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Background: Ferroptosis, a regulated form of cell death, has emerged as a critical

modulator of melanoma's tumor progression and immune evasion. However, its

integration with the tumor immune microenvironment (TME) and clinical

prognostication remains underexplored. This study aims to construct a multi-

omics framework combining ferroptosis-related signatures, immune infiltration

patterns, and machine-learning approaches to stratify melanoma patients and

guide therapeutic decision-making.

Methods: We developed a multi-omics framework integrating bulk transcriptomics

(TCGA/GEO), single-cell RNA sequencing, and machine learning to decode

melanoma's ferroptosis-immune axis. Ferroptosis-immune subtypes were

identified through consensus clustering and immune profiling, while prognostic

models were constructed via LASSO/stepwise Cox regression and machine

learning optimization.

Results: Three ferroptosis-immune subtypes exhibiting distinct survival outcomes

and immune phenotypeswere identified. A 40-gene prognostic signature (externally

validated) effectively stratified patient survival risk and predicted chemotherapy

sensitivity. Single-cell analysis revealed elevated ferroptosis activity within an

immunosuppressive microenvironment, specifically implicating POSTN–ITGB5

signaling in fibroblast-immune cell crosstalk. A clinically applicable nomogram

integrating risk scores and clinical factors demonstrated robust predictive

accuracy (AUC 0.829–0.845). Machine learning refined a 4-gene prognostic

signature (CLN6, GMPR, AP1S2, ITGA6), with functional validation confirming the

role of CLN6 in proliferation and migration.

Conclusion: This study establishes a prognostic framework and therapeutic

roadmap for precision immuno-oncology in melanoma, bridging multi-omics

discovery with clinical translation.
KEYWORDS
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Introduction

Melanoma is the most aggressive form of skin cancer,

characterized by high metastatic potential, pronounced

heterogeneity, and resistance to conventional therapies. Its global

incidence continues to rise, with the prevalence of cutaneous

malignant melanoma (CMM) reaching 833,215 cases in 2021—a

161.3% increase since 1990 (1). Although immunotherapies and

targeted agents have improved survival outcomes, substantial

interpatient variability in treatment response underscores the

urgent need for molecular stratification frameworks to guide

precision oncology (2, 3).

Ferroptosis, an iron-dependent form of regulated cell death

driven by lipid peroxidation, plays dual roles in melanoma

progression and therapy resistance (4, 5). Central to this process is

the balance between lipid peroxide generation (via PUFA-PL

synthesis/extracellular uptake and ACC-mediated biosynthesis) and

detoxification by systems like GPX4, which neutralizes phospholipid

hydroperoxides (6–13). While ferroptosis susceptibility in

dedifferentiated melanoma cells offers therapeutic potential, its

context-dependent effects complicate treatment: GPX4/FSP1

preservation in CD8+ T cells maintains anti-tumor immunity,

whereas ACSL4 deficiency impairs T cell function despite

conferring ferroptosis resistance (14–16). Tumor-associated Tregs

further evade ferroptosis through reduced lipid peroxidation,

sustaining immunosuppression, and MITF downregulation

promotes MDSC recruitment, linking melanocyte plasticity to

immune evasion (17, 18). These findings highlight the need for

strategies that selectively induce ferroptosis in malignant cells while

protecting immune effectors to optimize therapeutic outcomes.

Despite advances in characterizing ferroptosis regulators,

critical gaps persist in translating these insights into clinical tools.

First, the heterogeneity of ferroptosis-related gene expression across

melanoma subtypes remains poorly defined, limiting the

development of molecularly guided therapies. Second, existing

prognostic models often neglect the integration of ferroptosis-

immune crosstalk with clinical variables, resulting in suboptimal

predictive accuracy. Third, single-cell resolution of ferroptosis

activity and its spatial coordination within the tumor immune

microenvironment (TME) is lacking, obscuring cell-type-specific

vulnerabilities. Additionally, current molecular classifications of

melanoma, often based on mutational status (e.g., BRAF, NRAS)

or transcriptomic subtypes, insufficiently capture the dynamic

crosstalk between regulated cell death pathways and the TME (19,

20). Although single-cell RNA sequencing (scRNA-seq) has

advanced our understanding of TME heterogeneity and stromal

reprogramming, the spatial and cellular regulation of ferroptosis

and its role in intercellular communication remain poorly defined.

This study presents a comprehensive multi-omics characterization

of the ferroptosis-immune axis in melanoma. We integrate bulk RNA-

seq, single-cell transcriptomics, and machine learning across TCGA

and GEO datasets to define ferroptosis-driven molecular subtypes

with distinct prognoses and immune landscapes. A core gene set was

identified through WGCNA and cross-subtype differential analysis,

and a machine learning—based prognostic model was optimized
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through benchmarking over 100 algorithms. The model was

externally validated and linked to immune checkpoint expression,

chemotherapy response, and stromal interactions. Through scRNA-

seq and CellChat-based ligand-receptor analysis, we further delineate

cell type-specific ferroptosis activity and immunoregulatory signaling.

Functional validation confirmed the role of CLN6 in proliferation and

migration. This integrative approach reveals ferroptosis as a central

orchestrator of melanoma heterogeneity, immune escape, and

therapeutic vulnerability, offering new avenues for precision

stratification and combinatorial targeting strategies.
Materials and methods

Data acquisition

GEO datasets: Gene expression data were obtained from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/info/datasets.html). ScRNA-seq data from three

melanoma samples were retrieved from GSE215120 for single-cell

transcriptome analysis. Bulk RNA-seq data from 69 melanoma

samples in GSE53118 and 71 samples in GSE54467 were used for

transcriptomic profiling.

