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1 Introduction

Allergy is hypersensitivity (i.e., maladaptive proinflammatory immune reactivity) to

noninfectious nonself antigens (i.e., allergens) such as environmental and food

components, most notably in the context of immediate-type hypersensitivity, which is

mediated by IgE antibodies (1). Binding of allergens by IgE antibodies thus underlies

immunodiagnostic detection of allergy; and attenuation of such binding enables

immunotherapeutic management of allergy. This is the rationale for desensitization

therapy that entails detecting IgE antibodies to pertinent allergens among patients who

are then immunized with the same allergens, thereby eliciting production of cognate non-

IgE (typically IgG) antibodies to outcompete IgE antibodies in binding the allergens and

thus alleviate allergic conditions (2). However, preexisting IgE antibodies can mediate

harmful allergic reactions (e.g., fatal systemic anaphylaxis) when patients are exposed to

cognate allergens, especially during desensitization therapy (3). Nevertheless, a

translational path toward safer desensitization therapy for allergies is conceivable via

development of allergy vaccines and their companion immunodiagnostics, using B-cell

epitope prediction (BCEP) as a generally applicable strategy for enhancing disease control

and prevention (4). When compared to allergen extract-based immunotherapies, B-cell

epitopes (BCEs) have shown promising potential both in vivo and in vitro, by inducing

hypoallergenic allergen-specific IgG responses and downregulating T-cell mediated late

response pathways (5–9).
2 BCEP for designing allergy vaccines

BCEP is computational identification of BCEs: structural features (e.g., parts of

molecules or of supramolecular complexes) recognized by paratopes (i.e., antigen-

binding sites on immunoglobulins) (4). This is complicated by the emergent

phenomenon of immunodominance among BCEs, which is the bias of antibody
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responses toward a BCE on an immunogen (i.e., immunogenic

antigen) that comprises nonidentical BCEs. A BCE is thus said to be

immunodominant if antibodies are preferentially produced against

it rather than another BCE also present on the same immunogen

(e.g., a vaccine antigen); and the latter BCE is thus said to be

subdominant, though antibodies might yet be produced against it

under other circumstances (e.g., where it is the sole or most

immunodominant BCE present, as in a vaccine devoid of more

immunodominant BCEs).

Among peptidic (e.g., peptide or protein) antigens, a typical

BCE may be regarded as consisting of paratope-contacting amino-

acid residues (10). Such a BCE is said to be either continuous if its

constituent residues form a contiguous sequence or discontinuous

otherwise (e.g., where the BCE is formed by juxtaposition of

noncontiguous residues via protein folding and disintegrates upon

protein unfolding), noting that a discontinuous BCE may comprise

one or more continuous BCEs (11, 12). A continuous BCE is thus

embodied in an oligopeptide sequence without regard to

conformation; whereas a discontinuous BCE exists only when its

antigen assumes a folded conformation. Consequently, BCEP is

more computationally tractable for continuous BCEs than for

discontinuous BCEs insofar as it reduces to identification of

oligopeptide sequences. This is the case for peptide-based vaccine

design, wherein the problem of immunodominance among BCEs

can be circumvented by selectively incorporating only continuous

BCEs into vaccine immunogens, to enable vaccine-induced selective

antibody targeting of BCEs (13) via paratope binding that is

typically based on induced fit (14).

To thus apply BCEP for designing allergy vaccines, the

following general observation is key: Antibody responses to

folded protein antigens (e.g., typical allergens) tend to be biased

toward production of antibodies to discontinuous rather than

continuous BCEs (10). Although this has been interpreted as

implying that most protein BCEs are discontinuous, it is a clear

manifestation of immunodominance among BCEs, with

discontinuous BCEs tending to be more immunodominant than

continuous BCEs that are nonetheless immunogenic (e.g., as

unfolded parts of denatured proteins or as oligopeptides) (15). In

the setting of allergy, most clinically relevant IgE antibodies thus

recognize discontinuous BCEs (16). Furthermore, multiple BCEs

recognized by IgE antibodies may occur on a single allergen (17),

such that it can crosslink cognate IgE antibodies bound by FceRI
receptors on plasma membranes of mast cells and of basophils (18,

