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Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a tick-borne

phlebovirus first identified in China, causes severe illness characterized by high

fever, thrombocytopenia, leukopenia, and, in some cases, multi-organ failure and

death. With mortality rates ranging from 5% to 30% in endemic regions, SFTSV

has emerged as a significant public health threat across East Asia, including South

Korea and Japan, with potential for broader outbreaks. This review synthesizes

recent advances in SFTSV animal models and candidate vaccines, highlighting

their contributions and limitations. Current animal models, including mice,

ferrets, and non-human primates, partially replicate human disease but fail to

fully recapitulate clinical manifestations, limiting their translational utility. Vaccine

development has shown promise, with candidates such as mRNA, subunit, and

viral vector vaccines demonstrating efficacy in preclinical studies, yet none have

progressed to clinical trials. Key challenges include viral genetic diversity and

immune evasion. Future research should focus on refining animal models to

better mimic human pathology, developing broad-spectrum vaccines, and

integrating virological and immunological insights to enhance prevention and

treatment strategies for SFTSV.
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1 Introduction

Severe Fever with Thrombocytopenia Syndrome Virus

(SFTSV), officially classified as Dabie bandavirus (Family

Phenuiviridae , Genus Bandavirus) by the International

Committee on Taxonomy of Viruses (ICTV) in 2020, is a tick-

borne phlebovirus first isolated in 2009 from a patient in Henan

Province, China (1). Since then, cases have been documented in

South Korea, Japan, Vietnam, Myanmar, Thailand, Pakistan, and

many other countries and regions (2–6). Reports of human bites by

Haemaphysalis longicornis ticks in the United States have raised

concerns about the potential emergence of SFTSV as a public health

threat beyond Asia (7). According to the latest classification by the

International Committee on Taxonomy of Viruses (ICTV) in 2020,

SFTSV belongs to the family Phenuiviridae and the genus

Bandavirus, and it has been officially named Dabie bandavirus

(DBV) (8). However, the term SFTSV remains more widely used in

academic literature. Thus, this article continues to refer to the virus

as SFTSV.

The primary route of human infection with SFTSV is through

tick bites (9). The incubation period for the infection typically lasts

7–14 days, with a reported mortality rate ranging from 5% to 30%

(10). SFTSV infected patients generally progress through three

phases: the febrile phase, multiorgan dysfunction (MOD) phase,

and recovery phase. The febrile phase lasts approximately 7 days

and is characterized by fever, thrombocytopenia, leukopenia,

lymphadenopathy, and gastrointestinal symptoms (such as

nausea, vomiting, and diarrhea) (11). High viral loads detected

during this stage are a key marker for the clinical diagnosis of

SFTSV infection (12). The MOD phase develops rapidly between

days 7 and 13 post-infection, with elevated serum levels of alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

alkaline phosphatase (ALP), and lactate dehydrogenase (LDH),

along with prolonged activated partial thromboplastin time

(aPTT). Clinical manifestations during this phase include

hemorrhagic and neurological symptoms, disseminated

intravascular coagulation (DIC), multi-organ failure, and

persistent thrombocytopenia. These factors that are major

determinants of mortality. The MOD phase is critical for

determining the prognosis of SFTSV infected patients (13, 14).

The recovery phase, which occurs between days 11 and 19, is

marked by the resolution of clinical symptoms and the

normalization of laboratory parameters. Multiple clinical studies

have reported immunological parameters in clinical patients.

Current evidence indicates that severe disease is primarily

associated with a cytokine storm and elevated levels of pro-

inflammatory molecules such as TNF-a, IP-10, and IL-6 (15).

Furthermore, patients with severe disease exhibit lower counts of

CD3+, CD4+, and CD8+ T cells compared to those with mild disease

(16, 17). A reduction in the Th1/Th2 ratio and an increase in the

Th17/Treg ratio are also related to disease severity (18). These

changes suggest that an imbalance in cellular immunity is closely

linked to progression to severe disease. In terms of humoral

immunity, studies indicate that non-survivors lack NP or Gn

specific IgG production, and that the distribution and function of
Frontiers in Immunology 02
B cell subsets are abnormal, with impaired antigen-presenting

capacity (19). Additionally, age is a significant risk factor for

SFTSV prognosis, with mortality predominantly observed in

individuals aged 50 and above, and mortality rates increase with

age (20). Due to the severity of SFTSV infection, the World Health

Organization (WHO) has classified it as a priority pathogen

requiring urgent attention (21).

Vaccines are the most effective public health intervention for

preventing the spread of infectious diseases. Successful vaccination

programs have eradicated many life-threatening diseases, such as

smallpox and polio (22). The World Health Organization estimates

that vaccines prevent 2 to 3 million deaths annually from diseases

such as tetanus, pertussis, influenza, and measles (23). However, no

approved vaccine for SFTSV is currently available. The SFTSV

vaccines under development include live attenuated vaccines,

inactivated vaccines, recombinant vector vaccines, subunit

vaccines, DNA vaccines, and mRNA vaccines. All are still in the

preclinical stage, with no candidate vaccines having progressed to

clinical trials. Therefore, there is an urgent need to develop a

broadly effective vaccine to address this potential public

health threat.
2 SFTSV virology

2.1 Phylogeny

The family Bunyaviridae is the largest group of arboviruses,

with over 300 identified species. Based on serological,

morphological, and biochemical characteristics, this family is

classified into five genera: Orthobunyavirus, Phlebovirus,

Nairovirus, Hantavirus, and Tospovirus. Yu et al. conducted

whole-genome sequencing of 12 SFTSV strains isolated from

patients in China and identified the virus as an enveloped,

segmented, negative sense spherical RNA virus belonging to the

genus Phlebovirus (1). SFTSV was found to have close phylogenetic

relationships with the Heartland virus (HRTV) discovered in the

United States and the Malsoor virus identified in India (1, 24, 25).
2.2 Genomic structure and functions

The genome of SFTSV, like other viruses in the order

Bunyavirales, comprises three RNA segments: L, M, and S. The L

segment is negative sense RNA, consisting of 6,368 nucleotides, and

encodes the RNA dependent RNA polymerase (RdRp), which is

responsible for viral RNA replication and mRNA synthesis (26).

The M segment contains 3,378 nucleotides and encodes a

glycoprotein precursor (Gp). This precursor is processed by host

proteases into two subunits, Gn and Gc (27). Gn and Gc form the

viral envelope and possess antigenic properties. During endocytosis,

these glycoproteins mediate viral entry by binding to cellular

receptors and inducing low-pH-dependent membrane fusion (28).

