
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Gabriele Multhoff,
Technical University of Munich, Germany

REVIEWED BY

Mikel Gurrea-Rubio,
University of Michigan, United States
Shovan Dutta,
Cleveland Clinic, United States

*CORRESPONDENCE

Melanie Märklin

Melanie.Maerklin@med.uni-tuebingen.de

RECEIVED 07 May 2025
ACCEPTED 14 July 2025

PUBLISHED 31 July 2025

CITATION
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Fc-optimized CD276
antibody enhances NK
cell activation against
non-small cell lung cancer
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Samuel Holzmayer 1,2, Latifa Zekri 1,2, Susanne Jung1,2,3

and Melanie Märklin 1,2*

1Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University
Hospital Tübingen, Tübingen, Germany, 2Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and
Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany,
3Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and
University Hospital Tübingen, Tübingen, Germany
Non-small cell lung cancer (NSCLC) is one of the most common and lethal

cancers worldwide, with a poor prognosis for many patients, especially in

advanced stages. The development of immune checkpoint inhibitors (ICIs) has

transformed treatment strategies for NSCLC. ICIs targeting PD-1/PD-L1 have

shown substantial bene!t, but these therapies are not effective in all patients and

are also associated with significant side effects. One promising target for NSCLC

immunotherapy is CD276 (B7-H3), an immune checkpoint molecule that is

highly overexpressed in many tumors, but minimally expressed in healthy

tissues. CD276 is involved in immune escape mechanisms, tumor growth, and

metastasis, making it an attractive target for patients unresponsive to PD-1/PD-

L1-directed therapies. To address the limitations of T cell-based ICIs, natural killer

(NK) cells are being explored as a complementary strategy, as they directly lyse

tumor cells through antibody-dependent cellular cytotoxicity (ADCC). Here, we

present an Fc-optimized CD276 antibody, 8H8_SDIE, which enhances NK cell

reactivity by improving its binding affinity to CD16. In our preclinical studies

8H8_SDIE specifically binds to CD276 on NSCLC cell lines, resulting in significant

NK cell activation, characterized by increased expression of CD69 and CD107a,

and the secretion of cytotoxic mediators such as IFNg, perforin, and granzyme B.

These findings suggest that 8H8_SDIEmay provide a novel therapeutic option for

patients with CD276-positive NSCLC, particularly those who have failed to

respond to conventional T cell-activating ICIs. By engaging NK cells, this

approach could overcome the limitations of PD-1/PD-L1-directed therapies,

offering a new way to combat ICI-resistant tumors.
KEYWORDS

non-small cell lung cancer (NSCLC), CD276 (B7-H3), NK cell, ADCC, immunotherapy, Fc
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Introduction

Lung cancer, of which non-small cell lung cancer (NSCLC)

accounts for 85-88%, has both the highest incidence and mortality

rate of all cancers worldwide, largely driven by the prevalence of

smoking, its main causative agent (1). While the 5-year survival rate

is around 64% in the localized stage, it drops to a mere 9% in the

distantly metastasized stage, which, considering that around 53% of

cases are primarily diagnosed with distant metastases, explains the

dismal prognosis of this disease (2). In recent years, the treatment

landscape for metastasized disease has been rapidly changing, with

targeted therapies and immunotherapies gaining more and more

ground in metastatic NSCLC (3–5).

Among these, immune checkpoint inhibitors (ICIs) have

arguably the biggest part in revolutionizing the treatment of even

early-stage NSCLC (6), with nivolumab, pembrolizumab,

ipilimumab and atezolizumab all being used in different

subentities at different stages. However, while certain subgroups

show durable responses to these treatments, others show limited or

no benefits (7, 8). Likewise, while ICIs are claimed to have lower

toxicity rates than standard chemotherapy (9–11), a significant

proportion of patients still suffer severe, sometimes even mortal,

side effects (12, 13) that require specific guidelines for their

management (14) and often compromise or even prevent further

treatment. This underscores the need to develop new strategies for

those patients hitherto excluded from the benefits of the established

immunotherapeutic regimens.

In recent years we have successfully evaluated and validated

several modified monoclonal antibodies (mAbs) with increased

ability to induce antibody-dependent cellular cytotoxicity (ADCC)

in various clinical entities (15–17). ADCC is a crucial mechanism

through which mAbs exert their therapeutic effects, primarily

mediated by natural killer (NK) cells (18, 19). Enhanced ADCC can

be achieved by modifying the fragment crystallizable (Fc) region of

mAbs. Two important strategies for this enhancement include

optimization of glycosylation patterns and substitution of specific

amino acids within the Fc region (e.g. S239D/I332E, SDIE) (20). A

notable example of the former is the FDA-approved glycol-optimized

CD20 mAb obinutuzumab, which is used to treat B cell malignancies.

