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Introduction: Antigen presentation molecules play key roles in T cell immunity.
Multiple complementary pathways are known to regulate classical MHC-I
molecules at transcriptional, translational, and post-translational levels.
Intracellular trafficking mechanisms dictating post-transcriptional regulation of
MR1, the MHC-I-like molecule which restricts MAIT cells, have been an area of
focus; however, little is known about MRI1 transcriptional regulation. We
demonstrate that interferons regulate MR1 transcription.

Methods: Primary human airway epithelial cells (AEC) were treated with
recombinant interferons or co-cultured with MAIT cell clones and antigen
sources. MR1 expression was analyzed by RT-gPCR and flow cytometry. MAIT
cell activity was quantified by ELISPOT.

Results: Treatment of AECs with IFNP or IFNy variably increased MR1 transcripts,
while only IFNy significantly increased surface MR1 expression and enhanced
antigen presentation to MAIT cells. The MR1 promoter contains binding motifs
for interferon regulatory factor 1 (IRF1), an important MHC-I transcription factor.
IRF1 knockout reduced IFNy-stimulated MR1 transcription, surface expression,
and antigen presentation. Conversely, knockout of Nod-like Receptor family
CARD domain-containing 5 (NLRC5), a critical component of MHC-I
transcription, did not significantly impact MR1 expression. These findings were
corroborated with IFNy-treated primary AEC. MAIT cells in co-culture with
Streptococcus pneumoniae-infected AEC produced sufficient IFNy to stimulate
MR1 expression.

Conclusion: Our data support a model where IFNy from activated MAIT cells or
another source stimulates IRF1-dependent MR1 expression and antigen
presentation, leading to greater MAIT cell activation. A robust MR1-dependent
MAIT cell response may be beneficial for early infection responses, allowing
minimal antigen stimulus to generate greater proinflammatory activity.
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Introduction

Mucosal-associated invariant T (MAIT) cells, an innate-like
subset of T lymphocytes that comprise a relatively large proportion
of the total CD8" T cell population in human blood and lungs, play
key roles in clearing respiratory bacterial, fungal, and viral
infections (1-3). Upon antigen presentation, MAIT cells are
capable of immediate effector function and release inflammatory
cytokines like interferon-y (IFN7y) and tumor necrosis factor
(TNFa) (2-5). This rapid activation primes MAIT cells to
coordinate early infection response, but also necessitates tight
regulation of antigen presentation to prevent inappropriate MAIT
cell activation to inappropriate stimuli.

MAIT cells are restricted by the MHC class I-related molecule
MRI, which presents small molecule metabolite antigens such as
those generated during bacterial riboflavin biosynthesis (2, 3, 6, 7).
There is a large pool of potential MR1 ligands produced by
commensal airway flora in addition to pathogenic respiratory
microbes. MRI mRNA is expressed across cell types and tissues,
and MR1 proteins primarily reside in intracellular compartments
like the ER and endosomal compartments (7-11). The basal
intracellular location of MR1 and ligand-induced translocation to
the cell surface play critical parts in regulation of MAIT activation
(as reviewed in (12-14)).

The intracellular trafficking mechanisms dictating post-
transcriptional regulation of MR1 have been an area of research
focus; however, little is known about MRI transcriptional
regulation. Multiple complementary pathways regulate classical
MHC-Ia molecules at transcriptional, translational, and post-
translational levels (15, 16). Interferons (IFNs) like IFNfB and
IFNY drive transcription of MHC-Ia through expression of
downstream transcription factors like Interferon Regulatory
Factor 1 (IRF1) and Nod-like receptor family CARD domain
containing 5 (NLRC5), which in turn bind to the HLA promoter
to induce transcription (15-19). Although the MRI gene resides on
human chromosome 1, outside the chromosome 6 HLA locus (7),
these pathways may provide insight into transcriptional regulation
of MRI. Recent research links MRI expression with disease
pathology (e.g. meningeal tuberculosis (20), glioma (21), and
COPD (22-24)), although specific mechanisms controlling MRI
transcription remain unclear.