Several factors, including non-muscle myosin heavy chain IIA

(NMMHC-IIA), C-type lectin receptors such as dendritic cell-
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specific intercellular adhesion molecule-3-grabbing non-integrin

(DC-SIGN), DC-SIGN-related molecules (DC-SIGNR), liver and

lymph node sinusoidal endothelial cell C-type lectin (LSECtin), and

UDP-glucose ceramide glucosyltransferase (UGCG), have been

identified as key players in SFTSV entry (29–32). Gn/Gc proteins

also serve as immunogenic targets, stimulating the production of

specific neutralizing antibodies, thus providing valuable directions

for future vaccine research (33). The efficacy of structural

glycoprotein-based vaccines has been demonstrated in SARS-

CoV-2, influenza virus, and Ebola virus (34–36).

The S segment consists of 1,744 nucleotides and employs an

ambisense coding strategy to encode the nucleocapsid protein (NP)

and non-structural protein (NSs) (37). NP is the most abundant

protein in SFTSV particles and infected cells. It forms hexamers that

encapsulate viral RNA (vRNA), creating ribonucleoprotein

complexes (RNPs). This function protects the viral genome from

degradation by host cell nucleases and innate immune responses

(38, 39). Recent studies indicate that NP triggers mitophagy to

degrade mitochondrial antiviral signaling proteins (MAVS),

thereby blocking MAVS-mediated antiviral signaling and evading

host immune defenses (40). NSs is an important virulence factor of

SFTSV, which can inhibit the induction of type I interferons (41).

Additionally, NSs targets the Tumor Progression Locus 2 (TPL2)-

A20-binding NF-kB inhibitory factor 2 (ABIN2)-p105 complex,

inducing interleukin-10 (IL-10) expression to enhance viral

pathogenicity (42). At the same time, NSs also plays a crucial role

in viral replication (43).
3 Epidemiology

3.1 Transmission

The transmission cycle and mechanisms of SFTSV in nature

remain unclear. Haemaphysalis longicornis is the primary vector

and an important reservoir of SFTSV (44). SFTSV RNA has also

been detected in various tick species, such as the Ixodes nipponensis,

Dermacentor nuttalli, and Haemaphysalis flava, in regions where

SFTSV outbreaks occur (45–47). The parthenogenetic reproduction

characteristic of the Haemaphysalis longicornis allows it to establish

new populations more rapidly than sexual reproduction,

accelerating the spread of the ticks (48).

Migratory birds have long been known to serve as long distance

carriers of ticks that harbor various human pathogens, such as

Crimean-Congo Hemorrhagic Fever Virus(CCHFV) and Tick-

Borne Encephalitis Virus (TBEV) (49, 50). The distribution of

Haemaphysalis longicornis aligns with the East Asia-Australia

migratory bird routes, indicating that the spread of this tick

species is likely linked to migratory birds (51).

Although the primary route of SFTSV infection in humans is

through tick bites, human-to-human transmission of the virus has

also been confirmed. Contact with the blood and bodily fluids of

infected individuals can lead to virus transmission. Additionally,

ticks may parasitize on a variety of wild animals and livestock,

including birds and domestic animals, thereby infecting these
Frontiers in Immunology 03
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through close contact (52). SFTSV specific antibodies have been

detected in a variety of animals, including goats, sheep, cattle, dogs,

and cats, with the highest antibody positivity found in goats and

cattle (53). However, these animals do not show obvious symptoms

of infection and do not exhibit significant viremia, serving as

reservoir hosts for SFTSV (Figure 1). The persistent infection

cycle in animal hosts allows SFTSV to continue to spread in

nature. Special protective measures should be taken for

populations with close contact with these animals.
3.2 Genotype and recombination

Phylogenetic analysis of SFTSV strains has revealed six

genotypes (A-F), with genotype B further subdivided into at least

three distinct genotypes (B-1, B-2, and B-3) (54, 55). In mainland

China, three of the six genotypes (F 43.6%, A 20.1%, D 15.4%) are

predominant, while the B-2 subtype is prevalent in South Korea

(36.1%) and Japan (86%) (54–56). The varying distribution of

genotypes in SFTSV endemic regions leads to significant

differences in mortality rates, with Japan (23%) and South Korea

(27%) experiencing higher mortality rates compared to China

(5.3%–16.2%) (57). Studies by Yun et al. have further

demonstrated a close association between mortality rates, patient

age, and SFTSV genotypes (55). Additionally, recombination plays

an important role in the genetic diversity of segmented genome

viruses. The segmented nature of the SFTSV genome leads to a high

probability of recombination events. At least seven recombinant

strains have been identified in China, while South Korea has

reported at least nine recombinant genotypes (55, 58).

The genetic recombination phenomenon of SFTSV reveals its

dynamic evolutionary characteristics in nature, presenting

significant challenges for SFTSV diagnosis, epidemiological

surveillance, treatment strategies, and vaccine development.

Particularly in vaccine research, recombination significantly

increases the genetic diversity of the virus, which may reduce the

protective efficacy of neutralizing antibodies induced by vaccines

against newly recombinant strains. Moreover, the high mutation

rate and recombination properties of the virus further drive

variation in antigenic epitopes, significantly enhancing the virus’s

immune evasion capacity. Additionally, recombination may alter

the pathogenicity and transmissibility of the virus, exacerbating

immune protection discrepancies between different genotypes,

leading to variable vaccine efficacy across regions. These complex

factors pose key scientific challenges that need to be addressed with

innovative research strategies and technological approaches for

effective vaccine development.

Given the challenges posed by SFTSV’s genetic recombination,

including heightened genetic diversity and immune evasion

capabilities, vaccine development necessitates multidimensional

strategies to enhance broad-spectrum efficacy and long-term

protection: In terms of dynamic monitoring and evolutionary

analysis: High-throughput sequencing can be employed to identify

viral mutation hotspots, while the establishment of databases and
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bioinformatics analysis platforms enables the tracking of viral

evolutionary dynamics across different regions and time periods,

thereby providing the latest genetic information for vaccine design.

Furthermore, by integrating structural biology techniques such as

cryo-electron microscopy (cryo-EM) and X-ray crystallography to

perform high-resolution structural analyses of key antigens (e.g., Gn

and Gc), critical neutralizing antibody epitopes can be precisely

mapped. The application of multi-target strategies and advanced

technological platforms in vaccine design holds promise for

overcoming the challenges posed by SFTSV gene recombination

and mutation-induced immune evasion and diversity, ultimately

leading to broader and more effective vaccine protection.
4 Animal models for SFTSV

Animal models are essential tools for studying the pathogenesis

of viruses, developing vaccines, and exploring antiviral treatments.