19), thereby inducing degranulation with consequent extracellular

release of inflammatory mediators (e.g., histamine) that drive

allergic reactions (20). Yet, IgG antibodies can readily be

produced against continuous BCEs that are conformationally

disordered (i.e., nonfolded) oligopeptide sequences (e.g., in

synthetic peptide-based vaccines); and if these sequences are also

present as paratope-accessible targets in protein antigens (e.g., on

surface-exposed conformationally flexible loops), they can be bound

as such by the same antibodies (4). Hence, peptidic allergens can be

targeted by IgG antibodies that recognize continuous BCEs, to

competitively interfere with binding of the allergens by IgE

antibodies (e.g., via steric blocking) and/or to enhance
Frontiers in Immunology 02
immunological clearance of the allergens (e.g., via IgG-dependent

opsonization), noting that IgG antibodies other than IgG4

antibodies (21) can also drive shifts from allergy-promoting Th2-

dominated to tolerogenic Treg-dominated immune responses (22).

This must, however, still address possible cross-reactivity whereby

nonidentical (albeit typically similar) BCEs can be bound by the

same antibodies (23), which is a safety concern as existing IgE

antibodies may thus cross-react with BCEs on non-cognate

allergens (24).

Accordingly, oligopeptide sequences comprising continuous

BCEs of protein allergens could conceivably serve as components

of both allergy vaccines and corresponding companion

immunodiagnostics: The vaccines could elicit production of IgG

antibodies to the BCEs and thereby attenuate the allergy-mediating

activity of IgE antibodies to the allergens while possibly also

suppressing further production of IgE antibodies; whereas the

immunodiagnostics could detect antibodies to the BCEs, to assess

vaccine safety and efficacy. More specifically, certain versions of the

immunodiagnostics could detect preexisting IgE antibodies to the

BCEs before attempts to administer the vaccines (e.g., for primary

and/or booster doses), so as to avoid triggering allergic reactions to

the vaccines; whereas other versions of the immunodiagnostics

could detect vaccine-induced IgG antibodies to the BCEs, in order

to evaluate vaccine efficacy (noting that evidence of waning vaccine

immunity might warrant subsequent booster doses). More

generally, the vaccines could enable production of allergen-

binding IgG antibodies (e.g., as monospecific polyclonal

antibodies or even monoclonal antibodies) for possible

therapeutic use via passive immunization (25), which would avoid

risking vaccine-induced allergic reactions altogether (26) and

could also serve as a preliminary trial of therapy that, if

successful, might justify longer-term management by vaccination

(i.e., active immunization).

In line with the preceding considerations, selective incorporation

of continuous BCEs from allergens into components of allergy

vaccines and companion immunodiagnostics thereto necessitates

means for identifying such BCEs in the first place. This entails

identification of relevant allergens and, in turn, their pertinent

continuous BCEs. These can be validated only on the basis of

experimental data from various immunoassays (27), notably as

curated in the Immune Epitope Database (IEDB) (28). As a case in

point, Table 1 presents examples of IEDB-curated allergens and

oligopeptide sequences thereof, for which active immunization with

the latter is known to induce a decrease in allergic disease (noting that

said sequences are each curated as a BCE in IEDB, though they are

more properly regarded as BCE-containing sequences that each

comprise one or more BCEs); whereas Figure 1 presents structural

models of a subset of the oligopeptide sequences in the context of

immune complexes each consisting of a whole protein allergen and a

cognate antibody Fab fragment, with surface-exposed BCE-

containing sequences that comprise disorder-prone terminal or

internal loop (e.g., turn) structures. Such examples illustrate the

potential of oligopeptide sequences as allergy-vaccine components;

but immunoassays are resource-intensive to perform and must be

complemented by computational approaches including BCEP to
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facilitate identification of pertinent protein allergens and continuous

BCEs thereof, using available biomolecular data on allergen structure

and function in the context of host immunobiology to strategically

target allergen BCEs.
3 Strategically targeting allergen BCEs

BCEs represent a low-level structural and functional view of

antigens, but higher-level views are necessary to comprehend the
Frontiers in Immunology 03
role of various antigens as allergens, in order to subsequently

identify their pertinent BCEs as potential therapeutic targets (e.g.,

for binding by IgG antibodies). In this regard, a useful analytical

framework is epidemiologic transition theory (45), which seeks to

explain temporal shifts in patterns of morbidity and mortality

exemplified by the modernization-driven dual trend of decline in

infectious diseases and rise in chronic inflammatory conditions

such as allergy and autoimmunity (46). Said trend can be

understood largely in terms of biota alteration theory (47), which

posits that generalized suppression of the host biota (i.e., microbiota
TABLE 1 Allergen epitope sequences curated in the Immune Epitope Database (IEDB) as inducing decreased allergic disease.