Here, we investigated the role of IFNy in stimulating MRI
expression in human airway epithelial cells (AEC). We found IFNy
promotes MRI transcription, antigen presentation, and MAIT cell
responses. While NLRC5 and IRF1 were both important for IFNy-
induced HLA-A transcription, NLRC5 was largely dispensable for
MRI transcription. Finally, we demonstrate that MAIT cells,
activated in co-culture with infected AEC, produce sufficient IFNy
to stimulate MRI transcription. Taken together, our data support a
model in which IFNY from activated immune cells induces MR1
expression and antigen presentation, leading to greater MAIT cell
activation. These results establish an additional level of MRI
regulation, informing our understanding of MAIT cell activation
and dysregulation in infection and disease.

Frontiers in Immunology

10.3389/fimmu.2025.1624767

Results

MR1 expression increases in infected AECs
co-cultured with MAIT cells

First, we asked if co-culture with activated MAIT cells could
impact MR1 expression and function in airway epithelial cells
(AEC). To address this, we examined MRI mRNA expression of
primary human AEC co-cultured with the human MAIT cell clone
D426G11 alone or in the context of Streptococcus pneumoniae
(Sp) infection.

We noticed significantly increased MRI mRNA expression in
AEC from healthy donors when infected with Sp and cultured with
MAIT cells (Figure 1A, Supplementary Figure 1A, Supplementary
Table 1). Infection with Sp or co-culture with MAIT cells alone did
not stimulate a significant response. We replicated this system using
a model bronchial epithelial cell line (BEAS-2B cells) infected with
Mycobacterium smegmatis (Ms). Similarly, we observed increased
MRI expression in the Ms-infected BEAS-2B cells co-cultured with
MAIT cells, with no impact of either condition alone (Figure 1B,
Supplementary Figure 1B, Supplementary Table 1). Using flow
cytometry to quantify surface MRI1 protein expression, we
likewise found increased MR1 expression with both Ms infection
and MAIT cell co-culture compared to either condition alone
(Figure 1C, Supplementary Figure 1C). These data suggest that
MAIT cells, when activated by presentation of bacterial antigens,
could lead to increased MRI mRNA or surface protein expression in
the infected cell.

We next asked whether microbial infection is required for this
transcriptional increase or if the presence of MRI ligand alone is
sufficient. We treated BEAS-2B cells with either the stimulatory
antigen 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-
RU) or the non-stimulatory ligand 6-formylpterin (6-FP) and
measured expression of MRI1. Neither 5-OP-RU nor 6-FP
increased MRI expression alone (Figures 1D, E). In co-culture
with MAIT cells, however, MRI mRNA expression increased
when BEAS-2B cells were treated with 5-OP-RU, while treatment
with 6-FP had no impact on MRI expression (Figures 1D, E,
Supplementary Figures 1D, E). These data demonstrate that the
upregulation of MRI mRNA expression requires activation of
MAIT cells, and this may be stimulated by antigen presentation
alone or bacterial infection.

IFNYy stimulates MR1 expression and
antigen presentation

Among the effector molecules produced by activated MAIT
cells, IFNy is well known to stimulate transcription of MHC Class I
molecules (15-17). We hypothesized MRI expression could be
regulated through similar mechanisms, despite the differences in
chromosomal location and gene arrangement from classical HLA
genes. To test if IFNYy alone is sufficient to stimulate MRI
expression, we treated primary AEC with recombinant human
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Increased MR1 expression following MAIT cell activation. (A) RT-gPCR of RNA isolated from primary human AECs (n=5) infected with S. pneumoniae
(Sp) for one hour and incubated overnight with MAIT cell clone. MR1 expression was calculated relative to HPRT1 expression and uninfected no-
MAIT (Ul-) controls, paired by individual donor. MR1 (B) mRNA and (C) surface expression of BEAS-2B cells infected with M. smegmatis (Ms) for one
hour and incubated overnight with MAIT cell clone. (B) RT-qPCR of MR1 expression was calculated relative to HPRT1 expression and Ul- control,
paired by experimental replicate. (C) Geometric mean fluorescence intensity (gMFI) of surface MR1 stained with a.-MR1 26.5 Ab, paired by
experimental replicate. MR1 (D) mRNA and (E) surface expression of BEAS-2B cells treated with 5-OP-RU (left, “5-OP") or 6-FP (right) for one hour
and incubated overnight with MAIT cell clone. (D) RT-gqPCR of MR1 expression was calculated relative to HPRT1 expression and UT- control, paired
by experimental replicate. (E) gMFI of surface MR1 stained with a-26.5 Ab, paired by experimental replicate. Pairwise statistical analyses are in
Supplementary Table 1. Triangles represent data from primary AEC and circles represent data from BEAS-2B cells. The symbol 'ns’ refers to