However, most animals do not exhibit fatal effects upon SFTSV

infection, which presents a significant obstacle in the development

of vaccines and antiviral therapies. It is crucial to thoroughly

understand the pathogenesis of SFTSV in each model, taking into

account the differences and similarities between animal models and

human cases. Recent studies have identified several animal models
Frontiers in Immunology 04
highly susceptible to SFTSV infection. These models can mimic

certain aspects of the pathogenesis observed in human SFTS,

providing a basis for developing vaccines and antiviral drugs

against SFTSV infection (Table 1).
4.1 Mice

4.1.1 Immunocompetent mice
In an early study, Jin et al. intramuscularly injected 105 TCID50

of the SFTSV HB29 strain into C57BL/6 mice, resulting in elevated

levels of AST, ALT, and BUN (blood urea nitrogen), along with

leukopenia and thrombocytopenia—pathological features similar to

mild human infections. Pathological changes were observed in the

liver, spleen, and kidneys, with viral RNA detected in all three

organs, though viral replication was observed only in the spleen

(59). Additionally, their research revealed that splenic macrophages

were the target cells of infection. However, the C57BL/6 mouse

model failed to progress into severe or fatal SFTSV infections. To

induce fatal infect ions, researchers administered the

immunosupp r e s s an t m i t omyc in C (59 ) . S im i l a r l y ,

immunocompetent adult mouse strains such as BALB/c, C3H,

FVB, and ICR (CD-1) showed no severe clinical manifestations

upon SFTSV infection (59, 60).
FIGURE 1

SFTSV Infection Mechanism Diagram. (A) Schematic of SFTSV structure, illustrating its enveloped nature and three RNA genome segments (L, M, S)
encoding RNA-dependent RNA polymerase (RdRp), glycoproteins (Gn/Gc), and nucleocapsid (NP) and non-structural (NSs) proteins, respectively.
(B) SFTSV is transmitted via Haemaphysalis longicornis tick bites to animal hosts (e.g., goats, cattle), with human infections occurring through direct
contact or tick bites; human-to-human transmission is also possible. (C) The virus enters host cells via clathrin-mediated endocytosis, with Gn/Gc
glycoproteins binding cellular receptors (e.g., DC-SIGN, NMMHC-IIA) and inducing low-pH-dependent membrane fusion. The viral genome is
released and replicates in the cytoplasm. Glycoproteins are translated and modified in the host endoplasmic reticulum and Golgi apparatus. New
viral particles assemble and are released via budding. The figure was created with BioRender.com.
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TABLE 1 Animal models investigated for SFTSV.
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4.1.2 Age-dependent mice
Newborn mice, including C57BL/6, BALB/c, Kunming, and

ICR (CD-1), are susceptible to SFTSV, exhibiting severe symptoms

and high mortality rates (61, 62). Although newborn mice are

highly sensitive to SFTSV and display significant pathological

changes, their immune systems are not fully developed, and

experimental operations are challenging. In comparison, aged

mice (over 20 months old), such as BALB/c, C3H, C57BL/6, and

FVB strains, show only slight weight loss (60, 65). Therefore, age-

related mouse models may not be suitable for simulating the

progression characteristics of SFTS in elderly human patients or

for studying the age-specific pathogenesis of SFTSV.

4.1.3 Immunocompromised mice
Immunodeficient gene knockout mice have also been employed

to study SFTSV infections. These include a/b interferon receptor

knockout (IFNAR−/−) mice (60, 62, 64), signal transducer and

activator of transcription 2-deficient (STAT2−/−) mice, and mice

treated with blocking anti-type I interferon (IFN)-a receptor

antibody (IFNAR Ab-treated mice) (60, 62–64, 66). These models

exhibit high susceptibility to SFTSV infection and lethal outcomes,

with viral replication detected in multiple organs. Severe infection

symptoms were observed, including significant weight loss, multi-

organ patholog ica l changes , severe leukopenia , and

thrombocytopenia. Similar observations were made in the STAT2

knockout model of golden Syrian hamsters (69).

4.1.4 Humanized mice
Two humanized mouse models constructed through immune

system reconstitution have been reported as lethal models for

SFTSV, providing a closer simulation of human infection

compared to wild-type and immunocompromised mice. Li et al.

transplanted highly purified (>90%) human CD34+ cells, isolated

from umbilical cord blood, into mice via tail vein injection (68).

SFTSV infection in these mice led to multi-organ involvement,

reductions in platelet and white blood cell counts, and elevated ALT

and AST levels, closely resembling the clinical characteristics of

SFTSV patients. SFTSV infection in this humanized mouse model

resulted in fatal outcomes. Xu et al. established the HuPBL-NCG

mouse model by transplanting human peripheral blood

mononuclear cells (PBMCs) into NCG mice (67). The human

PBMCs transplanted into NCG mice provided early replication

targets for the virus, while infected human monocytes transmitted

the virus to mouse monocytes through an intercellular transmission

mechanism, which is more efficient in viral infections. Their study

also elucidated aspects of the pathogenesis of hemorrhagic

syndrome, including apoptosis, membrane protein endocytosis,

and cytokine stimulation. The HuPBL-NCG model mimics many

pathological features of human SFTSV infection, including virus-

induced histopathological changes, disruption of vascular

endothelial barriers, thrombocytopenia, and leukopenia. While

this humanized mouse model offers a valuable tool for

investigating the pathological mechanisms of SFTSV infection,

further exploration is required to study B cell immune responses

in detail.
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4.2 Rats

In the rat model, all newborn Wistar rats died after intracranial

(i.c.) inoculation with 2×107 copies, whereas 40% of the rats died

following intraperitoneal (i.p.) injection with 3×107 copies.

However, adult rats all survived after vaccination (61). Further

studies are needed to investigate the characteristics of the SFTSV rat

model, as histopathological and hematological examinations have

not been reported to date.
4.3 Ferrets

The ferret, with anatomical and physiological features similar to

those of humans, has been widely used in the study of various

infectious diseases (72, 73). Park et al. have demonstrated that

SFTSV infection in ferrets is age-dependent (65). After SFTSV

challenge, young ferrets (<2 years old) only exhibit mild symptoms

such as weight loss and slight weight gain. While there are changes

in AST/ALT levels, PLT and WBC counts, these quickly return to

normal ranges. Additionally, viral RNA can be detected in the

spleen, liver, kidneys, lungs, and serum. However, aged ferrets (>4

years old) are more susceptible to infection and exhibit symptoms

similar to severe human cases of SFTSV infection. These include

significant thrombocytopenia, leukopenia, elevated AST/ALT

levels, high fever, and weight loss. In aged ferrets, systemic

infection is also triggered, with viral RNA detected in various

tissues, and death occurs within ten days post-infection, with a

mortality rate of 93% (65).