TCGA dataset: Processed transcriptomic profiles of 472

melanoma tumor samples were downloaded from The Cancer

Genome Atlas (TCGA) via the Genomic Data Commons portal

(https://portal.gdc.cancer.gov/). Data types included mRNA

expression matrices for downstream analyses.
Consensus clustering for molecular
subtyping

Consensus clustering was conducted to classify melanoma samples

based on candidate gene expression levels. Using 50 iterations and

subsampling 90% of samples per iteration, we identified the optimal

number of clusters via cumulative distribution function (CDF) curves

and consensus matrix heatmaps.
Differential expression analysis

Differential gene expression between melanoma and control

samples was assessed using the limma package in R. Genes with

adjusted p-values < 0.05 and |log2 fold change| > 0.585 were

considered significantly differentially expressed. Volcano plots

were generated for visualization.
Functional enrichment analysis of
molecular subtypes

Functional pathway enrichment across identified subtypes was

evaluated using single-sample gene set enrichment analysis (ssGSEA)

implemented via the GSVA R package. GO and KEGG gene sets were
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sourced from MSigDB (v7.5.1): c2.cp.kegg.v7.5.1.symbols

and c5.go.v7.5.1.symbols.
Immune infiltration analysis

Immune cell composition was inferred using the CIBERSORT

algorithm (21), a support vector regression-based method for

deconvolution of bulk expression profiles. Using 547 signature

genes, CIBERSORT quantified 22 immune cell types, including T

cells, B cells, plasma cells, and myeloid subtypes. Pearson

correlation analysis assessed associations between gene expression

and immune cell proportions.
Weighted gene co-expression network
analysis

Gene co-expression networks were constructed using the

WGCNA R package (22). We selected the top 10,000 most

variable genes by variance for analysis. A soft-thresholding power

of 8 was applied to approximate scale-free topology. The adjacency

matrix was transformed into a topological overlap matrix (TOM),

followed by hierarchical clustering to identify gene modules.

Module eigengenes were correlated with risk scores to determine

biologically relevant modules.
Machine learning–based prognostic model
construction

A multi-algorithm screening process was used to construct and

validate prognostic models based on candidate genes. Model

development employed the Mime1 R package and the

ML.Dev.Prog.Sig function, incorporating over 100 machine learning

algorithms. Model performance was evaluated via concordance index

(C-index) distribution and Kaplan–Meier survival analyses. External

validation was performed on independent datasets.
Drug sensitivity analysis

Chemotherapy response was forecast using the oncoPredict R

package and training datasets sourced from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/).

Half-maximal inhibitory concentrations (IC50s) were determined

using a regression model that incorporated 10-fold cross-validation.

Batch effects were corrected using the “combat” method, and low-

variance and duplicated genes were filtered before modeling.
Gene set enrichment analysis

GSEA was performed to identify differentially enriched

pathways between high- and low-risk groups. Gene sets from
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MSigDB v7.0 were used as the background. Pathways with an

adjusted p-value < 0.05 were deemed significantly enriched and

ranked by normalized enrichment scores (NES).
Gene set variation analysis

GSVA, an unsupervised, non-parametric enrichment method,

was used to assess variation in pathway activity across samples.

Gene sets from MSigDB were used as references. GSVA scores were

calculated for each sample and pathway to evaluate functional

state changes.
Nomogram construction

A final cohort of 337 melanoma samples from TCGA with

complete clinical annotations was analyzed. A multivariable Cox

regression model was used to construct a nomogram integrating

clinical features and gene expression. Each variable was assigned a

weighted score based on its regression coefficient, and the total score

was mapped to predicted survival probabilities.
Single-cell quality control

Quality control for scRNA-seq data was performed using the

Seurat R package. Filtering criteria included thresholds for total

UMI counts, gene counts per cell, and mitochondrial/ribosomal

gene content. Cells exceeding three median absolute deviations

(MADs) from the median were excluded. DoubletFinder (v2.0.4)

was used to remove doublets.
Single-cell data normalization and
processing

Data normalization was performed using NormalizeData and

identifying highly variable genes via FindVariableFeatures. The data

were scaled with ScaleData to regress out mitochondrial/ribosomal

gene effects and cell cycle variation. Dimensionality reduction was

performed using PCA (RunPCA) and batch correction using

Harmony. Clustering was conducted via FindClusters, and cell

annotation was performed using CellMarker, literature curation,

and the SingleR tool.
Ligand–receptor interaction analysis

Intercellular communication was inferred using CellChat (23), a

computational framework for analyzing ligand-receptor networks

from scRNA-seq data. Standardized expression matrices and cell

subtype annotations were input. Interaction strength and frequency

were quantified, and communication networks were mapped to

assess signaling patterns associated with risk phenotypes.
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Random survival forest

The RSF, a machine learning algorithm designed for survival

data analysis, was applied to screen feature genes and rank their

prognostic importance. Using the randomForestSRC package in R,

we implemented the RSF algorithm with nrep = 1000 (indicating

1000 iterations in Monte Carlo simulations for stability assessment).

Genes were ranked based on their variable importance scores, and

those with a relative importance > 0.2 were selected as final

candidate feature genes.
Cell culture, RNA extraction, and qRT-PCR

The human melanoma cell lines A375 (Stem Cell Bank, Chinese

Academy of Sciences) and SKMEK28 were cultured in DMEM

(GIBCO, USA) containing 10% fetal bovine serum (FBS) (GIBCO,

USA), 1% penicillin-streptomycin (100 U/mL penicillin and 100 mg/
mL streptomycin), and 5%CO2 in an incubator at 37 °C, while normal

