2.7 Multiple low-dose streptozotocin 
administration 

Streptozotocin (STZ) (MedChemExpress) was dissolved in 
citrate  buffer  (pH  4.2)  in  the  dark  and  administered  
intraperitoneally within 5 min at a dose of 30 mg/kg as previously 
described (24). NOD-scid mice were injected on 5 consecutive days 
and provided with 10% sucrose water after administration. 
2.8 In vivo homing assays to study gut-
tropic CD8+ T cell migration 

In vivo homing assays were performed as previously described 
(25). Briefly, gut-tropic CD8+ T cells were generated as above, and 
then labeled with carboxyfluorescein succinimidyl ester (CFSE, 
invitrogen). Age-matched female NOD-scid mice were used as 
host mice. Each host mouse was intravenously injected with 
1x107 donor cells. 
2.9 CD8+ T cell proliferation and function 
assays 

Gut tropic CD8+T cells were treated with different 
concentrations of mouse monoclonal antibody against integrin 
a4b7 (DATK32) (InvivoGen, San Diego, CA, USA) and cultured 
for 72 hours in the presence of Dynabeads™ Mouse T-Activator 
CD3/CD28 (Thermo Fisher Scientific) and recombinant IL-2 
(Peprotech, Rocky Hill, NJ, USA). Cells were stained with the 
CellTrace™ CFSE Cell Proliferation Kit (Invitrogen) according to 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1623428
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1623428 
the provided protocol and then analyzed by flow cytometry. For 
detection of intracellular cytokine IFN-g, in vitro generated cells 
were further stimulated with 50 ng/mL PMA, 1 mg/mL ionomycin 
and 10 mg/mL BFA for an additional 5 hours. Cells were then 
stained with surface marker antibodies before fixation and 
permeabilization, followed by staining with anti-mouse IFN-g 
(XMG1.2, cat.no. 505826, BioLegend) and TNF-a (MP6-XT22, 
cat.no. 505826, BioLegend). 
2.10 CD8+ T cell stimulation with cytokines 

Isolated CD8+ T cells were cultured in RPMI medium 1640 
containing 10% FCS and 1% penicillin/streptomycin for 3 days in 
the presence of recombinant interleukin-1b (50 U/mL, Peprotech), 
TNF-a (1000 U/mL, Peprotech), IFN-g (1000 U/mL, Peprotech) or 
culture medium alone. Cells were stimulated with Dynabeads™ Mouse 
T-Activator CD3/CD28 (Thermo Fisher Scientific) at a cell-to-bead 
ratio of 1:1. 
2.11 Statistical analysis 

Continuous variables were described as means ± standard 
deviation (SD). Categorical variables were described as percentages of 
the total group. For statistical comparisons, independent t-tests were 
applied to continuous variables, while non-continuous variables were 
analyzed using the Chi-squared test. Intra-group comparisons were 
conducted using paired t-tests. The Kruskal–Wallis test, was used for 
more than two groups. The associations between the frequencies of cell 
subsets and other parameters were assessed using Pearson correlation 
or, when appropriate, Spearman rank correlation. The boxplots of 
human islets were generated using R version 4.4.3, with the 
geom_boxplot function from the ggplot2 package and the 
stat_compare_means function from the ggpubr package, specifying 
the method as “wilcox.test”. Additional statistical analyses were 
performed using GraphPad Prism software (version 9; GraphPad 
Software, San Diego, CA). A two-tailed P-value of less than 0.05 was 
considered statistically significant. 
3 Results 

3.1 Gut-tropic a4b7+CD8+ T cells are 
significantly decreased in the circulation 
but increased in pancreatic islets in 
patients with T1D 

Demographic and clinical characteristics of all participants are 
summarized in Supplementary Table S1. There were no significant 
differences in age and gender distribution between HCs and T1D 
patients. However, the enrolled T1D patients exhibited higher 
HbA1c levels and lower BMI. We first characterized the 
frequency of a4b7+ gut-tropic immune cells in peripheral blood 
samples from patients with T1D compared to age- and gender-
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matched HCs (Figure 1A). In T1D patients, the frequency of 
circulating a4b7+ B cells was significantly reduced, as compared 
with healthy controls (Figure 1B). A similar reduction was observed 
for the frequency of a4b7+CD4+ T cells and a4b7+CD8+ T cells in 
the peripheral blood of T1D patients (Figures 1C, D). 