Although the use of aged ferrets offers advantages in the study of

lethal SFTSV infection models and vaccine development, several

limitations exist. These include high costs, limited availability of

effective aged ferret models, and a lack of resources for studying the

immune system mechanisms in ferrets.
4.4 Cats

The detection of SFTSV RNA in cats was first reported in 2017

in serum samples from wild cats in South Korea (74). There have

also been reports from Japan of veterinarians contracting SFTSV

while treating infected cats (75). In a study by Park et al., four out of

six cats that were infected with SFTSV via intravenous injection

died within 10 days post-infection (70). Cats that died from SFTSV

infection exhibited severe clinical manifestations, including high

fever, gastrointestinal symptoms, leukopenia, thrombocytopenia,

and liver and kidney damage, resembling the symptoms of severe

SFTS in humans. However, there was no correlation between the

age of the cats and the severity of the disease.

The clinical and histopathological features in cats, similar to

those seen in severe human infections, suggest that cats could be a

promising animal model for SFTSV research. However, there are

significant limitations: compared to established rodent models

commonly used in laboratories, the cost of using cats is higher,

handling cats in laboratory settings is more challenging, and
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research on cat models remains limited. Furthermore,

standardized experimental cat strains have yet to be developed.
4.5 Non-human primates

Non-human primates share genetic, physiological, and immune

system similarities with humans, making their immune responses

and disease progression closer to those observed in humans. They

are ideal models for vaccine development and studies on infection

mechanisms and have been widely used to investigate the infection

and pathogenesis of bunyaviruses that cause hemorrhagic fever

diseases (76–78). Jin et al. reported cases of rhesus monkeys infected

with SFTSV, which exhibited symptoms such as fever,

thrombocytopenia, leukopenia, and elevated levels of

transaminases and myocardial enzymes in the blood. These

symptoms resembled mild SFTS in humans, without causing

severe illness or death (71). In another study involving

cynomolgus monkeys, no significant clinical symptoms were

observed following SFTSV infection, and viral RNA was not

detected during the 14 day study period (60). While non-human

primate models offer the advantage of physiological and immune

system similarities to humans, their application in SFTSV vaccine

development is limited due to strict ethical reviews, high research

costs, biosafety risks, and the mild symptoms observed in SFTSV

infections in these models.
4.6 Comparison and prospect of animal
models

SFTSV vaccine and drug development primarily rely on aged

ferrets (see Section 4.3) and immunocompromised mouse models

(see Section 4.1.3). Aged ferrets and cats are among the few

immunocompetent models showing lethality, though cat models

exhibit transient inflammatory responses and low neutralizing

antibody titers (70). Aged ferrets display sustained inflammation,

closely mimicking severe human infections (65). Humanized mouse

models (see Section 4.1.4) develop human-like pathology and

immune responses, with longer survival, making them suitable for

pathogenesis and antiviral studies (67). Rhesus macaque models

infected with SFTSV exhibit robust Th1-type pro-inflammatory

responses, widespread immune cell recruitment, and inflammatory

mediator release, yet display mild clinical symptoms (71). In current

vaccine research, immunocompetent mice are commonly used for

preliminary evaluation of vaccine immunogenicity.

In general, future research should concentrate on refining

animal models that show promise yet remain underutilized. For

example, researchers can improve the reconstitution of the human

immune system in humanized mice and employ genetic

engineering techniques to optimize their microenvironment and

genetic background. This approach may enable these models to

more accurately simulate the immune response and vaccine-

induced effects observed in human SFTSV infections. Moreover,

for non-human primates that possess immune systems more akin to
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those of humans, adjusting infection conditions to intensify

pathological manifestations or introducing immune regulatory

strategies could help identify species or strains with heightened

sensitivity. These efforts would contribute to the development of an

animal model that more closely mirrors the severe clinical

pathology seen in human SFTSV infections.
5 Advances in SFTSV vaccine research

The current SFTSV candidate vaccines have achieved notable

progress across various technological platforms (Table 2). To better

illustrate their mechanisms of inducing immune responses, a

simplified immune mechanism diagram is provided in Figure 2.
5.1 Attenuated live vaccines

Attenuated live vaccines are a type of vaccine that weakens the

pathogenicity of a pathogen to eliminate its virulence while

retaining its immunogenicity. These vaccines can replicate to a

limited extent within the host, simulating the natural infection

process and inducing a strong and long-lasting immune response

(93). Reverse genetics is an important tool for exploring the

molecular biology and pathogenesis of RNA viruses, as well as for

vaccine development. Currently, attenuation is achieved using

reverse genetics methods (94).

Yu et al. generated two recombinant SFTSV strains from the

HB29 strain via reverse genetics: rHB2912aaNSs (NSs ORF C-

terminus truncated by 12 amino acids) and rHB29NSsP102A

(proline-to-alanine mutation at NSs position 102). In aged ferrets,

these strains exhibited attenuated phenotypes, inducing high

neutralizing antibody titers within 14 days, sustained until day 58.

Immunized ferrets achieved 100% survival post-lethal challenge

(control: 0%). The rHB2912aaNSs strain maintained genetic

stability after multiple passages, indicating low reversion risk (79).
5.2 Inactivated vaccines

Inactivated vaccines use chemical or physical methods to render

pathogens non-infectious while preserving their immunogenicity,

thereby eliciting an immune response in the host. Compared to live

attenuated vaccines, inactivated vaccines are more stable and safer,

making them a better option for immunocompromised individuals.

However, their immunogenicity is relatively low, necessitating

multiple doses and the use of adjuvants to enhance the

immune response.