# Reference/
s

Allergen
(description)

Source organism Classification Epitope sequence

1 (29, 30) Cry j 2
(Polygalacturonase

precursor)

Cryptomeria japonica Glycosyl hydrolase 28 family*; Pectin
lyase-like superfamily protein 1*

AEVSYVHVNGAK

2 (31) Der p 2 (Mite group 2
allergen Der p 2)

Dermatophagoides
pteronyssinus

MD-2-related lipid-recognition (ML)
domain; Group 2 mite allergen;

NPC2 family*

DIKYTWNVPKIAPKSENVVVTVKV
MGDDGVLACAIATHAKIRD

3 (32, 33) Der p 1 (Der P 1) Dermatophagoides
pteronyssinus

Papain-like cysteine protease;
Peptidase C1 family*

FGISNYCQIYPPNANKIREALAQPQRYCR

4 (34) Asp f 1 (allergen I/a; Asp f
I/a)

Aspergillus fumigatus Ribonuclease U2 family* INQQLNPK

5 (34) Asp f 1 (allergen I/a; Asp f
I/a)

Aspergillus fumigatus Ribonuclease U2 family* INQQLNPKTNKWEDK

6 (35) Fel d 1 (Major allergen I
polypeptide chain

1 precursor)

Felis catus Secretoglobin family* KALPVVLENARILKNCVDAKMTEEDKE

7 (34) Asp f 1 (allergen I/a; Asp f
I/a)

Aspergillus fumigatus Ribonuclease U2 family* LNPKTNKWEDK

8 (36) Phl p 1 (Pollen allergen Phl
p 1 precursor)

Phleum pratense Group1/2/3 grass pollen allergen;
Expansin family

LRSAGELELQFRRVKCKYPEG

9 (36–40) Bet v 1 (major allergen Bet
v 1)

Betula pendula Pathogenesis-related (PR-10) protein;
Bet v 1 family

MGETLLRAVESYLL

10 (36–40) Bet v 1 (major allergen Bet
v 1)

Betula pendula Pathogenesis-related (PR-10) protein;
Bet v 1 family

SKEMGETLLRAVESYLLAHSD

11 (32, 33) Der p 1 (Der p 1
allergen precursor)

Dermatophagoides
pteronyssinus

Papain-like cysteine protease;
Peptidase C1 family*

SNYCQIYPPNANKIR

12 (41) Major pollen allergen Ole e
1-like (Major
pollen allergen)

Olea europaea Ole e I family TVNGTTRTVNPLGFFKKEALPK

13 (36) Phl p 5 (major allergen Phl
p 5)

Phleum pratense Group 5/6 grass pollen allergen;
Poa p IX/Phl p VI allergen family*

YAATVATAPEVKYTVFETALKKAI

14 (42) Dol m 5 (Venom
allergen 5.01)

Dolichovespula maculata CRISP family; Venom allergen
5-like subfamily*

IEDNWYTHYLVCNYGPGGND

15 (42) Api m 4 (melittin) Apis mellifera Melittin family* KVLTTGLPALISW

16 (29, 30, 43) Cry j 2 Cryptomeria japonica Glycosyl hydrolase 28 family*; Pectin
lyase-like superfamily protein 1*

CNFAAAGRFTCQTG

17 (31) Der p 2 Dermatophagoides
pteronyssinus

MD-2-related lipid-recognition (ML)
domain;

Group 2 mite allergen;
NPC2 family*

TANINFECPRELVVPGGCN
*Based on sequence similarity, as curated in UniProt.
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plus other symbionts such as helminths) via lifestyle changes

(e.g., adoption of excessive infection-control measures and

proinflammatory diets) has promoted host immunological

dysregulation (48). By this account, allergy results from

dysregulated production of IgE antibodies, though these are

thought to have evolved as mediators of host immunity against

peptidic toxins (e.g., of pathogenic bacteria and venomous animals)

that can be inactivated by proteases from mast cells (49, 50).