Furthermore, we reanalyzed single-cell RNA sequencing 
(scRNA-seq) data of pancreatic islets from the Human Pancreas 
Analysis Program (HPAP) (https://hpap.pmacs.upenn.edu). In 
CD4+ T cells and B cells, the levels of ITGA4 and ITGB7 did not 
show significant differences between T1D and AAB+ subjects 
compared with normal controls (Figures 1E, F). Conversely, in 
T1D patients, the levels of ITGA4 and ITGB7 in CD8+ T cells were 
significantly increased compared with both normal controls and 
AAB+ subjects (Figure 1G). 
3.2 Gut-tropic a4b7+CD8+ T cells display 
stronger cytokine production in T1D 
patients 

To clarify the immune phenotype of circulating gut-tropic 
a4b7+ T cells, we then stimulated PBMCs with PMA and 
ionomycin and analyzed the production of intracellular cytokine 
IFN-g, TNF-a and IL-17A in the HCs and T1D patients. In both 
groups, a4b7+CD4+ T cells exhibited significantly higher levels of 
IFN-g, TNF-a and IL-17A compared with their a4b7−CD4+ T cell 
counterparts (Figures 2A–C). In parallel, a4b7+CD8+ T cells in 
T1D patients showed more robust expression of IFN-g and TNF-a 
than a4b7−CD8+ T cells (Figures 2D, E). However, no significant 
differences in IL-17A levels were observed (Figure 2F). Within the 
CD8+ T cell population, only the expression of IFN-g was higher on 
a4b7+ cells compared with a4b7− cells in the HCs (Figures 2D–F). 

To further investigate the functional phenotype of circulating 
gut-tropic a4b7+ T cells during the disease progression of T1D, we 
compared the levels of cytokine production by gut-tropic a4b7+ T 
cells between patients with T1D and HCs (Supplementary Figures 
S1A, B). The frequency of IFN-g+a4b7+CD4+ T cells and TNF-
a+a4b7+CD4+ T cells was not altered in these two groups 
(Figures 3A, B). However, the frequency of IL-17A+a4b7+CD4+ T 
cells was slightly increased in patients with T1D compared with 
HCs (Figure 3C). In a4b7+CD8+ T cells, we found increased 
expression of IFN-g, TNF-a, and IL-17A in the patients with 
T1D compared to HCs (Figures 3D–F). These results suggest that 
a4b7+CD8+ T cells display an aberrant cytokine profile in T1D. 
3.3 The decline in circulating gut-tropic 
a4b7+CD8+ T cells is correlated with the 
impairment of b-cell function in T1D 

Next, we investigated whether a4b7+ cell frequency was 
associated with diabetes-related clinical variables in patients with 
T1D. Intriguing, we observed that the frequency of circulating 
a4b7+CD8+ T cells positively correlated with plasma C-peptide 
levels (Figure 3G). To further explore this relationship, we stratified 
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the patients into two groups based on their b-cell function: those 
with b-cell failure (C-peptide below 0.01 nmol/L, n = 35) and those 
with relatively preserved b-cell function (C-peptide ≥ 0.2 nmol/L, n 
= 33). Notably, circulating a4b7+CD8+ T cells were elevated in the 
b-cell function preserved group compared to the b-cell failure 
Frontiers in Immunology 05 
group (Figure 3H). However, this correlation was not observed in 
other groups (Figure 3G). The frequency of a4b7+ B cells 
demonstrated a strong negative correlation with the disease 
course in T1D patients (Figure 3I). Moreover, when patients with 
T1D were divided into two groups based on disease duration, those 
FIGURE 1 