human epithelial keratinocytes (NHEK) were maintained in DMEM/

F12 (GIBCO, USA) supplemented with 10% FBS and 10 ng/mL

epidermal growth factor (EGF) and 1% penicillin-streptomycin. The

manufacturer’s protocol extracted Total RNA using TRIzol

(Invitrogen). RNA concentrations were measured with a Nanodrop

2000C (Thermo Fisher Scientific), and cDNA was synthesized using a

ThermoFisher reverse transcription kit. qRT-PCR was performed in a

20 µL reaction volume containing SYBR Green Master Mix

(CW0957H, Kangwei) and gene-specific primers. The reaction

conditions included 95°C for 10 min followed by 45 cycles at 95 °C

for 10 s and 60 °C for 30 s. Primer sequences for CLN6, GMPR,

AP1S2, ITGA6, and the b-actin reference gene are listed in detail

below. The gene primer sequences were: Forward 5’- TGCCATGCT

GGTATTCCCTC-3’, reverse 5’ - TGATGACGTTGTAGGCCATGT-

3’ for human CLN6; Forward 5’- CTCAAGCTCGACTTCAAGG

ATG-3’, reverse 5’- GGGAATCCCTGAGTAGGTCTG-3’ for

human GMPR; Forward 5’- TTCAGACCGTTTTAGCACGGA-3’,

reverse 5’- TGTCCTGATCCTCAATAGCACA-3’ for human

AP1S2; Forward 5’- GGCGGTGTTATGTCCTGAGTC -3’, reverse

5’- AATCGCCCATCACAAAAGCTC-3’ for human ITGA6; Forward

5’-CACCAACTGGGACGACAT-3’, reverse 5’- ACAGCCTGG

ATAGCAACG-3’ for human b-actin. Relative expression levels were

normalized to b-actin. The siRNA was purchased from GenePharma

(Shanghai, China). siRNA sequences were as follows: siCLN6-1: sense:

5’-GACCUCUGGUUCUACUUCATT-3’, antisense: 5’-UGAAGU

AGAACCAGAGGUCTT-3’; siCLN6-2: sense: 5’-GAACCCCAU

CAUCAAGAAUTT-3’, antisense: 5’-AUUCUUGAUGAUGGGG

UUCTT-3’. Cells were incubated in 6-well plates, and transfection

was started when cell density reached 60%. Transfection was

performed using Lipofectamine RNAiMAX Transfection Reagent

(Thermo Fisher Scientific) in all cells maintained in Opti-MEM. The

culture medium was replaced with fresh medium supplemented with

10% FBS after 12 h post-transfection. Transfection efficiency was

detected using qRT-PCR.
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MTS assay

A cell proliferation assay was performed in 96-well plates, 1000

cells were added to each well after counting. 24, 48, 72, 96 h later, 10

mL MTS solution (3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)

(Promega, Madison, WI, USA) was added to each well, incubated

for 3 h, and the absorbance at 495 nm (OD) was detected by an

enzyme labeling instrument (Thermo Fisher Scientific) according

with the manufacturer’s guidelines.
Wound healing assay

Wound healing assay was used to assess the migration ability of

the cells. Transfected cells (10× 104/well) were inoculated in 6-well

plates with a monolayer of cells evenly distributed on the bottom of

the plate. The cell layer was scraped with a 200 ml pipette tip,

washed with PBS, and FBS-free medium was added to each well.

Images were then taken under an inverted microscope at 0 and 24h.
Statistical analysis

All experimental analysis was represented as the mean ±

standard deviation (SD) from three times of replicative

experiments. Microsoft Excel and GraphPad Prism 5 were used to

draw the charts. All statistical analyses were conducted in R version

4.3.0. A p-value < 0.05 was considered statistically significant unless

stated otherwise.
Results

Molecular subtyping based on ferroptosis-
associated gene expression

Ferroptosis is closely associated with melanoma and can be

leveraged as a potential therapeutic strategy to overcome drug

resistance, enhance the efficacy of chemotherapy and radiotherapy,

and modulate the tumor immune microenvironment. Thus, we

obtained 484 ferroptosis-related genes from the FerrDb database

(http://www.zhounan.org/ferrdb) and performed consensus

clustering to stratify melanoma patients based on their expression

profiles (Figures 1A–C). The optimal number of clusters was

determined as K = 3, resulting in three molecular subtypes: C1

(N=158), C2 (N=251), and C3 (N=63). A heatmap illustrated

distinct gene expression patterns across these subtypes

(Figure 1D). Survival analysis revealed significant differences in

overall survival (OS) among the clusters (log-rank P < 0.0001), with

cluster C1 showing the best prognosis and cluster C3 the

worst (Figure 1E).
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FIGURE 1

Consensus clustering–based molecular subtyping and survival analysis of melanoma. (A) Consensus matrix heatmap showing robust subtype
separation (C1, C2, C3) based on 484 ferroptosis-related genes from FerrDb. (B) Cumulative distribution function (CDF) curves for consensus
clustering (K = 2–6). (C) Delta area plot indicating optimal cluster number (K = 3). (D) Heatmap displaying the expression of ferroptosis-related genes
across clusters C1, C2, and C3. (E) Kaplan–Meier curves showing significant differences in overall survival (OS) among clusters. Statistical significance
was determined by the Log-rank test (P < 0.0001). C1 exhibits the most favorable prognosis, while C3 correlates with poor clinical outcomes.
(F, G) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for each subtype, highlighting
distinct immune, mitochondrial, and lysosomal signatures. Red indicates high expression, and blue indicates low expression. (H) Box plots
summarizing immune cell infiltration differences across clusters based on CIBERSORT deconvolution. Significance was assessed using ANOVA,
which is specifically designed for multi-group comparisons (*P < 0.05, **P < 0.01, ***P < 0.001).
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Pathway enrichment profiles define
subtype-specific biological features

To investigate the functional characteristics of each subtype,

GSEA was performed. Subtype C1 exhibited enrichment in

immune-related pathways, including T cell receptor complex,

immunoglobulin complex gene sets (GO), and KEGG terms such

as primary immunodeficiency and graft-versus-host disease. C2

showed upregulation of mitochondrial and translational programs,

including mitochondrial gene expression and aminoacyl-tRNA

biosynthesis. C3 was enriched for epithelial differentiation

and lysosomal activity, including keratinization and glycan

degradation (Figures 1F, G). These results confirm that each

ferroptosis-immune subtype exhibits distinct molecular and

functional signatures.
Immune landscape differences across
ferroptosis subtypes

Immune infiltration analysis revealed subtype-specific variations

in the tumor immunemicroenvironment. Significant differences were

observed in the relative abundance of memory B cells, naive B cells,

eosinophils, macrophage subtypes (M1/M2), resting mast cells, NK

cells (activated/resting), plasma cells, CD4+ and CD8+ T cell subsets,

follicular helper T cells, and regulatory T cells (Tregs) (Figure 1H).