By increasing the affinity of the Fc region for Fcg receptors (FcgRs),
particularly the activating FcgRIIIa (also known as CD16a), the

efficacy of ADCC can be improved. This enhanced binding has a

greater effect on activating receptors compared to inhibitory receptors,

such as FcgRIIb (CD32b) (21).
Abbreviations: 7-AAD, 7-aminoactinomycin D; ADCC, antibody dependent

cellular cytotoxicity; FACS, Fluorescence-activated cell sorting; FcgR, Fc-gamma-

receptor; FDA, Food and Drug Administration; HD, healthy donor; ICI, immune

checkpoint inhibitor; IFNg, interferon-g; mAb, monoclonal antibody; MFI, mean

fluorescence intensity; NK, natural killer (cells); NSCLC, non-small cell lung

cancer; OS, overall survival; PBMC, peripheral blood mononuclear cell; PE,

phycoerythrin; PD-1, programmed cell death protein 1; PD-L1, programmed

death-l igand 1; SEM, standard error of the mean; SFI, specific

fluorescence intensity.
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However, to broaden the application of these improved mAbs to

different cancer types, it is also essential to identify specific tumor-

associated antigens that are largely present on tumor cells but

minimally expressed in healthy tissues. One such antigen of interest

is CD276, also referred to as B7-H3. This immunological checkpoint

molecule has shown tumor-restricted expression in several

malignancies, including NSCLC (22, 23), leading to its recognition

as a potential target for novel therapeutic interventions. CD276

expression is associated with poor prognosis, likely due to its role in

inhibiting the activity of T cells and NK cells (24–26), thereby

providing a rationale for targeting this antigen in therapeutic

strategies aimed at enhancing anti-tumor immunity.

In this study, we analyze the expression levels of CD276 in

NSCLC cell lines, while also validating a newly developed Fc-

optimized CD276 monoclonal antibody, known as 8H8_SDIE,

which enhances NK cell activity and cytotoxicity against NSCLC.
Materials and methods

Peripheral blood mononuclear cells and
cell lines

Peripheral blood mononuclear cells (PBMC) were obtained

from healthy volunteer donors. PBMC were isolated by Ficoll

density gradient centrifugation (Thermo Fisher Scientific,

Waltham, MA, USA). After isolation, PBMC were cryopreserved

in liquid nitrogen and then randomly selected for each experimental

run. Prior to use, cryopreserved PBMC were thawed and cultured in

RPMI 1640 medium (Thermo Fisher Scientific) at 37°C in 5% CO2

for 24 hours to ensure viability for experiments. All participants

gave written informed consent in accordance with the Declaration

of Helsinki, and the study was approved by the Committee of the

University of Tübingen.

The non-small cell lung cancer (NSCLC) cell lines (A549, NCI-

H226, NCI-H460) were obtained from both the German Collection of

Microorganisms and Cell Cultures (Braunschweig, Germany) and the

American Type Culture Collection (Manassas, VA, USA). To

maintain quality standards, mycoplasma contamination screening

was performed every three months, and cell line authenticity was

verified by flow cytometry-based immunophenotyping according to

suppliers’ protocols.
Production and purification of antibody

A CD276-specific monoclonal antibody (mAb) with the SDIE

modification, 8H8_SDIE, and a corresponding iso-SDIE control

were generated. An anti-CD276 mAb (clone 8H8) and a control

mAb (clone MOPC21) were chimerized with the human

immunoglobulin G1/K constant region. The mAbs were

optimized for Fc function by introducing S239D/I332E

modifications as described previously (27). The light and heavy

chain plasmids for these mAbs were prepared using the EndoFree

Plasmid Maxi kit (Qiagen, Hilden, Germany) according to the
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manufacturer’s guidelines. Antibody production was carried out in

the ExpiCHO cell system (Gibco, Carlsbad, CA) in accordance with

the recommended protocols.