Li et al. isolated the SFTSV strain AH12 from patient blood

samples and inactivated it by b-propiolactone (BPL). The whole

virus particles were purified using ultrafi l tration and

ultracentrifugation techniques (80). The inactivated vaccine

induced high levels of SFTSV specific IgG antibodies and

neutralizing antibodies in BALB/c and C57/BL6 mice, with higher

doses of the vaccine resulting in higher antibody levels. The
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addition of an aluminum adjuvant significantly enhanced the

production of IgG and neutralizing antibodies, with the effect

being particularly pronounced in the low-dose groups. In terms

of protective effects, two weeks after the final immunization, C57/

BL6 mice were challenged with wild type SFTSV. The high dose

vaccine group demonstrated a significantly accelerated clearance of

viral RNA in the blood and spleen. However, since C57/BL6 mice

are not a lethal model for SFTSV infection, further research is

required to evaluate the protective efficacy of the vaccine in lethal

animal models.
5.3 Recombinant virus vector vaccines

Recombinant viral vector vaccines use genetically engineered

viruses as carriers to deliver specific antigen genes (typically

encoding key proteins of pathogens) into host cells, thereby

stimulating an immune response in the body (95, 96).

5.3.1 Recombinant vesicular stomatitis virus
vector vaccine

Vesicular stomatitis virus (VSV) is a zoonotic arbovirus

belonging to the Rhabdoviridae family. It has been developed as

an attenuated viral vaccine vector capable of inducing robust

neutralizing antibody responses and has demonstrated effective

protection against lethal challenges (97, 98). Dong et al. cloned

the human codon optimized Gn/Gc ORF from the Chinese lineage

SFTSV AH12 strain into the rVSVDG vector, enabling the virus to

express SFTSV Gn/Gc on the surface of viral particles. This

recombinant virus was named rVSV-SFTSV/AH12-GP (81). A

single dose of rVSV-SFTSV/AH12-GP elicited highly efficient and

broad-spectrum neutralizing antibodies in both immunocompetent

C57BL/6 mice and IFNAR−/− mice, providing complete protection

against SFTSV challenge. Moreover, the protective efficacy of the

candidate vaccine showed no significant differences across various

routes of administration, including intraperitoneal injection,

intravenous injection, subcutaneous injection, and intranasal

administration. In IFNAR−/− mice pre-immunized with the rVSV

vector, vaccination with the candidate vaccine still provided

protective immunity against SFTSV challenge, indicating that the

vaccine efficacy was not compromised by prior immunization.

5.3.2 Recombinant vaccinia virus vector vaccine
The LC16m8 strain of vaccinia virus (m8) and Modified

Vaccinia Ankara (MVA) are classified as third-generation

smallpox vaccines, characterized by high attenuation while

retaining immunogenicity (99). Yoshikawa et al. utilized the

highly attenuated yet immunogenic vaccinia virus strain LC16m8

(m8) as a recombinant vaccine for SFTS, expressing the SFTSV

nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC),

and both N and GPC (m8-N+GPC) (82). Their m8-based SFTSV

vaccines expressed SFTSV genes in infected cells, and particularly,

cells infected with m8-GPC or m8-N+GPC produced virus-like

particles (VLPs) in the supernatant of in vitro cultures.

Subcutaneous administration of m8-based SFTSV vaccines at a
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dose of 1×106 PFU twice in IFNAR−/− mice successfully induced

SFTSV-specific antibodies in all vaccine candidates and protected

the mice from lethal challenges with 1×103 or 1×105 TCID50 of the

SFTSV YG-1 strain. Additionally, mice pre-immunized with the

Lister vaccinia strain also achieved protective immunity against

SFTSV challenge after vaccination with m8-based SFTSV vaccines.

Pathological analysis revealed no tissue pathological changes in

mice immunized with m8-GPC or m8-N+GPC.Passive serum

transfer experiments demonstrated that serum collected from

mice vaccinated with m8-GPC or m8-N+GPC conferred

protective immunity against lethal SFTSV challenge in naïve mice.

5.3.3 Recombinant adenovirus vector vaccine
Adenoviruses are widely distributed in nature and possess high

genomic manipulation flexibility, allowing the integration of large

foreign gene fragments. This feature makes them an ideal choice for

constructing specific vaccines (100, 101). Zhao et al. developed a

recombinant replication-deficient human adenovirus type 5 (Ad5)

encoding rabies virus (RABV) G and SFTSV Gn (Ad5-G-Gn) (83).

Ad5-G-Gn immunization activated more dendritic cells (DCs) and

B cells in lymph nodes (LNs) and induced a Th1/Th2-mediated

response in splenocytes, leading to the robust production of

neutralizing antibodies against SFTSV and RABV. Additionally,

in 6 to 8-week-old C57/BL6 mice infected with SFTSV, Ad5-G-Gn

immunization significantly reduced the SFTSV viral load in the

spleen. However, this study has limitations due to the use of a non-

lethal mouse model, and further safety and protective efficacy

evaluations are needed.

Subsequently, the team developed Ad5 vector vaccine

candidates expressing different regions of SFTSV glycoprotein

(Gn, Gc, and Gn-Gc) (84). Compared to Ad5-Gc and Ad5-Gn-

Gc, Ad5-Gn rapidly recruited/activated DCs, promoted B cell

activation, induced specific T cells, and quickly generated high

levels of SFTSV virus-neutralizing antibodies (VNA) in wild-type

mice. Furthermore, in lethal SFTSV-infected IFNAR−/− mice, Ad5-

Gn provided complete protection and safeguarded the spleen, liver,

brain, lungs, and other organs from SFTSV-related pathological

changes. Their findings suggest that Gn is an advantageous target

for the development of SFTSV vaccines and antibodies.
5.4 Subunit vaccines

Subunit vaccines, due to their excellent safety, stability, and

relatively mature production techniques, have been successfully

applied in the prevention of viruses such as hepatitis B virus

(HBV) and human papillomavirus(HPV) (102, 103). However,

they also have the issue of low immunogenicity, requiring the

addition of adjuvants and multiple doses to enhance their

immune effects.

5.4.1 NSs recombinant protein vaccine
In the early research by Liu et al., the effectiveness of SFTSV

non-structural protein (NSs) as a vaccine component was evaluated

(85). However, C57BL/6 mice immunized with purified
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recombinant NSs combined with complete Freund’s adjuvant

showed no significant difference in viremia levels compared to the

control group after SFTSV challenge. Therefore, the NSs vaccine did

not promote the clearance of SFTSV in mice.

5.4.2 Self-assembling Gn Head-Ferritin
nanoparticles vaccine

Kim et al. applied self-assembling ferritin nanoparticles fused

with the head region of SFTSV Gn (GnH) to construct GnH-FT

(87). The immunogenicity of the vaccine was evaluated in BALB/

c mice and aged ferrets. The results showed that immunization

with 1 mg of GnH-FT nanoparticles could induce a robust

neutralizing antibody (NAb) response and T-cell immunity

against SFTSV Gn in mice. Immunized aged ferrets not only

effectively induced total IgG antibodies and NAb antibodies but

also provided complete protection against SFTS symptoms and

lethal SFTSV challenge.