These findings highlight the immunological heterogeneity among

ferroptosis-related molecular subtypes.
Differential gene expression across
subtypes

Pairwise differential expression analysis using limma on TCGA

data identified 1,876 DEGs between C1 and C2, 5,307 DEGs

between C1 and C3, and 4,561 DEGs between C2 and C3 (|

logFC| > 0.585, adjusted P < 0.05). Volcano plots and heat maps

illustrated the distribution of DEGs (Figures 2A–F). A Venn

diagram identified 241 overlapping DEGs shared across all three

comparisons, forming a core candidate gene set for downstream

modeling (Figure 2G).
Integrating DEGs with WGCNA modules to
identify hub genes

WGCNA was used to construct gene co-expression networks.

Seven modules were identified with a soft threshold (b = 7)

(Figures 3A–C). The turquoise module (n = 4,207) exhibited the

strongest negative correlation with cluster C3 (cor = -0.83, P = 3e-

121). Intersecting this module with the 241 core DEGs yielded 93

overlapping genes (Figure 3D), which were prioritized as high-

confidence prognostic candidates (see Supplementary Table 1).
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Prognostic model optimization using
machine learning

We constructed prognostic models using the 93 candidate genes

via benchmarking over 100 machine-learning algorithms. The final set

of 40 genes (see Supplementary Table 1) incorporated into the model

showed significant functional enrichment in pigment metabolism,

apoptotic signaling, and specific cellular structures (Supplementary

Image 2). The StepCox[both] + SuperPC model demonstrated the best

performance, with C-index values of 0.7, 0.61, and 0.62 in TCGA and

two GEO validation cohorts, respectively (Figures 4A, B). ROC

analysis showed AUCs of 0.81, 0.77, and 0.8 for 1-, 3-, and 5-year

survival prediction, respectively (Figure 4C). Stratification based on

the model’s risk score revealed significant OS differences in both

training and validation cohorts (log-rank P < 0.05, Figure 4D).
Immunotherapy response prediction and
TME associations

To analyze the association between risk stratification and

immunotherapy response/immune evasion mechanisms, we

leveraged the TIDE algorithm to infer functional states of immune

cells (e.g., T-cell dysfunction, macrophage immunosuppression) from

transcriptomic profiles of high- and low-risk groups. Expression

levels of immunotherapy-related biomarkers (Merck18, CD8,

CD274, IFNG) significantly differ between high- and low-risk

groups (Figures 5A–D). Among the four groups, the high-risk

group showed a higher proportion of low-risk score (LScore) than

high-risk score (HScore), whereas the low-risk group exhibited the

opposite pattern (HScore > LScore). This indicates that immune

response status may be associated with risk stratification, with high-

risk groups potentially linked to diminished immune activation and

low-risk groups correlating with enhanced immune responsiveness.

Immune infiltration analysis showed notable differences in resting

dendritic cells, mast cells, NK cells, and CD4+ memory T cells

between risk groups (Figures 6A, B). Correlation analyses revealed

positive associations between risk score and activated NK cells,

resting dendritic cells, mast cells, and Tregs, and negative

associations with resting CD4+ memory T cells (Figure 6C). While

weak correlations (|r| ≈ 0.2) require cautious interpretation, they

remain biologically plausible in heterogeneous tumors. These results

support the model’s relevance to immune landscape remodeling.
Multi-dimensional biomarker analysis:
immune regulation and drug sensitivity

We conducted subsequent analyses to explore the associations

between the risk score and immunomodulators, as well as

chemotherapy sensitivity. Differential analysis of immunomodulators

from the TISIDB database revealed subtype-specific expression

patterns among immunosuppressive genes, immunostimulants,
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chemokines, and receptors (Figures 7A–E). Drug sensitivity prediction

using oncoPredict showed significant associations between the risk

score and sensitivity to several agents (Figure 8A). The low-risk score

group exhibited lower IC50 values for SB216763, KU-55933, NU7441,

Doramapimod, Camptothecin, and Axitinib (P ≤ 0.05), indicating

heightened sensitivity to these agents. These findings provide clearer

therapeutic selection criteria for melanoma based on risk stratification.
Pathway enrichment underlying the risk
model

GSEA revealed significant pathway associations with the risk score,

including positive enrichment of Apelin signaling pathway, Cornified

envelope formation, and Estrogen signaling pathway (Figures 8B, C).

GSVA analysis supported these findings, revealing enrichment of
Frontiers in Immunology 07
MYC_TARGETS_V2, MYC_TARGETS_V1, OXIDATIVE_

PHOSPHORYLATION, and WNT_BETA_CATENIN_SIGNALING

in high-risk groups, and negative enrichment of FATTY_ACID_

METABOLISM and PI3K_AKT_MTOR_SIGNALING (Figure 8D).

Samples with high-risk scores showed enrichment in pathways

corresponding to the blue region, whereas those with low-risk scores

were enriched in pathways associated with the green region. These

results suggest that the risk score reflects coordinated reprogramming

of metabolic and inflammatory signaling networks.
Prognostic nomogram development

Based on clinical data and key gene expression levels, we

established univariate Cox regression models and generated forest

plots (Figure 9A). Subsequently, factors with a p-value less than 0.05
FIGURE 2

Melanoma subtype-specific gene expression. (A–F) Volcano plots and heatmaps showing DEGs between: (A, B) C1 vs. C2; (C, D) C1 vs. C3; (E, F) C2
vs. C3. Thresholds: |log2FC| > 0.585, adjusted P < 0.05. The color scale of heatmaps representing high expression in red and low expression in blue.
(G) Venn diagram illustrating 241 overlapping DEGs common to all three pairwise comparisons.
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were extracted for multivariate analysis. The results revealed that Age,

T stage, N stage, and risk score had p-values less than 0.05 (Figure 9B).