Circulating gut-tropic lymphocytes are altered in patients with T1D. (A) Representative example of flow cytometry gating of circulating gut-tropic a4b7+ 

lymphocytes. (B) Frequencies of circulating a4b7+ B cells among B cells in HCs (n = 57) and T1D patients (n = 99). (C) Frequencies of circulating 
a4b7+CD8+ T cells among CD8+ T cells in HCs (n = 57) and T1D patients (n = 99). (D) Frequencies of circulating a4b7+CD4+ T cells  among CD4+ T cells  
in HCs (n = 57) and T1D patients (n = 99). (E) The difference in ITGA4 and ITGB7 mRNA expression in human islets was analyzed in CD4+ T cells from 
donors in AAB+ (n=11), T1D (n=10) and ND (n=15). (F) The difference in ITGA4 and ITGB7 mRNA expression in human islets was analyzed in B cells from 
donors in AAB+ (n=11), T1D (n=10) and ND (n=15). (G) The difference in ITGA4 and ITGB7 mRNA expression in human islets was analyzed in CD8+ T cells  
from donors in AAB+ (n=11), T1D (n=10) and ND (n=15). P values were calculated by non-parametric statistical tests. *p < 0.05, ***p < 0.001 and 
****p < 0.0001. HC, healthy controls; T1D, type 1 diabetes; ND, non-diabetic controls; AAB+, autoantibodies positive. 
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with >5 years since diagnosis (n = 39) had a significantly lower 
frequency of a4b7+ B cells compared to those with ≤5 years since 
diagnosis (n = 60) (Figure 3J). However, disease duration did not 
appear to influence the frequencies of a4b7+CD4+ T cells and 
a4b7+CD8+ T cells (Figure 3I). 
Frontiers in Immunology 06
Further, we analyzed the differences in the frequency of a4b7+ 

cells among patients with diverse islet autoantibody profiles. 
There were no significant differences in the frequency of a4b7+ 

cells between patients who were positive for GADA, IAA, ZnT8A, 
IA2, and ICA, and those who were negative for these 
FIGURE 2 

Phenotypic analysis of a4b7+ T cells compared with a4b7- T cells in HCs and T1D patients. (A-C) Representative flow cytometry gating plots and 
qualification of IFN-g (A), TNF-a (B) and IL-17A (C) expression in a4b7-CD4+ T and a4b7+CD4+ T cells in HCs (n = 57) and T1D patients (n = 99). 
(D-F) Representative flow cytometry gating plots and qualification of IFN-g (D), TNF-a (E) and IL-17A (F) expression in a4b7-CD8+ T and a4b7+CD8+ 

T cells in HCs (n = 57) and T1D patients (n = 99). P values were calculated by a paired t-test. *p < 0.05 and ****p < 0.0001. 
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autoantibodies (Supplementary Figures S2A–E). Additionally, the 
frequency of a4b7+ cells remained unchanged despite alterations 
in islet autoantibody titers (Supplementary Figures S2F–J). 
Moreover, no significant associations were detected between 
the frequency of a4b7+ cells and clinical variables including 
age, years of diagnosis, BMI, or HbA1c levels in either group 
(Supplementary Figure S3). 
Frontiers in Immunology 07 
3.4 Increased gut-tropic cell infiltration in 
NOD mice pancreas during insulitis 
progression 

To elucidate the mechanisms underlying the reduced frequency 
of a4b7+ T cells in the peripheral blood of T1D patients, we further 
examined the alterations in the frequency of various a4b7+ cell 
FIGURE 3 

Aberrant immunophenotype of a4b7+CD8+ T cells in patients with T1D. (A-C) The frequency of IFN-g+a4b7+CD4+ T cells (A), TNF-a+a4b7+CD4+ T 
cells (B) and IL-17A+a4b7+CD4+ T cells (C) in HCs (n = 57) and T1D patients (n = 99). (D-E) The frequency of IFN-g+a4b7+CD8+ T cells (D), TNF-
a+a4b7+CD8+ T cells (E) and IL-17A+a4b7+CD8+ T cells (F) in HCs (n = 57) and T1D patients (n = 99). (G-J) Correlation analysis between frequencies 
of a4b7+ lymphocytes and clinical variables. (G) Linear regression analysis of circulating a4b7+ lymphocytes frequencies and loge-transformed 
plasma C-peptide levels in T1D patients (n = 99). (H) Frequency of circulating a4b7+CD8+ T cells in patients with islet failure (n = 35) and those with 
preserved islet function (n = 33). (I) Linear regression analysis of circulating a4b7+ lymphocytes frequencies and disease duration in T1D patients (n = 
99). (J) Frequency of circulating a4b7+ B cells in patients with less that 5 years (n = 59) or more than 5 years (n = 40) since diagnosis. Only 
significant Spearman’s correlation coefficients are represented. *p < 0.05, **p < 0.01 and ****p < 0.0001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1623428
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1623428 