Antibody purification from the culture supernatants was achieved

by protein A affinity chromatography (GE Healthcare, Chicago, IL),

followed by preparative size exclusion chromatography (HiLoad 16/60

Superdex 200, GE Healthcare). To confirm antibody purity and

quality, analytical size exclusion chromatography (Superdex 200

Increase 10/300 GL, GE Healthcare) was performed alongside SDS-

PAGE using 4–12% gradient gels (Invitrogen, Carlsbad, CA) and Bio-

Rad’s Precision Plus protein standards (Hercules, CA).
Flow cytometry analysis

Cells were first blocked with human or mouse IgG (Merck

KGaA, Darmstadt, Germany), followed by incubation with mouse

anti-human CD276-PE/Cy7 (clone MIH42, BioLegend, San Diego,

CA, USA), 8H8_SDIE, or their respective isotype controls (BD

Pharmingen, San Diego, CA, USA). Secondary labeling was

performed with either goat anti-mouse PE (DAKO, Glostrup,

Denmark) or goat anti-human PE (Jackson ImmunoResearch,

West Grove, PA, USA). Natural killer (NK) cells were stained

with fluorescence-labeled antibodies CD3-APC (clone SK7, BD

Pharmingen) and CD56-PE/Cy7 (clone HCD56, BioLegend). For

intracellular IFNg and TNF detection, cells were cultured with

GolgiStop and GolgiPlug (BD Biosciences, Heidelberg, Germany),

followed by CD56 staining as described above, cell fixation and

permeabilization with the Fixation/Permeabilization Solution Kit

(BD Biosciences), and subsequent staining with IFNg-BV421 (clone
B27, BioLegend).

To assess target cell lysis, NSCLC cells were labeled with 2.5 mM

CellTrace™ Violet proliferation dye (Thermo Fisher Scientific) prior

to co-culture with PBMC from healthy donors, with or without the

addition of antibodies (1 µg/mL each). Silicone beads (Merck KGaA)

were used to standardize test volume measurements. Dead cells were

excluded from the analysis by staining with 7-AAD (BioLegend) or

LIVE/DEAD™ Fixable Aqua (Thermo Fisher Scientific). Flow

cytometry data were acquired on either a FACS CANTO II or

FACS Fortessa instrument (BD Biosciences) and analyzed using

FlowJo_10 software (FlowJo LLC, Ashland, OR, USA). Specific

fluorescence intensity (SFI) values were calculated by dividing the

mean fluorescence intensity (MFI) of the antigen by the MFI of the

isotype control, with surface positivity defined as SFI ≥ 1.5.
Evaluation of NK cell activation,
degranulation and cytokine secretion

To assess NK cell activation independently of tumor cells, a high

binding plate (Greiner Bio-One, Frickenhausen, DE) was coated

overnight with 10 µg/mL of 8H8_SDIE monoclonal antibody, with

PBS added to the control wells. PBMC from eight healthy donors
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were then added and incubated for 24 hours. After incubation, the

cells were stained with CD56 and CD3 to identify NK cells, CD107a

as a degranulation marker, and fixable aqua dye to assess

cell viability.

To evaluate target-dependent NK cell activation, degranulation,

and cytokine release, PBMC from healthy donors were co-cultured

with NSCLC cells at an effector-to-target (E:T) ratio of 2.5:1, using

200,000 NSCLC cells and 500,000 PBMC, with treatments applied

at a concentration of 1 µg/mL. To assess NK cell degranulation,

GolgiPlug and GolgiStop (BD Biosciences) were added to the co-

culture, cells were collected after 24 hours, stained for CD107a-PE

(clone H4A3, BD Pharmingen) and analyzed by flow cytometry.

Activation markers CD69-PE (clone FN50, BD Pharmingen) and

CD25-PE (clone BC96, BioLegend) were used to assess NK cell

activation at 24 and 72 hours. NK cells within the PBMC population

were identified by gating for the CD3-CD56+ subset.

To analyze cytokine secretion, supernatants from the 24-hour co-

culture were collected and analyzed for levels of granzyme A, granzyme

B, perforin, granulysin, TNF, IL-2, IFNg, and IL-10 using the

L e g endp l e x a s s a y (B i oL e g end ) , a c c o r d i n g t o t h e

manufacturer’s instructions.

To determine IFNg secretion after 72 h, supernatans from co-

cultures of PBMC from healthy donors with NSCLC cell lines (E: T

of 2.5:1) were analyzed by ELISA.

Plates were coated overnight with a 0.3 µg/mL anti-human IFNg
mAb (Pierce Endogen®, Thermo Fisher Scientific) in carbonate-

bicarbonate buffer (pH 9.6, Sigma-Aldrich, USA), blocked with 1%

BSA-PBS (PAN Biotech, Aidenbach, DE), and washed.