Hence, peptidic antigens may elicit production of IgE antibodies

and thus act as allergens if they cause direct host injury (e.g., via

cellular or tissue damage due to proteolytic or membrane-

permeabilizing activities) (51) or are recognized as danger signals

via innate immune sensing mechanisms such as Toll-like receptors

(TLRs) (52), especially in the setting of prolonged host exposure

(e.g., due to their structural stabilization by disulfide bonds and

consequent resistance to proteolytic degradation) (53). Moreover,

such allergens often can undergo oligomerization (51), which in

turn can facilitate crosslinking of FceRI receptor-bound IgE

antibodies and consequent mast-cell degranulation (54).

Immunotherapy and vaccine administration have previously been

shown to predictably increase total serum IgE concentration and

sIgE (55, 56) which may erroneously suggest a diagnosis of atopy.

Thus, reinforcing the potential of BCEP as a predictive tool to

minimize false-positive detection of sensitization among atopic
Frontiers in Immunology 04
individuals is necessary, given its capacity to streamline the

development of BCEs for companion immunodiagnostic use (57).

In addition to host-damaging and danger-signaling activities

vis-à-vis structural stability and oligomerization potential, allergens

may be further characterized by more detailed structural features.

Although allergens are structurally diverse, 19 allergen families have

been identified from the Pfam database based on structural

properties, with approaches to subclassification being explored

mainly on the basis of homology. However, many allergens

remain unclassified; and the structural properties underlying

allergenicity are not yet fully understood, thus limiting BCE

potential for widespread clinical use (52). Route of host exposure

to antigens is also a crucial determinant of their clinical relevance as

allergens (58): Food allergens, for instance, tend to enter the

systemic circulation via transcytosis across the host gut lining

epithelium and thus elicit production of IgE antibodies (59, 60).

Such factors underlie the failure to develop experimental models

that fully capture the complexity of allergic conditions (61, 62). This

calls for computational workflows that can leverage data on protein

sequences and structures vis-à-vis protein and immune-system

function to aid in identifying clinically relevant protein allergens

and/or BCEs thereof for therapeutic antibody targeting.

As thermodynamics provides a foundational framework for

comprehending immune function (63), it could guide the use of
FIGURE 1

Predicted binding modes of Bet v 1 (A), Der p 2 (B), and Asp f 1 (C) (blue) epitopes (pink) with representative IgE and IgG Fab fragments showing
heavy (green) and light (orange) chains. Generated with SWISS-MODEL Workspace (44) and PyMOL Molecular Graphics System ver 3.1.3.1.
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computational tools (e.g., to predict protein folding and

interactions) for analyzing pertinent proteomes (e.g., of cells or

tissues in allergenic materials) to identify putative allergens (e.g., on

the basis of predicted toxicity in particular contexts of relevant host

exposure) and, in turn, candidate allergy vaccine BCEs via BCEP.

Such BCEs could thus be identified as oligopeptide sequences for

which sufficiently high paratope binding affinity is predicted (13),

noting that paratopes that bind one BCE may fail to bind another

even if the two are highly similar in sequence (64). Where identical

BCEs occur on the same antigen, avidity (i.e., strength of binding

due to simultaneous paratope-BCE interactions) might also be

predicted (65). In this regard, steric hindrance is important to

consider as it can attenuate avidity (66, 67), though it can also

attenuate allergen toxicity as by inhibiting host-damaging protease

activity via blockage of substrate access to active sites (68). Finally,

the selected vaccine BCEs would also serve as companion

immunodiagnostic probes to detect cognate antibodies, which

would obviate the need for large peptide antigen arrays

representing entire protein allergen sequences (69).
4 Conclusion

BCEP-based design of allergy vaccines and their companion

immunodiagnostics using thermodynamics-guided computational

workflows is a promising approach to further develop

desensitization therapy for allergic conditions. This could enable

strategic IgG-antibody targeting of key continuous BCEs, most

notably to limit the binding of allergens by IgE antibodies while

also avoiding potentially harmful exposure of patients to

immunodominant allergen BCEs
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