 

subsets within paired blood samples and pancreas tissue in NOD 
mice. We selected two distinct time points: 5 weeks of age, 
representing the initiation stage of immune assault, and 20 weeks 
of age, representing the destruction stage (Figures 4A, C). In line 
with population data, we observed a decrease in the frequencies of 
circulating a4b7+ T cells and a4b7+ B cells in 20-week-old NOD 
mice compared to 4-week-old NOD mice (Figure 4B). In contrast to 
the findings on peripheral a4b7 expression, there was a significant 
increase in the accumulation of a4b7+ T cells and a4b7+ B cells in 
the pancreas of NOD mice at the destruction stage (Figure 4D). 
Although the change in frequency was subtle, the numbers of 
a4b7+CD4+ T cells, a4b7+CD8+ T cells, and a4b7+ B cells in the 
pancreas were increased by approximately 1 to 1.5 times in 20-
week-old NOD mice compared with 4-week-old NOD mice 
(Figures 4E–G). These data indicate that more gut-tropic cells 
migrate from the periphery to the pancreas as insulitis progresses. 
3.5 Gut-tropic CD8+ T cells show 
augmented cytokine production and islet 
b-cell cytotoxicity in vitro 

The immunophenotype of gut-tropic T cells infiltrating the 
pancreas was then analyzed (Figure 5A). Compared with 4-week-old 
NOD mice, pancreatic gut-tropic CD4+ T cells from 20-week-old NOD 
mice exhibited increased secretion of IL-17A, whereas no significant 
increase in IFN-g secretion was observed (Figure 5B). Notably, 
pancreatic gut-tropic CD8+ T cells exhibited an augmented 
inflammatory phenotype at the destruction stage, characterized by 
increased production of both IFN-g and IL-17A (Figure 5C). Moreover, 
pancreatic gut-tropic a4b7+ T cells displayed stronger cytokine 
production than their a4b7- counterpart as evidenced by the 
secretion of higher levels of IFN-g and IL-17A (Figures 5D–G). 

To demonstrate the direct cytotoxicity of gut-tropic CD8+ T cells  
on pancreatic islet cells, we designed a co-culture experiment with T 
cells and islets (Figure 5H). Firstly, we exogenously induced gut-tropic 
CD8+ T cells and non-gut-tropic CD8+ T cells according to the 
established protocol. Increasing numbers of the aforementioned 
CD8+ T cells were incubated for 12 h with a fixed mixture of 
peptide-pulsed, CFSE-labelled single islet cells. Flow cytometric 
analysis was performed to evaluate islet cell viability using PI dye. As 
is shown in Figure 5I, gut-tropic  a4b7+CD8+ T cells exhibited a 
stronger islet-cell killing capacity than a4b7-CD8+ T cells  in vitro. 
With a4b7+CD8+ T-cell number increased, the killing effect on islet 
cells was concomitantly upregulated, confirming the direct cytotoxicity 
of gut-tropic a4b7+CD8+ T cells. 
3.6 Inflammatory cytokines can upregulate 
integrin a4b7 and integrin a4b7 is a  
mediator of gut-tropic CD8+ T cell 
cytotoxicity in T1D 

Recent studies have proved that the expression of integrin a4b7 
can be induced by various stimuli, including cytokines and 
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chemokines. Consequently, we speculated that interleukin 1b (IL-
1b), interferon g (IFN-g), and tumor necrosis factor a (TNF-a), 
which are proinflammatory cytokines produced by antigen-
producing cells and T cells during T1D and are present in the 
inflamed islets, may influence the expression of integrin a4b7 
(Figure 6A). Interestingly, TNF-a alone treatment significantly 
increased the frequency of a4b7+CD8+ T cells, while integrin 
a4b7 expression on CD8+ T cells remained unchanged when 
treated with IFN-g or IL-1b. In addition, IFN-g and IL-1b 
amplified the induction of integrin a4b7  expression in the

presence of TNF-a (Figures 6B–D). Taken together, these 
findings suggested that proinflammatory signals present in the 
inflamed islets specifically induce the expression of integrin a4b7 
on CD8+ T cells, thereby promoting their migration to the pancreas. 