Supernatants were added in triplicate and plates were incubated

for 2 hours at room temperature (RT). After washing, a 0.5 µg/mL

secondary antibody (anti-human IFNg mAb biotin-labeled, Pierce

Endogen®, Thermo Fisher Scientific) in 1% BSA-PBS was added for

2 h, followed by poly-HRP-Streptavidin (1:80000, Research

Diagnostics, Baileys Harbor, WI, USA) for detection. Plates were

developed using TMB substrate (Medac, Wedel, Germany), and

IFNg was quantified using Spectra Max ID5 system (Molecular

Devices, Silicon Valley, CA, USA). Concentrations represent the

mean of triplicate measurements.
Analysis of NK cell cytotoxicity

The lysis of NSCLC cells by PBMC from healthy donors, with or

without 8H8_SDIE or MOPC_SDIE (1 µg/mL), was evaluated using

the DELFIA Cell Cytotoxicity Assay (Perkin Elmer, Waltham, MA,

USA) after a 2-hour incubation according to standard protocols

(15). Specific lysis rates were calculated using the formula:

100 × (experimental release – spontaneous release)/(maximum

release – spontaneous release). Lysis rates are presented as the mean

of technical triplicates, along with the standard error of the mean,

unless otherwise noted.

Long-term, real-time cytotoxicity was evaluated at 15 min

intervals over 150 h using the xCELLigence RTCA system (Roche
frontiersin.org
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Applied Science, Penzberg, Germany). For this assay, NSCLC cells

were seeded in 96-well plates for 24h prior to co-culture with PBMC

from healthy donors at an effector-to-target (E:T) ratio of 40:1, with

or without the specified monoclonal antibodies (1 µg/mL).
Statistics

Unless otherwise stated, results are presented as the mean ±

SEM of replicates or individual data points. Statistical significance

was evaluated using methods such as Student’s t-test, one-way

ANOVA, the Mann-Whitney test, or the log-rank test, as

appropriate. All analyses were carried out using GraphPad Prism

version 10.1.1, with significance thresholds set at p-values below

0.05 (*p < 0.05, **p < 0.01, ***p < 0.001). Statistical significance (p <

0.05) is indicated for groups with sufficient sample sizes (n ≥ 3),

while non-significant comparisons are not marked.
Frontiers in Immunology 04
Results

CD276 surface expression on NSCLC cell
lines

As a first step, we analyzed CD276 mRNA expression using

TGCA TARGET GTEx data sets from tumor and matched normal

tissues to assess relative expression levels. This analysis included data

sets for 54/491 lung adenocarcinoma (normal/primary tumor) and 51/

501 lung squamous cell carcinoma samples (Figure 1A). Compared to

normal tissue, CD276 RNA expression was significantly increased in

all tumors examined. Using survival data derived from UCSC Xena

based on the TCGA datasets, we evaluated the impact of CD276

expression levels on overall survival (OS) in patients with lung

adenocarcinoma and lung squamous cell carcinoma by Kaplan-

Meier survival analysis (Figure 1B). Patients were stratified into high

and low CD276 expression groups. For lung adenocarcinoma, survival
FIGURE 1

Characterization of CD276 expression in NSCLC cell lines. (A) mRNA expression data from the TCGA TARGET GTEx database were processed using
the USCS Xena platform (70). The left panel shows CD276 mRNA expression in healthy lung tissue (n = 54) and primary lung adenocarcinoma tissue
(n = 491) for. The right panel shows CD276 mRNA expression in healthy tissues (n = 51) and lung squamous cell carcinoma tissues (n = 501).
(B) Kaplan-Meier survival curves for lung adenocarcinoma and lung squamous cell carcinoma based on CD276 expression. Survival data obtained
from the USCS Xena platform (TCGA dataset). Five-year survival curves of lung adenocarcinoma patients (n = 251, left panel) and lung squamous cell
carcinoma patients (n = 244, right panel) for the highest and lowest CD276 expression quartiles are shown. (C) Flow cytometric analysis of CD276
surface expression on the depicted NSCLC cell lines using commercially available CD276-Pe/Cy7 and a corresponding murine IgG1 isotype control
is shown. Representative histograms from one out of three independent experiments with similar results are shown. (D) Schematic representation of
the engineered anti-CD276 antibody with a modified Fc region designed for increased affinity to CD16 (8H8_SDIE). Created with BioRender.com. (E)
Flow cytometric analysis of 8H8_SDIE mAb titration on selected NSCLC cell lines using MOPC_SDIE as isotype control. ***p < 0.001.
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analysis revealed a significant difference between high and low CD276

expression groups. Patients with high CD276 expression had a shorter

median survival of 39.3 months, while the median survival for the low

expression group was indeterminate, suggesting longer survival.