We therefore identified these as key clinical indicators and proceeded

to construct a nomogram model. Using the risk score, we presented

the results of the regression analysis in the form of a nomogram. The

regression analysis indicated that the values of different clinical

indicators for melanoma and the distribution of the risk score

expression contribute variably to the overall scoring process.

Furthermore, this study performed predictive analyses for

overall survival (OS) at 1-year, 3-year, and 5-year time points.

The results demonstrated a close agreement between the predicted

OS and the observed OS, indicating that the nomogram model

possesses good predictive performance (Figures 9C, D). ROC curves

and DCA curves were also generated (Figures 9E, F).
Single-cell quality control and integration

After filtering low-quality or doublet cells (UMIs < 200 or >3

MAD), 24,111 high-quality cells remained (Supplementary Images
Frontiers in Immunology 08
1A, B). Quality metrics were visualized using violin and scatter

plots. HVG selection (n = 2,000) was followed by normalization,

scaling, PCA, and Harmony-based batch correction to produce

an integrated dataset for clustering (Supplementary Images 1C–F).

To tackle potential batch effects, we first applied the Harmony

algorithm and then performed nonlinear dimensionality

reduction using RunUMAP (Uniform Manifold Approximation

and Projection).
Cell type annotation and TME composition

After UMAP dimensionality reduction, cell clustering using the

Leiden algorithm resolved 12 distinct clusters (Figure 10A). These

clusters were annotated into nine major cell populations—

Melanoma, T cells, NK cells, B cells, Endothelial cells, Fibroblasts,

Pericyte, Mononuclear phagocytes, and Keratinocytes—using

marker genes defined by CellMarker and literature-curated

signatures (Figure 10B). Marker gene expression across nine cell

types was visualized via bubble plots (Figure 10C), while bar plots
FIGURE 3

Key prognostic genes with strong differential expression and co-expression patterns. (A) Scale-free topology model fit and mean connectivity plot
used to select soft-thresholding power (b = 7). (B) Dendrogram of gene co-expression modules with merged color-coded branches. (C) Module-
trait correlations between WGCNA modules and molecular subtypes. Heatmap of module–trait correlations showing strongest association between
the turquoise module and cluster C3 (cor = –0.83, P = 3e−121). (D) Venn diagram identifying 93 overlapping genes between the 241 DEGs and
4,207 genes in the turquoise module.
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depicted sample-specific cellular proportions for these nine cell

types (Figure 10D).
Ferroptosis activity and ligand–receptor
interactions

Using AUCell, we quantified ferroptosis activity per cell,

identifying malignant cells as the most ferroptosis-enriched

population (Mann-Whitney P < 0.001, Figure 10E). Fibroblasts
Frontiers in Immunology 09
were stratified into high- and low-ferroptosis groups based on the

median value of ferroptosis activity scores. To investigate

ferroptosis-mediated intercellular communication, we employed

CellChat to infer ligand-receptor interactions across distinct

cellular subtypes. The analysis revealed complex multicellular

interaction networks involving ferroptosis-associated signaling

pathways (Figures 11A, B). The POSTN-(ITGAV+ITGB5) ligand-

receptor pair exhibited higher communication probability from

Lsco_Fibroblasts to Hsco_Fibroblasts, while GZMA-F2R showed

elevated interaction likelihood from NK cells to Hsco_Fibroblasts
FIGURE 4

Selecting a best melanoma prognostic model via machine learning. (A) C-index distribution across 100+ machine learning algorithms.
(B) Performance evaluation of 100+ machine learning algorithms identifying StepCox[both] + SuperPC as optimal based on C-index across datasets.
(C) Time-dependent ROC curves evaluating predictive accuracy at 1, 3, and 5 years in TCGA set (AUCs: 0.81, 0.77, 0.8). The AUC values range
between 0.5 and 1, where 0.5 indicates no discriminative ability and 1 represents perfect discriminative ability. (D) Kaplan–Meier survival curves
showing significant OS differences between high- and low-risk groups in training and validation cohorts.
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(Figure 11C). These results probably implicate fibroblast-mediated

crosstalk in ferroptosis-associated TME remodeling.
Identification of critical model genes in
melanoma

To further identify key model genes influencing melanoma, we

performed RSF analysis on the candidate genes obtained from the

aforementioned analyses. Genes with a relative importance > 0.2

were selected as final biomarkers, and the importance ranking of the

top 6 genes is displayed in Figure 12A. Subsequent survival analysis
Frontiers in Immunology 10
of these 6 genes revealed that AP1S2, CLN6, GMPR, and ITGA6

exhibited statistically significant differences in survival outcomes

(Figures 12B-E). Consequently, these four genes were identified as

critical model genes for further investigation.
Validation of prognostic gene expression

We confirmed the expression patterns of CLN6, GMPR, AP1S2,

and ITGA6 in melanoma cells using gene-specific primers by qRT-

PCR. CLN6, AP1S2, and ITGA6 were highly expressed in A375 and

SK-MEL28 cells, whereas were abundant in HNEK cells (Figure 13A).
FIGURE 5

Immunotherapy biomarker expression across risk subgroups. (A–D) Bar plots comparing expression levels of immunotherapy-related markers
between high-risk (orange) and low-risk (green) groups: (A) CD8; (B) CD274; (C) IFNG; (D) Merck18. Categorical associations (e.g., immune
responder vs. non-responder status) were statistically validated using the Chi-squared test (c², P < 0.05).
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However, we observed low expression of GMPR in A375 and

SKMEL28 cells, which contradicted the predicted results. Since all

analytical methods may carry inherent limitations or variability, we

ultimately excluded GMPR from further investigation.
CLN6 plays a critical role in melanoma
proliferation and migration

Based on GEPIA (http://gepia.cancer-pku.cn), the expression of

CLN6, GMPR and AP1S2 was significantly up-regulated in 461 skin

cutaneous melanoma tissues compared with 558 normal tissues

(Figure 13B). Integrated analysis of survival data from the TCGA

database, gene expression profiles, and qRT-PCR validation results

indicated that CLN6 may serve as a critical prognosis-related gene

in melanoma, warranting further investigation and validation.