Furthermore, we studied whether integrin a4b7 directly affects 
the proinflammatory phenotype of gut-tropic CD8+ T cells. 
Initially, we expanded a4b7+CD8+ T cells and subsequently these 
cells were exposed to a4b7 neutralizing antibody (DATK32). 
Surprisingly, blockade of a4b7 exerted  significant inhibitory 
effects on the proliferation of gut-tropic CD8+ T cells (Figure 6E). 
Moreover, the impact on cytokine secretion was also diminished 
when treated with 100ug/mL DATK32 (Figure 6F), while no 
significant effect on cell viability was observed (Supplementary 
Figure S4). These results confirm that integrin a4b7 not only 
mediates the migration of CD8+ T cells but also participates in 
the regulation of CD8+ T cell function in T1D. 
3.7 In vivo analysis of gut-tropic CD8+ T 
cells homing to inflamed islets in murine 
models 

Lastly, to directly elucidate the migration patterns of gut-tropic 
T cells in the context of islet destruction, we performed in vivo 
homing assays by adoptively transferring CFSE-labeled gut-tropic 
CD8+ T cells into age-matched NOD-scid mice. Before T cell 
transfer, NOD-scid mice were injected with multiple low-dose 
STZ for 5 days to partially damage pancreatic b cells (Figure 7A). 
We observed that STZ treatment significantly recruited more gut-
tropic T cells from the bloodstream into pancreas (Figure 7B), with 
the concomitant decline in peripheral frequencies (Figure 7C). 
Similar trend for gut-tropic CD8+ T cell homing was seen in the 
spleen (Figure 7D). We did not observe a pronounced migration of 
gut-tropic CD8+ T cell to the lamina propria of small intestine and 
colon (Figures 7E, F). Interestingly, under normal conditions, gut-
tropic T cells exhibited a tendency to relocate to MLN, as evidenced 
by increased frequencies of CFSE+ T cells (Figure 7G). However, a 
downward trend was observed in the MLN of STZ-treated group, 
although the trend did not reach statistical significance (Figure 7H). 
4 Discussion 

In the present study, we have demonstrated an obvious 
reduction of peripheral gut-tropic T cells through analyzing a 
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cross-sectional cohort of patients with T1D and healthy controls. 
Furthermore, data from human islets showed that the gut-tropic 
CD8+ T cells were significantly increased in patients with T1D 
compare to AAB+ subjects and healthy controls. This suggested that 
Frontiers in Immunology 09
trafficking of gut-tropic T cells to the pancreas may play a role in the 
pathogenesis of T1D. Same trend in the frequencies of circulating 
gut-tropic T cells has been observed in other diseases, such as 
inflammatory bowel diseases (IBDs) (26) and chronic liver diseases 
FIGURE 4 

Alternations of gut-tropic immune cells in paired blood samples and pancreatic tissues of NOD mice during insulitis progression. (A, B) Representative 
flow cytometry plots and qualification of circulating a4b7+CD4+ T cells  and  a4b7+CD8+ T cells in 5-week-old and 20-week-old NOD mice. 
(C, D) Representative flow cytometry plots and qualification of pancreatic a4b7+CD4+ T cells  and  a4b7+CD8+ T cells in 5-week-old and 20-week-old 
NOD mice. (E-G) Cell number of a4b7+CD4+ T cells (E), a4b7+CD8+ T cells  (F), and  a4b7+ B cells  (G) in the pancreas of 5-week-old and 20-week-old 
NOD mice. *p < 0.05 and **p < 0.01. 
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(CLD) (27). Fischer et al. (26) reported a significant reduction of 
integrin a4b7 levels on the peripheral blood CD4+ Teff cells in 
patients with Crohn’s disease and ulcerative colitis. In addition, 
Graham et al. (19) reported a decrease frequency of a4b7+CD4+ T 
Frontiers in Immunology 10 
and a4b7+CD8+ T cells in the peripheral circulatory system of CLD 
patients. However, some discrepant reports also remain, Guggino 
et al. (28) described that gut-derived a4b7+CD69+CD103+CD8+ 