Furthermore, high CD276 expression was associated with a twofold

increased risk of death, confirming its potential prognostic role in lung

adenocarcinoma. Similar trends but less pronounced without reaching

statistical significance were observed in lung squamous cell carcinoma,

where the survival curves for high and low CD276 expression levels

were more closely aligned.

Next, we evaluated CD276 surface expression on various

NSCLC cell lines, including A549, NCI-H226, and NCI-H460, by

examining the specific binding of a commercially available CD276

antibody (Figure 1C). Flow cytometry analysis indicated that

CD276 expression was high on A549 cells, moderate on NCI-

H226 cells, and low on NCI-H460 cells. We then evaluated the

binding of a humanized CD276 monoclonal antibody, clone 8H8,

termed 8H8_SDIE, which included the S239D/I332E modification

to enhance its affinity for the CD16 Fc receptor on NK cells

(Figure 1D). As a control, we employed an Fc-optimized mAb

with irrelevant target specificity, designated MOPC_SDIE. Binding

of 8H8_SDIE to NSCLC cells was further evaluated by dose titration

using the A549, NCI-H226 and NCI-H460 cell lines, with results
Frontiers in Immunology 05
showing that approximately 1 mg/mL of the antibody was sufficient

to achieve maximal binding in all cases (Figure 1E).
Induction of NK cell activation with
8H8_SDIE in NSCLC

To evaluate whether 8H8_SDIE could enhance NK cell

activation independent of target cells, 8H8_SDIE mAb was

immobilized and PBMC from healthy donors, containing NK

cells as an effector population were added for 24 hours. After

incubation, flow cytometric analysis of NK cells showed

significantly increased CD69 (left panel) and CD25 (right panel)

expression after 24 h of treatment with 8H8_SDIE compared to

controls, indicating enhanced NK cell activation (Figure 2A).

Next, we investigated the ability of 8H8_SDIE to promote NK

cell responses against NSCLC cells. PBMC from healthy donors

were incubated with various NSCLC cell lines, in the presence of

8H8_SDIE or its isotype control, MOPC_SDIE. Flow cytometry

results after 24 hours showed a significant increase in CD69

expression on NK cells treated with 8H8_SDIE compared to the

MOPC_SDIE control, indicating increased activation against all

NSCLC lines tested (Figures 2B, C). After 72 hours of incubation,
FIGURE 2

Induction of NK cell activation by Fc-optimized CD276 antibody against NSCLC cell lines. (A) 8H8_SDIE was immobilized on high binding plates and
NK cell activation was assessed by flow cytometry by measuring the expression of CD69 and CD25 after incubating PBMC from healthy donors (n =
8) for 24 h. (B-E) PBMC from healthy donors (n = 4) were co-cultured with the indicated NSCLC cell lines (E:T 2.5:1) with or without 8H8_SDIE or
MOPC_SDIE control (both at 1 µg/mL). (B) Representative flow cytometric results for CD69 expression of NK cells after co-culture with NCI-H226
cells. (C) NK cell activation was determined by CD69 expression after 24 h. Separate and pooled data of the indicated NSCLC cell lines incubated
with PBMC from healthy donors. (D) Representative flow cytometric results for CD25 expression of NK cells after co-culture with NCI-H226 cells.
(E) NK cell activation was analyzed by CD25 expression after 72 h. Individual and pooled data of the indicated NSCLC cell lines incubated with PBMC
from healthy donors. *p < 0.05; **p < 0.01; ***p < 0.001.
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treatment with 8H8_SDIE resulted in a significant increase in CD25

expression on NK cells, while no effect was observed with the

isotype control on all tested NSCLC cell lines (Figures 2D, E).
Stimulation of NK cell activity targeting
CD276+ NSCLC cell lines

Next, we evaluated whether 8H8_SDIE could enhance NK cell

reactivity independently of target cells by adding PBMC from

healthy donors to plates with immobilized 8H8_SDIE. Flow

cytometric analysis after 4 h showed a significant increase in NK

cell degranulation compared to controls, as indicated by CD107a

expression (Figure 3A).