comparisons with p-values < 0.05.

IFNy. IFNYy treatment significantly increased MRI transcription
(Figure 2A, left). As expected, IFNY also increased expression of
positive control HLA-A (Figure 2A, right). In BEAS-2B cells treated
with IFNY, we also observed significant increases in both MRI and
HLA-A mRNA expression (Figure 2B).

To quantify MR1 protein expression, we measured surface MR1
expression by flow cytometry. We found that IFNYy treatment also
significantly increased surface MR1 expression and control MHC-I
expression in primary AEC and BEAS-2B cells (Figures 2C, D,
Supplementary Figure 1F). This approach does not distinguish
between 1) increased surface expression of MR1 proteins due to
increased MRI transcription and translation or 2) increased
translocation of existing MR1 molecules and stabilization on the
cell surface. To determine if IFNYy signaling impacts post-
transcriptional protein stability of MR1, we utilized BEAS-2B cells
expressing MR1-GFP under a doxycycline-inducible promoter (11).
IFNYy treatment did not increase expression of MRI mRNA, total
MR1-GFP gMF]I, or surface MRI in these doxycycline-treated cells
(Figure 3A-C). As expected, IFNY treatment increased MHC-Ia
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surface expression and 6-FP treatment induced significant
stabilization of total MR1-GFP protein expression and surface
translocation (Figures 3C, D). Together, these data indicate that
increased surface MR1 in IFNY-treated wildtype cells resulted from
stimulation of MRI transcription rather than protein-level impacts.

MRI1 antigen presentation and MAIT cell responses are
increased in MR1 over-expression systems (10, 11, 25). We next
investigated if the IFNy-dependent increase in MR1 expression
similarly enhanced MAIT cell responses to wildtype cells. BEAS-2B
cells were treated with IFNYy for 12 hours, thoroughly washed to
remove excess soluble IFNY, then used as antigen-presenting cells in
an IFNy ELISPOT assay to quantify MAIT cell activation. Filtered
M. smegmatis supernatant was used as the antigen source to avoid
potential confounding impacts of IFNY treatment on bacterial
infection. MAIT cell responses to IFNY pre-treated BEAS-2B cells
were significantly increased compared to UT controls (Figure 3E).
Therefore, IFNY treatment is sufficient to stimulate MRI
transcription, leading to increased protein expression and antigen
presentation to MAIT cells.
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IFNy induces MR1 expression and function. RT-gPCR of (A) primary human AECs or (B) BEAS-2B cells treated with media control (UT) or
recombinant IFNy for 12 hours. MR1 (left) and HLA-A (right) expression were calculated relative to HPRT1 expression and UT control, paired by
individual donor or experimental replicate. Flow cytometry of (C) primary AECs or (D) BEAS-2B cells treated with recombinant IFNy for 12 hours.
gMFI of surface MR1 (left, a-26.5 Ab) and MHC-la (right, o.-W6/32 Ab) are paired by individual donor or experimental replicate. Pairwise T tests were
performed by donor (A, C) or experiment (B, D). Triangles represent data from primary AEC and circles represent data from BEAS-2B cells. Yellow

symbols indicate IFNy treatment.