5.4.3 NP, Gn and Gc recombinant protein
vaccine

Recently, Kim et al. evaluated the efficacy of recombinant

protein vaccines using purified nucleocapsid protein and surface

glycoproteins, assessing their immunological effects both

individually and in combination (86). Immunization with either
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the NP or Gn subunit alone provided partial protection to IFNAR−/

− mice, with survival rates of 66.7% and 16.7%, respectively, while

Gc vaccination failed to offer significant protection, resulting in

100% mortality (86). Among the tested recombinant protein

combinations (Gn + NP, Gc + NP, and Gn + Gc + NP), the Gc +

NP combination showed the highest protective effect following

exposure to a lethal dose of SFTSV, achieving the highest survival

rate (85.7%) and highlighting its potential as a vaccine candidate.

However, NP antibodies did not exhibit neutralizing activity, and

their potential role in antiviral immunity requires further

investigation. All IFNAR−/− mice vaccinated with single subunit

vaccines succumbed to viral infection within 12 months, suggesting

that a combination of protective antigens and adjuvant systems is

still needed to ensure long-term humoral and cellular immunity.
5.5 DNA vaccines

The advantages of DNA vaccines include eliciting strong

immune responses, ease of development, and the ability to

quickly test multiple candidate antigen designs (104). However,

they also face challenges such as the need for delivery via

electroporation and insufficient immune durability, which

requires multiple doses.
FIGURE 2

SFTSV Vaccine Mechanism of Action Diagram. This diagram illustrates the immune induction mechanisms of six SFTSV candidate vaccine types.
mRNA vaccines, encapsulated in lipid nanoparticles (LNPs), deliver antigen-encoding mRNA (e.g., Gn, Gc) to the cytoplasm for translation into
antigenic proteins. DNA vaccines, delivered via electroporation, are transcribed into mRNA and translated into antigens (e.g., Gn, Gc, NP). Subunit
vaccines contain purified SFTSV antigens (e.g., Gn, Gc, NP). Inactivated vaccines use chemically inactivated (e.g., b-propiolactone) whole virus,
retaining immunogenicity. Attenuated live vaccines, with reduced virulence via reverse genetics, mimic natural infection. Recombinant viral vector
vaccines (e.g., VSV, adenovirus) express SFTSV antigen genes (e.g., Gn/Gc) in host cells. All vaccines activate B cells (producing neutralizing
antibodies) and T cells (cytotoxic T cells), inducing specific humoral and cellular immunity against SFTSV infection. The figure was created with
BioRender.com.
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Kwak et al. constructed a DNA vaccine using pVax1 as an

expression vector, encoding the full-length Gn, Gc, N, NS, and

RNA-dependent RNA polymerase (RdRp) genes of SFTSV, based

on the sequences of 31 clinical isolates from patients in China,

Korea, and Japan (88). Intramuscular injection of the SFTSV DNA

candidate vaccine in BALB/c mice and aged ferrets induced strong

SFTSV specific T cell responses and neutralizing antibody

responses. In aged ferrets (>4 years old), three intradermal

immunizations of the SFTSV DNA candidate vaccine at 2-week

intervals were followed by a viral challenge two weeks after the final

vaccination. All vaccinated ferrets were fully protected from a lethal

SFTSV challenge. However, a single dose vaccination only provided

partial protection. Furthermore, their study found that Gn and Gc

specific immune responses play a crucial role in preventing fatal

SFTSV infection, while non-envelope specific T-cell responses also

contribute to cellular protection against SFTSV infection.

Kang et al. developed another recombinant plasmid DNA

(pSFTSV) as a DNA vaccine candidate, encoding the extracellular

domains of Gn and Gc as well as an NP-NS fusion antigen (89). IL-12,

a key factor for type 1 helper T cell (Th1) differentiation, enhances

cellular immune responses. To improve protective efficacy, they

incorporated IL-12 into pSFTSV, creating pSFTSV-12. The vaccine

was administered to IFNAR−/− mice three times via in vivo

electroporation. Following a lethal SFTSV challenge, mice vaccinated

with pSFTSV-12 showed a 100% survival rate, while those vaccinated

with pSFTSV alone had only a 40% survival rate. In the presence of IL-

12 expression, virus antigen specific T cell responses were significantly

enhanced. However, no neutralizing antibodies were detected in the

immunized mice. These data indicate that the expression of IL-12

enhances the efficacy of the vaccine, but further studies are needed to

optimize the combination of appropriate target antigens and the

selection of adjuvants for DNA vaccines.
5.6 mRNA vaccines

mRNA vaccines, with their unique advantages of high

efficiency, strong adaptability, simple antigen design, short

production cycle, and high safety, have provided an important

means of responding to major public health emergencies (105).

During the SARS-CoV-2 pandemic, Pfizer/BioNTech’s BNT162b2

and Moderna’s mRNA-1273 proved to be highly effective against

SARS-CoV-2 and were developed and administered to millions of

people worldwide at unprecedented speed. These two vaccines

marked the first clinical approval of mRNA vaccines (106–108).

The success of mRNA vaccines against SARS-CoV-2 has sparked

widespread interest in the use of mRNA for the prevention and

treatment of various conditions. Currently, in addition to SARS-

CoV-2 vaccines, research is being conducted on various mRNA-

based vaccines for infectious diseases, cancer vaccines, and mRNA-

based therapeutic approaches (109–111).

Beyond the subunit vaccine platform, Kim et al. also applied the

SFTSV Gn Head region (sGn-H) and SFTSV Gn Head region

ferritin nanoparticles (sGn-H-FT) to the SFTSV mRNA platform

(90). They encapsulated mRNA encoding sGn-H or sGn-H-FT into
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lipid nanoparticles (LNPs) for effective delivery. Female BALB/c

mice aged 6–8 weeks were selected and intramuscularly immunized

with 1 µg of sGn-H or sGn-H-FT mRNA LNPs at weeks 0 and 3.

The results showed that sGn-H and sGn-H-FT mRNA LNPs

exhibited strong activity, inducing effective humoral immunity in

the immunized mice. By week 15 post-immunization, both total

IgG and neutralizing antibodies (NAbs) remained at elevated levels.