Target-specific NK cell degranulation was assessed by

coculturing PBMC from healthy donors with NSCLC cell lines in

the presence or absence of 8H8_SDIE and MOPC_SDIE. Flow

cytometry showed robust CD107a induction with A549, NCI-H226,

and NCI-H460 cell lines (Figures 3B, C). Intracellular flow

cytometry analysis of the effector cytokines IFNg and TNF, which

have direct anti-tumor properties, showed a significant increase in

IFNg and TNF expression by NK cells upon treatment with

8H8_SDIE (Figures 3D, E). The increased levels of IFNg and TNF

were further confirmed by their increased release into the culture

supernatants at 24 hours and 72 hours for (Figures 3F, G). In

addition, treatment with 8H8_SDIE resulted in increased secretion

of key cytotoxic molecules, including granulysin, granzyme A,

granzyme B, and perforin compared to controls (Figure 3H).
NK cell cytotoxicity against CD276+ NSCLC
induced by 8H8_SDIE

We next investigated whether the enhanced NK cell reactivity

induced by 8H8_SDIE leads to increased target cell lysis. PBMC

from healthy donors were co-cultured with NSCLC cell lines in the

presence or absence of 8H8_SDIE mAb. Europium-based

cytotoxicity assays at 2 hours demonstrated a significant increase

in target cell lysis with 8H8_SDIE treatment in all NSCLC cell lines

tested (Figure 4A). Similarly, long-term 24-hour flow cytometry-

based assays confirmed the ability of 8H8_SDIE to induce robust

lysis of NSCLC cells (Figures 4B, C). Additionally, real-time cell

imaging over a 150-hour period further validated the cytotoxic

effects of 8H8_SDIE (Figure 4D). Notably, coculture experiments

with CD276-negative HL-60 cells showed no activation,

degranulation, or specific lysis induced by 8H8_SDIE compared

to the isotype control (Supplementary Figure S1).
Discussion

Immunotherapy has significantly transformed the treatment

landscape for non-small cell lung cancer (NSCLC), offering new

hope to patients with advanced or previously uncontrollable disease.

Immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 have
Frontiers in Immunology 06
become a cornerstone of therapy, improving survival and quality of

life in various molecular and clinical subgroups of NSCLC patients,

regardless of PD-L1 expression levels (28, 29). Despite their

widespread use, ICIs face substantial challenges, particularly with

respect to primary resistance. Landmark trials have shown that a large

proportion of patients fail to respond to initial ICI therapy, with

primary resistance rates as high as 78% in PD-L1 positive patients

(30–32). Secondary resistance is also a concern, as some patients

develop adaptive resistance mechanisms over time (33). In addition

to resistance, ICIs can trigger significant immune-related adverse

events (irAEs) due to broad immune system overstimulation, leading

to severe autoimmune toxicities, that can affect multiple organ

systems and, in some cases, become life-threatening (34, 35). Given

these barriers, there is an urgent need for therapeutic innovations that

go beyond PD-L1-based approaches and more effectively address

both primary and acquired resistance.

To overcome these challenges, novel immunotherapeutic

targeting strategies such as anti-tumor antibodies are urgently

needed. To address this issue, we have developed an Fc-optimized

monoclonal antibody, 8H8_SDIE, targeting the tumor-associated

antigen CD276. Optimized Fc receptor binding enhances antibody-

dependent cellular cytotoxicity (ADCC) by increasing binding to

CD16a on NK cells, while reducing interactions with the inhibitory

FcgRIIb receptor. Our Fc-engineered monoclonal antibody,

8H8_SDIE, represents a significant advance in immunotherapy by

incorporating the S239D/I332E (SDIE) modification to enhance

ADCC, which has been demonstrated with multiple antigens in

various cancers, including leukemia, colorectal cancer, breast

cancer, and sarcoma (15, 27, 36–40). This is consistent with

previous advances in Fc-optimized mAbs such as obinutuzumab

(CD20; NCT02393157), FLYSYN (anti-FLT3; NCT02789254) (41),

margetuximab (Her2; NCT01828021), MEN1112 (CD157;

NCT02353143), and tafasitamab-cxix (CD19; NCT02399085),

which have also demonstrated clinical efficacy.