IFNYy stimulates MR1 transcription via
transcription factor IRF1, not NLRC5

Using MHC-Ia transcription pathways as a starting point, we
queried the JASPAR CORE 2018 Vertebrates database to
determine if the MRI promoter contained binding motifs for
known IFNy-induced transcription factors (26-28). We
highlighted notable predicted elements on this region, including
those common with IFNy-mediated HLA transcription factor
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sites (Figure 3F). For example, we found putative binding
motifs for IRF1 and members of the NLRC5 enhanceosome
complex (18, 19, 29-31). This targeted search suggested that
IRF1 and NLRC5 could be of interest in IFNy-mediated
MRI transcription.

We first validated that IFNy signaling induces IRFI and NLRC5
mRNA expression in our cells. Transcripts of both these genes were
significantly increased by IFNY treatment of both primary human
AEC and BEAS-2B cells (Figures 3G, H).
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FIGURE 3

Transcriptional stimulation of MR1 by IFNy. (A—D) BEAS-2B:doxMR1-GFP cells were treated with doxycycline, IFNy, and/or 6-FP overnight. (A) MR1
expression was calculated relative to HPRT1 expression and UT control, paired by experimental replicate. gMFI of (B) MR1-GFP, (C) surface MR1 a-
26.5 stain, and (D) surface MHC-la a.-W6/32 stain. Data are experimental replicates. (E) ELISPOT of BEAS-2B cells treated with filtered M. smegmatis
supernatant and MAIT cells. Data points are experimental replicates of no-antigen background-subtracted IFNy spot-forming units (SFU). Subtracting
the background SFU (average 15.6 SFU for UT and 33.7 SFU for IFNy-treated cells) did not impact statistical significance. (F) Putative transcription
factor binding sites were acquired through the Eukaryotic Promoter Database browser using the Search Motif Tool to perform on-the-fly scanning
for transcription factor motifs using the FindM tool from the Signal Search Analysis (SSA) Server toolkit (28, 102-104). Highlighted proteins are
involved in IRF1- (green) or NLRC5 enhanceosome- (blue) mediated HLA transcription. RT-gPCR of (G) primary human AECs or (H) BEAS-2B cells
treated with recombinant IFNy for 12 hours. IRF1 (left) and NLRC5 (right) expression were calculated relative to HPRT1 expression and UT control,
paired by individual donor or experimental replicate. Pairwise T tests were performed by experiment (A—E, H) or donor (G). Diamonds represent data
from BEAS-2B:doxMR1-GFP cells, triangles represent data from primary AEC, and circles represent data from BEAS-2B cells. Yellow symbols indicate

IFNY treatment.

To determine if IRF1 or NLRC5 are required for the IFNy-
mediated increase in MRI transcription, we first used siRNA to
knock down the genes separately or together in BEAS-2B cells. IRF1
KD alone significantly decreased IFNYy-stimulated MRI mRNA
expression compared to missense controls (Figure 4A,
Supplementary Table 2). Although IRF1 siRNA significantly
reduced IRFI expression, we were unable to sufficiently knock
down NLRCS5 expression by siRNA (Supplementary Figures 2A,
B). Therefore, we generated monoclonal NLRC5”" BEAS-2B cell
lines by CRISPR/Cas9. Loss of NLRC5 did not lead to any
significant impact to IFNy-induced MRI mRNA expression
(Figure 4B). We did observe a decrease in HLA-A expression with
NLRCS5 knockout, although not significant (Figure 4C).