Furthermore, IFNAR−/−mice immunized with sGn-H or sGn-H-FT

mRNA LNPs successfully survived a lethal challenge with SFTSV.

These mice experienced minor weight loss but recovered fully and

rapidly. Their findings suggest that sGn-H and sGn-H-FT are

promising vaccine antigen candidates capable of providing

protection against SFTSV infection.

After that, Kim constructed a LNP-encapsulated mRNA

vaccine expressing SFTSV Gn (91). Six-week-old C57BL/6 mice

were immunized twice with LNP-encapsulated mRNA-Gn or PBS

through intramuscular injection with a 14 day interval. The vaccine

successfully induced robust humoral and cellular immunity in the

mice. In subsequent challenge experiments, the mRNA-Gn mice

showed effective protective effects.

Recently, Lu et al. developed an mRNA vaccine encoding the

full-length SFTSV GP (92). The vaccine successfully induced

humoral immunity and Th1-biased cellular immune responses in

BALB/c mice. In IFNAR−/− mice challenged with a lethal dose of

SFTSV, 1 µg of the vaccine provided 100% protection, and 0.1 µg

provided 90% protection. Subsequently, researchers conducted a

SFTSV challenge experiment 21 weeks after vaccination at a dose of

5mg, and the mice maintained a 100% survival rate, successfully

validating the long-term protective effect induced by the vaccine.

Additionally, the full-length SFTSV glycoprotein mRNA vaccine

also provided cross-protection against Heartland virus and Guertu

virus, revealing a potential strategy for a broad-spectrum

Bandavirus vaccine.
5.7 SFTSV vaccine targets

In summary, the development of vaccines against SFTSV

currently encompasses various technological platforms, each

facing challenges in selecting critical targets during the

development process. Therefore, in-depth research on the key

antigenic regions and immune response mechanisms of SFTSV is

of great significance for optimizing vaccine design and enhancing

vaccine efficacy. Gn is a core component in the processes of viral

entry and membrane fusion, and it is also a major antigenic

element. The domain III of its head structure has been identified

as a specific target for neutralizing antibodies, while domain II may

serve as an ideal binding site for broadly neutralizing antibodies

(33). Identifying key antigenic regions that effectively induce

neutralizing antibodies is essential for the development of certain

types of vaccines.

Studies using cryo-electron microscopy (cryo-EM) on SFTSV

have revealed that the aggregation of the Gn head on top of the Gc

subunit forms a crown-like structure, making it less accessible to

solvent. This aligns with observations that many neutralizing
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antibodies inhibit viral infection by targeting the Gn head,

indicating that the Gn head is an ideal candidate for developing

subunit vaccines. The subunit vaccine and mRNA vaccine based on

GnH constructed by Kim et al. provided strong support for this

finding (87, 90). The N914 glycosylation site on Gc is crucial for the

assembly of viral particles and is highly conserved among

bunyaviruses, making it a promising target for developing broad-

spectrum protective vaccines (112).

While clarifying the key antigenic regions, the selection of

standard strains is also of great importance. Researchers have

found that the HB29 viral strain exhibits strong cross-reactivity

with heterologous antibodies and demonstrates high neutralizing

efficacy with sera from 33 SFTS patients. This indicates that the

HB29 strain possesses broad immunogenicity and holds potential as

an optimal standard strain for vaccine development (113).

Additionally, the aforementioned live-attenuated vaccine based on

the HB29 strain has shown cross-protective benefits against

heterologous genotype B strains (79). mRNA vaccine candidates

constructed using the HB29 strain by Lu et al. further demonstrated

cross-protection against Heartland virus and Guertu virus (92).

The development of broad-spectrum vaccines against Severe Fever

with Thrombocytopenia Syndrome Virus (SFTSV) represents a critical

strategy to address its genetic diversity and high mutability, requiring

the integration of multi-target design and advanced technological

platforms. Specifically, one approach is to draw insights from broad-

spectrum coronavirus vaccine development by employing a

multivalent antigen combination and conserved epitope-targeting

strategy (114). Incorporating antigens from different SFTSV

genotypes into vaccine design could enhance the induction of

broadly neutralizing antibodies. Additionally, targeting highly

conserved epitopes within SFTSV, such as the N914 glycosylation

site on the Gc protein, as a central antigenic determinant may help

mitigate the risk of immune evasion caused by viral mutations. Second,

advanced vaccine platforms should be strategically employed. mRNA

vaccines offer significant advantages due to their flexibility and high

efficiency, enabling rapid antigen optimization through sequence

modifications. Moreover, integrating artificial intelligence to predict

potential mutation sites and design antigenic compositions that cover

multiple genotypes presents an innovative and forward-looking

strategy for broad-spectrum vaccine development.
5.8 Challenge and prospect of candidate
vaccines

Although various technological approaches to developing

SFTSV vaccines have shown efficacy in preventing infections in

animal models, limitations persist due to gaps in understanding

pathogenic mechanisms and immune response pathways.

Live attenuated and inactivated vaccines, as traditional

platforms, leverage well-established development systems that

have significantly contributed to many viral vaccines. Live

attenuated vaccines reduce pathogen virulence while preserving

immunogenicity, eliciting robust immune responses and protective

efficacy. However, they carry risks of mutation reversion to
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virulence, or excessive immune reactions. Inactivated vaccines

offer greater superior safety and stability compared to live

attenuated vaccines but often require multiple doses and

adjuvants. Moreover, their protective efficacy in pathogenic

animal models requires further evaluation. Protein subunit

vaccines also excel in safety and stability, with several candidates

demonstrating protective efficacy in ferrets and immunodeficient

mice. However, their high production costs and reliance on

adjuvants to enhance efficacy pose challenges. Recombinant

vector vacc ines exhib i t robust protec t ive e ff ec t s in

immunodeficient animals. However, their complex production

process for this technology is relatively complex, and pre-existing

immunity may impact vaccine efficacy. Compared with traditional

vaccines, nucleic acid vaccines provide flexibility in target selection,

enabling rapid testing of multiple antigen designs. Their shorter

production cycles make them well-suited for addressing public

health emergencies. DNA vaccine candidates, however, face

challenges such as lower immunogenicity and the need for

multiple doses, necessitating further research into optimization of

target design and adjuvant selection. mRNA vaccines, which

respond rapidly adapt to pathogen mutations, allow for prompt

optimization for variants and subtypes. They also show potential for

broad-spectrum antiviral effects. However, their long-term immune

efficacy requires further investigation.