CD276 is broadly expressed on tumor cells and with relatively

limited expression in normal tissues, making it an ideal candidate for

antibody-based therapy, particularly Fc-engineered antibodies designed

to enhance NK cell-mediated tumor cytotoxicity (42, 43). CD276 was

originally characterized as a costimulatory molecule, but recent evidence

supports its predominant function in immune suppression immune

evasion, metastasis and angiogenesis (44–46), solidifying its role as a

multifaceted therapeutic target (43, 47). Notably, CD276 expression is

frequently observed in NSCLC tumors lacking PD-L1, making it

particularly relevant for patients who do not benefit from PD-1/PD-

L1 inhibitors (48). Elevated CD276 levels correlate with worse overall

survival, particularly in adenocarcinoma subtypes, highlighting its

relevance in treatment-resistant tumors (45, 49).

Several CD276-targeting strategies have entered preclinical and

clinical evaluation, including antibody-drug conjugates (ADCs) (e.g.,

MGC018: NCT037219596, DS7300a: NCT04145622), radiolabeled

mAbs (e.g., 131I-8H9: NCT03275402, NCT04022213; 177Lu-DPTA

Omburtamab: NCT04315246, NCT04167618), Fc-optimized mAbs

(e.g., MGA271, Enoblituzumab: NCT02923180, NCT02475213,

NCT04634825; DS-5573a: NCT02192567, clinical trial discontinued),

CAR-T cells and bispecific antibodies (CC-3: NCT05999396, MGD009:
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FIGURE 3

NK cell reactivity is induced by an Fc-optimized CD276 antibody against NSCLC cell lines. (A) 8H8_SDIE was immobilized on high binding plates and
NK cell degranulation via CD107a was assessed by flow cytometric analysis after 4 hours using PBMC from healthy donors (n = 8). (B-H) PBMC from
healthy donors (n = 4) were co-cultured with the indicated NSCLC cell lines (E:T 2.5:1) with or without 8H8_SDIE antibody or the MOPC_SDIE
control (both at 1 µg/mL). (B) Representative flow cytometric results for CD107a expression of NK cells after co-culture with NCI-H460 cells at 4 h.
(C) NK cell degranulation was analyzed by CD107a expression at 4 h. Individual and pooled data of the NSCLC cell lines with PBMC from healthy
donors. (D, E) Intracellular IFNg and TNF expression of NK cells (n = 4) after co-culture with NSCLC cell lines (E:T 2.5:1) was characterized after CD3-

CD56+ counterstaining and analysis by flow cytometry after 4 h. (D) Exemplary histograms of NK cells after co-culture with A549 cells for IFNg
expression (left panel) and pooled data from different NSCLC cell lines for IFNg expression (right panel). (E) Exemplary histograms of NK cells after
co-culture with A549 cells are shown for TNF expression (left panel) and pooled data from different NSCLC cell lines for TNF expression (right
panel). (F, H) Supernatants of the respective co-cultures were analyzed after 24 h for the release of (F) the immunoregulatory molecules IFNg and
TNF and (H) the effector molecules granzyme A (GrzA), granzyme B (GrzB), perforin (PFN) and granulysin (Grly) by Legendplex assay. The heat maps
show individual values for the indicated NSCLC cell lines and different PBMC donors (n = 4). (G) IFNg ELISA was performed with supernatants of
PBMC from healthy donors (n=4) co-cultured with NSCLC cell lines (n=3) for 72 h at an E:T ratio of 2.5:1. *p < 0.05; **p < 0.01; ***p < 0.001.
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NCT02628535) (50–56). These approaches have shown promising anti-

tumor activity, but face different difficulties. For instance, Zhang et al.

recently developed a CD276-directed antibody-drug conjugate (ADC)

that exhibited anti-tumor activity in non-small cell lung cancer

(NSCLC) models, primarily by delivering a cytotoxic MMAF payload

(42). Although effective, this ADC strategy relies on toxin conjugation,
Frontiers in Immunology 08
which can lead to systemic toxicity and off-target effects. In contrast, our