tissue-resident memory T cells are expanded in the peripheral blood 
FIGURE 5 

Murine gut-tropic CD8+ T cells show augmented cytokine production and islet b-cell cytotoxicity. (A-C) Representative flow cytometry plots and 
frequencies of IFN-g and TNF-a in a4b7+CD4+ T (B) and a4b7+CD8+ T cells (C) in 5-week-old and 20-week-old NOD mice. (D, E) Frequencies of 
IFN-g (D) and IL-17A (E) in a4b7-CD4+ T and a4b7+CD4+ T cells in the pancreas. (F, G) Frequencies of IFN-g (F) and IL-17A (G) in a4b7-CD8+ T and 
a4b7+CD8+ T cells in the pancreas. (H) Schematic of in vitro b-cell killing assays. (I) The ratio of live CFSE-labelled islet cells in the indicated 
conditions. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. Created in BioRender. Su, Z. (2025) https://BioRender.com/4l79lpr. 
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of SpA patients. In addition, He et al. (20) found that the percentage 
of circulating b7+CD4+ T cells was increased in patients with 
glaucoma. We speculate that possible explanations for the 
divergent results are (1) systemic inflammatory response has been 
proved to be more severe in SpA patients (29) whereas systemic 
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inflammatory manifestations are less prominent in organ-specific 
diseases (IBDs, CLD and T1D); (2) blood-retina barrier prevents 
circulating T cells from entering retina (30), thereby allowing a 
proportion of pathogenic T cells retaining in the peripheral blood; 
(3) elevated intraocular pressure in glaucoma can result in certain 
FIGURE 6 

Inflammatory cytokines can upregulate integrin a4b7 and integrin a4b7 is a mediator of gut-tropic CD8+ T cell cytotoxicity in T1D. (A-D) Regulation 
of a4b7 expression by proinflammatory cytokines. CD8+ T cells were incubated with various recombinant cytokines for 72 hours as indicated. FACS 
analysis (A) and the quantification of a4b7 expression on CD8+ T cells (B) were done. Histogram of a4b7 expression (C) and the quantification (D) by 
gMFI of the indicated groups (E–F) The a4b7 neutralizing antibody DATK32 suppresses the proliferation and cytokine secretion of CD8+ T cells in 
vitro. (E) Analysis of the proliferation capacity of gut-tropic CD8+ T cells after treatment with either 100 µg/mL isotype IgG2a control or with 100 µg/ 
mL DATK32 after 72 hours. (F) Analysis of IFN-g secretion in gut-tropic CD8+ T cells after treatment with either 100 µg/mL isotype IgG2a control or 
with 100 µg/mL DATK32 after 72 hours. *p < 0.05,**p < 0.01, ***p < 0.001 and ****p < 0.0001. 
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damage-associated molecular patterns (DAMPs) releasing into the 
blood, contributing to a low-grade systemic inflammation and 
activation of peripheral immune cells (31, 32). 

Another intriguing finding of our study is that integrin a4b7 
endows CD8+ T cells with a more proinflammatory phenotype. 
Frontiers in Immunology 12 
Similar to observations in patients with CLD (19), the expression of 
integrin b7 was correlated with increased levels of IFN-g, TNF-a 
and IL-17 in both CD4+ and CD8+ memory T cells. This suggests 
that integrin a4b7 not only participates in the adhesion and 
migration of T cells (33, 34) but also plays a significant role in 
FIGURE 7 

In vivo analysis of gut-tropic CD8+ T cells homing to inflamed islets in murine models. (A) Schematic diagram of in vivo homing experiments. 
(B-G) Representative dot plots displaying donor CD8+ T cells (CFSE+ cells) in pancreas (B), blood (C), spleen (D), colon  (E), small intestine (F) and MLN 
(G) of host mice. (H) Frequencies of CFSE-labelled T cells in various tissues of control and STZ-treated group. **p < 0.01 and ****p < 0.0001. Created in 
BioRender. Su, Z. (2025) https://BioRender.com/4l79lpr. 
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regulating T cell function. We therefore investigated the direct 
cytotoxic effect of gut tropic CD8+ T cells on islet cells. Compared 
with a4b7-CD8+ T cells, a4b7+CD8+ T cells displayed a more 
robust islet cell-killing capacity. Further investigation into the 
mechanisms by which integrin a4b7 affects CD8+ T cell function 
is warranted. 