When comparing vaccine candidates, it is critical not only to

evaluate the levels of neutralizing antibodies they elicit but also to

remain vigilant for the risk of antibody-dependent enhancement

(ADE) mediated by non-neutralizing antibodies. Although

antibodies against the nucleocapsid protein are detectable early in

infection, they lack significant neutralizing activity and may, in

some cases, form sub-neutralizing antibodies that could

theoretically promote viral entry into immune cells via Fcg
receptors (115). While no experimental evidence of ADE exists

for SFTSV infection, experiences with dengue and other viruses

suggest that non-neutralizing or low-affinity antibodies, once bound

to the virus, can be internalized through specific Fcg receptor-

mediated pathways, enhancing viral replication (116). Therefore, in

evaluating various vaccine platforms, it is crucial to prioritize those

that induce robust neutralizing antibody responses while

minimizing the generation of large quantities of non-

neutralizing antibodies.

Building on a comprehensive understanding of the strengths

and limitations of current vaccine platforms under investigation,

future research should focus on groundbreaking strategies to

advance next-generation SFTSV vaccines with improved efficacy

and safety through innovations in antigen design, delivery systems,

and immunization protocols. For antigen design, insights from RSV

and SARS-CoV-2 vaccine development, such as stabilizing the pre-

fusion conformation of viral surface proteins could be adapted.

High-resolution structural characterization of neutralizing epitopes

via cryo-EM could guide site-directed mutations or fusion tags to

lock Gn/Gc antigens into their most immunogenic conformations,

thereby enhancing the specificity and potency of neutralizing

antibodies (117, 118). Delivery system optimization may

incorporate novel adjuvants like TLR7/8, STING, or RIG-I
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agonists to boost antigen presentation and immune activation

(119–121). Additionally, developing intranasal or oral vaccine

formulations could induce mucosal IgA responses and localized

cellular immunity in the upper respiratory tract and gut,

establishing a frontline defense at viral entry sites (122).
6 Discussion

SFTS poses a significant global pandemic risk, threatening

public health worldwide. In endemic regions, persistent tick-

borne transmission of SFTSV severely endangers local

populations. Consequently, research into SFTSV prevention and

treatment is of paramount importance.

Significant progress has been achieved in developing animal

models for SFTSV infection, yet limitations persist. Future research

should prioritize establishing more effective, broadly applicable animal

models to address SFTSV’s public health challenges. Integrating

animal study data with clinical data from human infections will

provide deeper insights into viral pathogenesis and support the

development of models that accurately reflect human clinical

manifestations. Additionally, models accounting for variations in

age and immune status should be developed to explore how aging,

comorbidities, and immunosuppression influence SFTSV infection.

Such models will offer valuable insights for vaccine design and

personalized therapies. Humanized mouse and non-human primate

models show great promise for SFTSV research but require further

optimization to enhance practicality, standardization, and

reproducibility. Refining these models will improve their utility for

preclinical evaluation of vaccines and antiviral therapies.

Vaccination remains the most effective strategy for preventing

infectious disease outbreaks. However, progress in developing

prophylactic SFTSV vaccines has been slow. All candidate vaccines

are currently in preclinical stages, validated only in small animal

models, with no studies in large animal models or human clinical

trials. Homologous recombination in SFTSV within hosts or

arthropod vectors presents a major challenge for vaccine

development, contributing to immune evasion, viral diversity,

enhanced virulence, and technical adaptability issues. As SFTSV is

primarily endemic to certain Asian regions with low global incidence,

limited market demand, prolonged development cycles, and high

costs reduce commercial incentives for vaccine development.

Furthermore, vaccine development faces risks that require careful

evaluation, including reversion to virulence in live attenuated

vaccines, interference from pre-existing immunity in viral vector

vaccines, potential autoimmune reactions from mRNA vaccines, and

ADE observed in dengue vaccines (123, 124). These risks underscore

the need for systematic assessment in SFTSV vaccine development.

Addressing these challenges demands an integrated approach

combining monitoring, research, and immunization strategies to

bridge basic research and practical application. Continuous

monitoring of viral mutations and antigenic variations, alongside

multi-target strategies and advanced technological platforms, can

enhance vaccine efficacy, broaden protection against diverse viral

variants, and improve immunogenicity.
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In the absence of an approved vaccine, targeted public health

measures are essential to reduce infection risks for high-risk groups,

such as the elderly, farmers, and veterinarians. In Daishan County,

Zhejiang Province, China, successful prevention and control

measures have been implemented (125). These include habitat

cleanup through regular removal of shrubs and fallen leaves

around villages to create tick-free buffer zones, chemical tick

control using long-lasting pyrethroid insecticides in farmlands,

forest edges, and recreational areas, and health education

campaigns via village broadcasts, pamphlets, and household visits

to promote tick-bite prevention and early medical intervention.

Additionally, livestock management practices, such as regular

insecticidal dips for cattle and sheep, minimize tick-borne

pathogen transmission. These efforts reduced the annual

incidence rate in Daishan County by an average of 39.98% per

year from 2015 to 2019 (APC = –39.98%, P < 0.001), maintaining

low and stable incidence since 2019.

Future SFTSV research should emphasize multidisciplinary

collaboration, integrating virology, immunology, epidemiology,

bioinformatics, computational biology, and structural biology to

create a comprehensive research framework bridging fundamental

studies and clinical applications. In viral pathogenesis and immune

regulation, high-throughput sequencing and genome editing

technologies should be leveraged to investigate SFTSV genomic

evolution, elucidate molecular mechanisms of infection, identify

key pathogenic factors, and explore immune evasion strategies. A

deeper understanding of host antiviral immune responses will guide

vaccine design and antiviral therapies. Epidemiological studies

should utilize large-scale population surveys and mathematical

modeling to characterize SFTSV transmission dynamics.

Geographic Information System (GIS) technologies can enable

spatial-temporal analysis of viral spread, identifying high-risk

zones and predicting outbreak hotspots. Efforts should also

enhance vaccination feasibility and acceptance while developing

targeted prevention and control measures for diverse populations.

In computational biology, artificial intelligence and deep learning

can analyze viral genetic variations, predict mutation sites, and

identify conserved antigenic epitopes to improve broad-spectrum

vaccine efficacy. In drug development, integrating structural biology

and computational chemistry can optimize small-molecule antiviral

drugs and design neutralizing antibodies, enhancing therapeutic

outcomes. Future studies should also evaluate long-term immune

responses following SFTSV infection, assessing the feasibility of

convalescent plasma therapy and monoclonal antibody treatments.
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