We used siRNA to silence IRF1 expression in the Cas9* and
NLRC5™ cells (Supplementary Figure 2C). MRI expression was
significantly impacted by IRF1 knockdown in Cas9" control cells
(Figure 4B), agreeing with the previous siRNA results in wildtype
BEAS-2b cells. A trend in reduced MRI expression was also
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observed in two clones of NLRC5™" cells treated with IRF1 siRNA
(Figure 4B, Supplementary Figure 2D). Expression of surface MR1
proteins in IFNYy-treated cells was similarly decreased with IRF1
silencing and unaffected by NLRC5 knockout (Supplementary
Figure 2E). Finally, we used ELISPOT assays to quantify if loss of
NLRC5 and/or IRF1 would impact the IFNYy-stimulated boost in
MRI antigen presentation to MAIT cells. IRF1 siRNA knockdown
significantly reduced MAIT cell responses to both Cas9™ cells and
NLRC5" cells (Figure 4D). The missense-treated NLRC5™ cells
stimulated similar MAIT cell activity as the Cas9™ control cells in
response to IFNy (Figure 4D, Supplementary Table 2). Together,
these results indicate that IRF1 expression is required for IFNy
stimulation of MR1 expression and antigen presentation function,
while NLRC5 does not appear to impact this pathway.

We next used CRISPR/Cas9 knockout to generate monoclonal
IRF1”" BEAS-2B cell lines to confirm this finding. IFNy-mediated
stimulation of MRI mRNA and MRI1 surface expression was
impaired in IRF1”" cells compared to Cas9* cells (Figures 4E,G,
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experimental replicate. (B, C) RT-gqPCR of Cas9™" or NLRC5™" clone #1 BEAS-2B cells treated with IRF1 or missense siRNA for 36 hours, then

incubated with IFNy for 12 hours. (B) MR1 and (C) HLA-A expression were calculated relative to HPRT1 expression and Cas9* or NLRC5”"
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missense UT controls, paired by experimental replicate. (D) Cells in (B, C) were used as antigen-presenting cells in ELISPOT assay, with filtered M.

smegmatis supernatant as the antigen source. Data points are experimental replicates of Cas9* or NLRC5™" clone #1 missense control no-antigen
background-subtracted IFNy SFU. Subtracting the background SFU (averages: Cas9* missense 31.3 SFU, Cas9* IRF1 KD 18.3 SFU, NLRC5”~ missense
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clone #1 BEAS-2B cells treated with IFNy for 12 hours. gMFI of (G) surface MR1

by experimental replicate. (G, H) Flow cytometry of Cas9* or IRF1”/~

clone #2 UT controls, paired

(a-26.5 Ab) and (H) MHC-la (a.-W6/32 Ab) are paired by experimental replicate. Statistical analyses are in Supplementary Table 2. Yellow symbols
indicate IFNy treatment alone. For visual clarity, silencing of IRF1 (green), NLRC5 (teal), or both (dark blue) are also indicated. In (E-H), light green

distinguishes media control IRF1™/~

Supplementary Figures 2F, G). Expression of HLA-A mRNA or
MHC-1a surface proteins were likewise impaired in the IRF17" cells
following IFNY treatment (Figures 4F,H; Supplementary Figure 2G,
right). Together the siRNA knockdown and CRISPR knockout
results indicate that IRF1 mediates the IFNYy signaling pathway
leading to MRI1 transcription, surface expression, and antigen
presentation, likely through mechanisms independent of the

NLRC5 enhanceosome.

MAIT cells produce sufficient IFNy to
induce MR1 transcription pathways

To validate this mechanism in a physiologically relevant system,

we returned to our co-culture experiments. We first demonstrated
that co-culture of infected AEC with MAIT cells led to upregulation
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cells from IFNy-treated IRF1" cells (dark green). The symbol 'ns' refers to comparisons with p-values < 0.05.

of IFNy-stimulated pathways by staining phosphorylated STAT1
(pSTAT1). Ligation of the IFNGR activates Janus kinase (JAK)
dimer 1/2, which in turn phosphorylates STAT1 (17, 32). As
expected, pSTATI staining was significantly increased in AEC
infected with S. pneumoniae and co-cultured with MAIT cells,
along with AEC treated with recombinant IFNYy (Figures 5A, B,
Supplementary Figure 3A, Supplementary Table 3).