Subsequently, we performed CLN6 knockout and confirmed its

efficacy via qRT-PCR (Figure 13C). siCLN6–1 was selected for

subsequent experiments. In the time-lapse proliferation assay,

CLN6 knockdown (siCLN6-1) significantly suppressed cell
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proliferation at 12, 24, 48 and 96 hours compared to the siNC

group (Figure 13D). Furthermore, in the scratch wound healing

assay, siCLN6–1 knockdown markedly inhibited melanoma cell

migration ability (Figure 13E).
Discussion

Melanoma remains the leading cause of skin cancer–related

mortality, with more than 833,000 cases reported globally in 2021

(1). Despite advances in targeted therapies (e.g., BRAF/MEK

inhibitors) (24, 25) and immunotherapies (e.g., anti-PD-1/PD-L1/

CTLA-4) (26, 27), clinical outcomes remain variable, particularly in

metastatic disease, where 5-year survival rates drop below 30%.

Current staging systems, such as the AJCC TNM classification, are

limited by their reliance on clinicopathological parameters, which

fail to capture the underlying molecular heterogeneity that drives

therapeutic resistance and disease progression (28). To address this

unmet need, we developed a ferroptosis-centric risk model that

integrates bulk and single-cell transcriptomic data using a machine
FIGURE 6

Tumor microenvironment remodeling associated with the ferroptosis-based risk score. (A) Overall immune landscape comparisons between risk
groups using CIBERSORT. (B) Boxplots of differentially abundant immune cell types (FDR < 0.05) (*P < 0.05, **P < 0.01, ***P < 0.001). (C) Lollipop
plot illustrating associations between risk score and immune cell populations: Positive correlations with Resting dendritic cells, Resting Mast cells,
Eosinophils, Macrophages M0, and Macrophages M2; negative correlations with Naive CD4+ T cells, Plasma cells, T cells follicular helper,
Macrophages M1, Activated CD4+ memory T cells, and CD8+ T cells.
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learning–based framework. This model demonstrated robust

prognostic performance, stratifying patients into clinically

relevant subgroups with distinct survival outcomes (log-rank P <

0.0001) and chemotherapy sensitivities. By linking ferroptosis-

associated molecular subtypes with immunological features and

clinical phenotypes, our approach contributes to precision oncology

by enabling individualized therapeutic decision-making.

The tumor immune microenvironment plays a central role in

shaping melanoma progression and therapy response. High

infiltration of effector immune cells—such as CD8+ cytotoxic T

lymphocytes, activated NK cells, and M1 macrophages—has been
Frontiers in Immunology 12
correlated with improved survival and enhanced sensitivity to

immune checkpoint inhibitors (ICIs) (29, 30). In contrast, the

increased presence of immunosuppressive populations, including

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and M2-polarized macrophages, is associated with

immune escape and poor prognosis (31–33). Recent advances in

single-cell and spatial transcriptomics have revealed substantial

intratumoral heterogeneity, including immune “hot” and “cold”

phenotypes, that further modulate ICI efficacy (34–37). According

to my study, the ferroptosis-immune axis drives melanoma

progression through subtype-specific biological mechanisms and
FIGURE 7

Immune regulatory gene differences between high- and low-risk subgroups. (A–E) Box plots showing expression differences in five immune
regulatory gene categories retrieved from the TISIDB database: (A) Chemokines; (B) Immunoinhibitors; (C) Immunostimulators; (D) MHC molecules;
(E) Chemokine receptors (*P < 0.05, **P < 0.01, ***P < 0.001).
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immune-metabolic crosstalk. C1 (immune-enriched), characterized

by T cell receptor signaling and cytotoxic lymphocyte infiltration (B

cells/CD8+ T cells), may exhibit a favorable prognosis due to IFN-g–
mediated ACSL4 upregulation, which amplifies ferroptosis sensitivity

while maintaining an immune-hot microenvironment responsive to

checkpoint inhibitors. In contrast, C3 (lysosomal/epithelial) shows

poor survival linked to immunosuppressive Treg/resting mast cell

dominance, where TGF-b/IL-10 mediated suppression of cytotoxicity

promotes ferroptosis resistance and immune evasion. Paradoxically,

lysosomal membrane permeabilization in C3 may transiently

enhance iron release via cathepsins, but this vulnerability is

overridden by dominant immunosuppression. C2 (mitochondrial/

translational) displays intermediate outcomes due to OXPHOS-
Frontiers in Immunology 13
driven metabolic competition, where nutrient depletion restricts

both T cell activity and ferroptosis susceptibility, reflecting

metabolic plasticity-driven therapy resistance. These subtypes

highlight ferroptosis as a regulatory nexus: immune activation in

C1 synergizes with ferroptosis to suppress tumors, while

immunosuppression in C3 protects against it. Stromal interactions

(e.g., POSTN–ITGB5 signaling) further modulate therapeutic

vulnerability, underscoring the need for subtype-tailored strategies-

combining immunotherapy/ferroptosis inducers for C1 versus

metabolic or stromal targeting for C2/C3.