Fc-optimized antibody, 8H8_SDIE, induces potent NK cell-mediated

cytotoxicity solely through immune effector engagement. This payload-

free alternative may reduce adverse effects while preserving anti-tumor

efficacy. In general, ADCs and radiolabeled mAbs can exhibit off-target

toxicity due to their potential accumulation in non-target tissues,
FIGURE 4

Induction of NK cell cytotoxicity by Fc-optimized CD276 antibody against primary NSCLC cells. PBMC from healthy donors were co-cultured with
the indicated NSCLC cells with or without 8H8_SDIE mAb or MOPC_SDIE control (both 1 µg/mL). (A) Targeted lysis of NSCLC cells was quantified
by Europium-based cytotoxicity assays after 2 h of incubation. The left and middle panels show example data for NCI-H226 and NCI-H460 cells and
a PBMC donor at different E:T ratios. The right panel shows pooled data from A549, NCI-H226 and NCI-H460 cell lines with different PBMC donors
(n = 4) (E:T 40:1). (B, C) Flow cytometry-based lysis of NSCLC cells was analyzed after 24 h by labeling of target cells and counterstaining of dead
target cells. (B) Representative results for NCI-H226 cells after 24 h co-culture are shown by contour plots. (C) Lysis of NSCLC cell lines with
different PBMC donors (n = 4) showing individual and pooled results. (D) NCI-H460 cells were cultured with PBMC from healthy donors (n = 4)
(E:T 40:1) for 150 h and long-term killing of NSCLC cells was determined using a real-time cell analysis system (xCELLigence). *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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particularly during hepatic and renal clearance processes, which can lead

to significant side effects and limit their therapeutic efficacy (57, 58). In

addition, ADCs often have a narrow therapeutic window and can cause

dose-limiting toxicities that are not necessarily related to the target

antigen, complicating their clinical application (58, 59). CAR-T cell

therapies, while promising, face challenges such as high production

costs, complex manufacturing processes and serious side effects such as

cytokine release syndrome and neurotoxicity, which may hinder their

widespread use in the treatment of solid tumors (60–62).

In summary, these studies suggest that CD276-targeted

therapies, are very promising and show robust antitumor activity

with manageable toxicity profiles. Therefore, we reasoned that our

Fc-optimized mAb 8H8_SDIE will be a promising drug candidate

for further evaluation in NSCLC patients, especially those who do

not express PD-L1 or are unresponsive to ICI therapy.

While the conducted in vitro and ex vivo studies using healthy

donor NK cells provide valuable insights, they do not fully capture the

complexity of the NSCLC tumor microenvironment, which is

characterized by immune suppression (63, 64) and NK cell

dysfunction (65, 66). Advanced in vivo models, such as patient-

derived xenografts (PDX) or humanized mice, are essential to

recapitulate human tumor dynamics and evaluate therapeutic

efficacy under clinically relevant conditions. Our previous in vivo

studies using 8H8_SDIE in AML xenograft models (17) demonstrated

a favorable safety profile, confirming the absence of off-target immune

activation or cytokine release while effectively inhibiting leukemia

progression. These findings support the potential of 8H8_SDIE as a

therapeutic agent also in NSCLC with a reduced risk of severe adverse

events, such as cytokine release syndrome. However, further research,

including combinatorial approaches with ICIs, is essential to evaluate

the long-term impact of NK cell therapies, particularly with regard to

tumor evolution and resistance mechanisms. In addition,

comprehensive biodistribution studies are needed to further confirm

the safety profile of 8H8_SDIE, particularly in tissues with low CD276.

Another critical aspect is the improvement of NK cell persistence,

which typically ranges from a few days to four months, which could be

achieved by immunocytokines targeting IL-2 or IL-15 to enhance NK

cell proliferation (67–69).

The potent and selective anti-tumor activity of our 8H8_SDIE in

preclinical settings underscores its potential as a promising therapeutic

option and could provide substantial benefit to patients with NSCLC

and other CD276-positive malignancies, potentially overcoming the

limitations of PD-L1 dependent strategies.
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SUPPLEMENTARY FIGURE 1

NK cell-mediated cytotoxicity against the CD276-negative HL-60 cell line
after treatment with Fc-optimized 8H8_SDIE. (A, B) PBMCs from healthy

donors (n = 3) were co-cultured with the CD276-negative HL-60 cell line at
an E:T ratio of 2.5:1 for 24 h in the presence of 8H8_SDIE or the MOPC_SDIE

isotype control (both at 1 mg/mL). (A) Representative flow cytometric data

showing CD69 expression on NK cells. (B) Representative data for CD107a
expression as a marker of NK cell degranulation. (C) Specific lysis of HL-60

cells was measured using an Europium-based cytotoxicity assay after two
hours of coculture with PBMCs from healthy donors (n=3) at an effector-to-

target ratio of 40:1. There was no significant difference in lysis between
8H8_SDIE and the SDIE isotype contro l , ind icat ing CD276-

dependent activity.
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