It is well established that expression of mucosal addressin cell 
adhesion molecule-1 (MAdCAM-1), the ligand of integrin a4b7, is 
upregulated on vascular endothelia in inflamed islets (35). This 
upregulation recruits a4b7+ cells to these inflamed sites (36), 
thereby partially explaining the accumulation of a4b7+ T cells in 
T1D. Alternatively, the increased proportional of a4b7+ T cells 
could be attributed to in situ induction. Previous studies have 
demonstrated that various stimuli, including cytokines and 
chemokines, can induce the expression of a4b7 on immune cells 
(26). Therefore, we hypothesized that inflammatory cytokines 
enriched in islet microenvironment might directly influence the 
expression of a4b7 on T cells. Our in vitro co-culture assays 
supported this hypothesis, identifying TNF-a as the most potent 
regulator of a4b7 expression on T cells. Consistent with our 
findings, TNF-a primarily exert its role on the immune system 
(37, 38) while IFN-g has a more prominent impact on islet b 
cells (39) in the context of T1D. Additionally, the combination of 
three cytokines further induced a4b7 upregulation compared to 
TNF-a alone, suggesting a synergistic effect among these 
proinflammatory cytokines. 

Our study also suffers from several limitations. First, we were 
only able to analyze gut-tropic cells in blood samples of T1D 
patients. Further investigation of human insulitic lesions in 
pancreas samples at different stages of T1D would be necessary 
to confirm the frequency and phenotype of gut-tropic T cells in 
lesion tissues. Another limitation of our study is that we did not 
elucidate the mechanisms by which gut-tropic CD8+ T cells acquire 
diabetogenicity. Mounting evidence has identified gut homing as a 
key step for a4b7+ T cells to become pathogenic. As demonstrated 
in the experimental autoimmune encephalomyelitis (EAE) disease 
model, the migration of b7+CD4+ T cells to the gut and the 
subsequent interaction with gut microbiota potentiated their 
encephalitogenic potential (18). Similarly, in the glaucoma 
disease model, b7+CD4+ T cells accumulated in the gut prior 
to retina and inhibition of gut entry impeded their subsequent 
retinal infiltration (20). In our study, we demonstrated that 
proinflammatory cytokines present in the inflamed islets 
specifically activate integrin a4b7+CD8+ T cells. These results 
may suggest that the killing of b-cells by integrin a4b7+CD8+ T 
cells could be related to bystander activation. However, the scope of 
our study did not encompass the issue of the antigen specificity of 
a4b7+CD8+ T cells. Integrin a4b7+ T cells can also home to the 
intestinal mucosa and participate in local immune responses. The 
potential cross-reactivity with islet autoantigens and subsequent b-
cell destruction following entry into the islet inflammatory 
microenvironment remains unexplored in this study. Further 
investigation into the mechanisms by which integrin a4b7+CD8+ 

T cells cause pancreatic b-cell destruction in the future 
is warranted. 
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Taken together, our research has revealed that gut-tropic 
a4b7+CD8+ T cells exhibit a highly pathogenic phenotype. These 
cells migrate to inflammatory sites and play a significant role in the 
destruction of pancreatic b cells. Our findings suggest an essential role 
of the gut-pancreas axis in the pathogenesis of T1D and may provide 
valuable insights into the development of therapeutic strategies. 
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SUPPLEMENTARY FIGURE 1 

Representative flow cytometry gating plots of IFN-g, TNF-a and IL-17A in 
a4b7+CD4+ T (A) and a4b7+CD8+ T cells (B) in HCs and T1D patients. ****p 
< 0.0001. 

SUPPLEMENTARY FIGURE 2 

(A-E) Differences in the frequency of a4b7+ cells among patients with diverse 
islet autoantibody profiles. (F-J) Correlation analysis between circulating 
a4b7+ lymphocyte frequencies and islet autoantibody titers. 

SUPPLEMENTARY FIGURE 3 

Correlation analysis between the frequency of a4b7+ cells and clinical 
variables including (A) age, (B) years of diagnosis, (C) BMI, or (D) HbA1c levels. 

SUPPLEMENTARY FIGURE 4 

The titration experiment of DATK32 on cell viability. 
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