Previous studies have explored the prognostic relevance of

ferroptosis-related genes and long non-coding RNAs (lncRNAs)

in melanoma (38, 39). However, most of these models were
FIGURE 8

Drug sensitivity and signaling pathway activation contrasting the high- and low-risk subgroups. (A) Predicted sensitivity to chemotherapeutic agents
via oncoPredict, showing risk score associations with SB216763, KU-55933, NU7441, Doramapimod, Camptothecin, and Axitinib. Low-risk patients
exhibit heightened sensitivity to SB216763, KU-55933, NU7441, Doramapimod, Camptothecin, and Axitinib (Wilcoxon P≤ 0.05). (B) GSEA pathway
enrichment analysis of high- versus low-risk groups. (C) The molecular interaction network cross pathways. (D) GSVA highlighting distinct
enrichment of pathways (MYC_TARGETS_V2, MYC_TARGETS_V1, OXIDATIVE_PHOSPHORYLATION) in high- versus low-risk groups.
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FIGURE 9

Nomogram-based prognostic modeling. (A) Forest plot of univariate Cox regression analysis of clinical data and key gene expression levels in
melanoma patients. (B) Key clinical indicators (Age, T stage, N stage, and risk score) identified through multivariate Cox regression analysis (P<0.05).
(C) Nomogram combining clinical variables and risk score developed using multivariable Cox regression. Points assigned to each variable are
summed to calculate total risk, mapped to survival probability on the bottom axis. (D) Calibration plots showing predicted vs. observed OS at 1, 3,
and 5 years. Diagonal dashed line represents perfect concordance. (E) ROC analysis demonstrating predictive performance. AUC values of 0.829 (1-
year), 0.845 (3-year), and 0.841 (5-year) confirm robust discriminative capacity. Shaded regions denote 95% confidence intervals. (F) Decision curve
analysis (DCA) indicating net clinical benefit over single-variable models.
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constructed using univariate selection or limited feature integration

strategies. In contrast, our model employed a systems biology

approach, incorporating WGCNA-derived hub genes, immune

infiltration metrics, and machine learning—based optimization

across over 100 algorithms. The resulting 93-gene signature
Frontiers in Immunology 15
exhibited improved prognostic accuracy and demonstrated

predictive relevance for immunotherapy response and

chemotherapy sensitivity. Notably, the risk score correlates

negatively with cytotoxic T-cell infiltration but positively with

immunosuppressive myeloid subsets, mirroring the immune
FIGURE 10

Single-cell clustering, cell annotation, and ferroptosis activity quantification. (A) UMAP dimensionality reduction and Leiden algorithm - based cell
clustering identified 12 distinct cell clusters. (B) Cell type annotation using canonical marker genes. Marker genes defining by CellMarker and
literature-curated signatures. (C) A dot plot showing expression frequency and levels for lineage-specific markers. (D) Stacked bar plots showing cell
type proportions across patient samples. (E) AUCell quantification of ferroptosis activity at single-cell resolution (****P<0.0001).
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landscape commonly observed in checkpoint-resistant melanomas.

Although the StepCox[both] + SuperPC machine learning model

achieved a C-index of 0.7 in the training set and 0.61-0.62 in the

validation sets, the integration of the genetic risk score with clinical

parameters within a prognostic nomogram model (AUC = 0.829-

0.845) significantly enhanced the accuracy of prognostic

stratification. This improvement underscores the necessity of

multidimensional data integration for precision medicine. Future

studies shall further validate the potential of the nomogram in

guiding immunotherapy and targeted therapy, particularly the

potential benefits of personalized interventions for high-risk

subgroup patients.

Mechanistically, our data support the dual role of ferroptosis in

melanoma—acting both as a tumor-suppressive mechanism and as

a modulator of immune escape. While ferroptotic cells can release

damage-associated molecular patterns (DAMPs) that enhance

antigen presentation, lipid peroxidation byproducts such as 4-

hydroxynonenal (4-HNE) may simultaneously impair T cell

function and promote Treg survival. Our single-cell analyses
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revealed that fibroblasts with high ferroptosis activity exhibited

increased ligand-receptor interactions with malignant cells,

probably through the POSTN–ITGAV/ITGB5 axis. These

findings suggest that fibroblast-mediated buffering of oxidative

stress may create an immunosuppressive niche that enables

tumor progression. Such complexity underscores the need for

context-specific targeting of ferroptosis pathways to maximize

therapeutic efficacy without compromising antitumor immunity.

The four-gene signature (CLN6, GMPR, AP1S2, ITGA6) and their

validated roles in proliferation/migration (e.g., CLN6 knockdown

suppressing tumor growth) provide novel therapeutic targets. CLN6

is an endoplasmic reticulum (ER) membrane protein, and studies

have reported that its functional defects lead to neuronal ceroid

lipofuscinosis (NCL), with lysosomal dysfunction being a central

hallmark of NCL (40). One key mechanism of ferroptosis involves

iron overload-induced lipid peroxidation. As lysosomes are critical

organelles for intracellular iron storage and recycling, their

dysfunction may disrupt iron metabolism. Additionally, CLN6

deficiency causes impaired lysosomal enzyme trafficking, which
FIGURE 11

Ligand–receptor interactions mediating fibroblast–melanoma crosstalk in ferroptosis context. (A) The network illustrating quantitative connectivity
patterns among distinct cellular subpopulations, with line width representing interaction strength. Node size corresponds to cell population
abundance, and edge color denotes directionality (from sender to receiver cells). (B) Bar plot showing the distribution of distinct cellular
subpopulations. (C) Bubble chart representing the probability of signaling via specific ligand–receptor pairs. Red indicates high interaction
probability; blue indicates low. Notable pairs include POSTN–(ITGAV+ITGB5) and GZMA–F2R.
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could affect the synthesis or localization of GPX4. For example,

GPX4 requires transport via the ER-Golgi pathway to reach

mitochondria or the cytoplasm, and disrupted trafficking may

result in loss of GPX4 function, exacerbating lipid peroxidation

(41). A study focusing on glycolysis-related genes and their link to

uveal melanoma prognosis identified CLN6 as a gene associated

with the prognosis of uveal melanoma (42). In subsequent studies,
Frontiers in Immunology 17
we will focus on elucidating the mechanistic connections between

CLN6 and ferroptosis-related pathways. Additionally, ITGA6 (a

laminin receptor) promotes metastasis in multiple cancers,

suggesting its inhibition could disrupt ferroptosis-ECM crosstalk.

In a study on constructing a prognostic model for glioma based on

ferroptosis-related genes, the model gene ITGA6 was verified to

enhance cell proliferation, migration, and invasion (43).
FIGURE 12

Prognostic model genes associated with melanoma identified by random forest analysis. (A) Random forest analysis demonstrating the importance of
ferroptosis-related model genes (CLN6, PNMA6A, ITGA6, AP1S2, LGI3, and GMPR). Genes with a relative importance > 0.2. (B-E) Survival analysis was
performed on the six identified genes, revealing that AP1S2, CLN6, GMPR, and ITGA6 were significantly associated with survival differences (P ≤ 0.05).
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Pathway enrichment analyses further elucidated potential

mechanisms linking the risk score to disease progression. High-risk

patients exhibited signatures of T-cell dysfunction, macrophage

immunosuppression (via TIDE), reduced expression of

immunotherapy biomarkers (CD274/PD-L1, IFNG), and enrichment

in pathways associated with aggressive phenotypes (MYC targets,

WNT/b-catenin). Conversely, low-risk scores correlated with

enhanced immune responsiveness and sensitivity to specific

chemotherapeutics (e.g., Camptothecin, Axitinib) and targeted agents

(e.g., Doramapimod). These findings nominate rational combination
Frontiers in Immunology 18
strategies: for instance, co-administration of MYC inhibitors or WNT

inhibitors (e.g., LGK974) with ferroptosis inducers (e.g., erastin) may

overcome immune exclusion and sensitize tumors to iron-dependent

cell death. On the other hand, the correlation of low - risk scores with

enhanced immune responsiveness and sensitivity to certain

chemotherapeutics and targeted agents opens up opportunities for

personalized treatment strategies. This risk - score - based approach

may allow for more precise patient stratification, enabling clinicians to

tailor treatments to individual risk profiles and potentially improving

clinical outcomes. Further validation in clinical trials is warranted to
FIGURE 13

CLN6 as a Critical Driver of Melanoma Proliferation and Migration. (A) qRT-PCR validation of the expression of four genes (CLN6, GMPR, AP1S2, and
ITGA6) in A375, SK-MEL-28, and NHEK cells. (B) Box plots showing the expression of CLN6, GMPR and AP1S2 in 461 skin cutaneous melanoma
tissues compared with 558 normal tissues through GEPIA (http://gepia.cancer-pku.cn). (C) The knockdown efficiency of CLN6 in A375 and SKMEL28
cells transfected with siRNA1/2 was detected using qRT-PCR. (D) Proliferative capacity was detected by MTS assay. (E)Wound healing assay was used to
detect the migration ability (*P < 0.05, **P < 0.01, ***P < 0.001).
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confirm these findings and pave the way for integrating such risk -

score - guided strategies into routine clinical practice.

Several limitations merit consideration. First, this study relied on

retrospective analysis of publicly available transcriptomic datasets

(TCGA, GEO), and prospective clinical validation is required.

Second, single-cell analyses were performed exclusively on primary

tumors, potentially limiting generalizability to metastatic lesions with

distinct ferroptosis-immune dynamics. Third, the inferred ligand-

receptor interactions require experimental confirmation to establish

causality. Future work could incorporate spatial transcriptomics to

resolve microenvironmental architecture and test ferroptosis-

immunotherapy combination regimens in organoid or patient-

derived xenograft (PDX) models.

In summary, our study presents an integrative multi-omics

framework that decodes melanoma’s ferroptosis–immunity axis. By

leveraging bulk and single-cell transcriptomic data, we developed a

machine learning—optimized risk model that captures dynamic

immunometabolic states and stratifies patients by prognosis,

immunotherapy responsiveness, and drug sensitivity. These

findings provide a molecular rationale for co-targeting ferroptosis

regulators and immune checkpoint pathways to overcome

therapeutic resistance in high-risk melanoma. Future translational

studies are warranted to validate and extend these observations in

clinical settings.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

This research utilized published studies and consortia that have

made their summary statistics publicly available. All original studies

included in this research have obtained approval from their

respective ethical review boards, and participants have provided

informed consent. It is important to note that no individual-level

data was utilized in this study. As a result, no new ethical review

board approval was necessary for this research.
Author contributions

LW: Funding acquisition, Formal analysis, Resources,

Validation, Data curation, Conceptualization, Writing – review &

editing, Methodology, Investigation, Writing – original draft,

Software. XJ: Conceptualization, Investigation, Methodology, Data

curation, Writing – original draft. YW: Formal analysis, Writing –

original draft, Software, Data curation, Investigation, Methodology,

Project administration. RQ: Software, Writing – review & editing,

Investigation, Writing – original draft, Data curation, Methodology.
Frontiers in Immunology 19
JW: Conceptualization, Resources, Project administration,

Visualization, Investigation, Validation, Funding acquisition,

Formal analysis, Supervision, Writing – original draft, Data

curation, Software, Methodology, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was funded in

part by the Research Start-up Fund Project of Shaoxing People’s

Hospital (No. 2023BHQDJ02) and the Science and Technology

Innovation Project of Shaoxing (No. 2024SKY028).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1624691/full#supplementary-material

SUPPLEMENTARY IMAGE 1

Quality control and preprocessing of single-cell transcriptomic data. (A) Violin
plots displaying distributions of UMIs, gene counts, and mitochondrial/
ribosomal read percentages before and after filtering. (B) Scatter plots of

mitochondrial vs. nuclear gene expression; doublets (red) removed using
Scrublet v2.0.4. Final n = 24,111 cells. (C) Identification of top 2,000 highly

variable genes (HVGs) via mean–variance plot. (D) Log-normalized, z-score

scaled expressionmatrix. (E, F) PCA (top 50 PCs) andHarmony-corrected latent
space used for batch effect mitigation.

SUPPLEMENTARY IMAGE 2

GO enrichment analysis showing the enriched pathways of the 40
model genes.
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