To confirm that activation of MAIT cells in co-culture is
sufficient to drive IFNY signaling, we next assessed expression of
IFNYy-stimulated genes. Co-culture of Sp-infected primary AEC
with MAIT cells significantly induced expression of HLA-A, B2m,
IRF1, and NLRC5 (Figures 5C-F; Supplementary Figures 3B-D, G;
Supplementary Table 3). We observed increased expression of these
genes in AEC incubated with either Sp or MAIT cells alone, which
may indicate the contribution of other inflammatory signaling
pathways in AEC. However, the combined co-culture induced
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comparisons with p-values < 0.05.

significantly greater expression for almost all genes, pointing to the
role of Ag-induced MAIT cell activation in driving inflammatory
gene expression.

BEAS-2B infected with Ms significantly induced expression of
HLA-A and IRFI only in combination with MAIT cell co-culture
(Figures 6A, C; Supplementary Figures 3E, H; Supplementary
Table 3). We next used 5-OP-RU as the antigen source to confirm
that MR1 antigen presentation alone is sufficient to stimulate MAIT
cell IFNYy production and subsequent inflammatory gene expression,
absent other microbial stimuli. As expected, HLA-A and IRFI
expression were significantly increased in 5-OP-RU-treated BEAS-
2B cells when MAIT cells were present, but not stimulated by
treatment with 5-OP-RU alone or MAIT cell co-culture with
untreated BEAS-2B cells (Figures 6B, D; Supplementary Figures 3F,
I; Supplementary Table 3). Non-stimulatory presentation of 6-FP
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ligands failed to significantly induce either gene alone or in
combination with MAIT cells. Together, these results indicate that
activated MAIT cells produce sufficient IFNYy to stimulate expression
of downstream genes.

Finally, we used our IRF17" cells in this co-culture setting to
demonstrate the role of IFNy in mediating MR1 expression, antigen
presentation, and MAIT cell activation. IRF1”" cells infected with
Ms and co-cultured with MAIT cells failed to exhibit the increase in
MRI expression seen in the Cas9" control cells (Figure 6E,
Supplementary Table 4). We then used exogenous 5-OP-RU
treatment to directly test the role of IRF1 following MRI-
dependent MAIT cell activation. MRI transcription was enhanced
in Cas9" cells with 5-OP-RU and MAIT cell co-culture, confirming
that TCR-stimulated MAIT cells directly led to increased MRI
transcription (Figure 6F, Supplementary Table 4). In contrast, the
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IRF17" cells treated with 5-OP-RU did not express greater MRI
transcripts in co-culture, confirming the importance of IRF1 in
this pathway.

IFNy and IFN stimulate MR1 transcription
by distinct mechanisms

Our data have shown thus far that IFNy stimulates MRI
transcription; however other inflammatory cytokines can also
induce transcription. Type I interferons like IFNf stimulate IRF1
and NLRC5 to induce MHC-Ia transcription (15-19, 33, 34).
Activated MAIT cells may also produce TNFa and IL-17, which
have been demonstrated to stimulate transcription of inflammatory
genes including IRFI and HLA-A (35-37). To assess whether the
IFNy-induced increase in MRI transcription is representative of
general inflammatory signaling mechanisms or specific to IFNy
stimulus, we treated BEAS-2B cells with recombinant human
inflammatory cytokines IFNp, IFNy, IFNA, TNFa, and IL-17. Of
these cytokines, only IFNf} and IFNY elicited a significant increase
in MRI transcription compared to untreated controls (Figures 7A,
B, Supplementary Table 5).

Interestingly, the IFNy-mediated increase in MR1 expression
was significantly greater than the increase due to IFNf treatment,
while expression of HLA-A and B2m were similarly induced by both
IFNYy and IFN treatment (Figures 7A-C, Supplementary Figure 4,
Supplementary Table 5). We further investigated the role of type I
and II IFNs in mediating expression of MR1 and MHC-Ia. While
both IFNP and IFNY increased surface expression of MHC-Ia, only
IFNY led to a significant increase in surface MR1 protein expression
(Figure 7D). BEAS-2B cells pre-treated with IFNYy induced
significantly greater MAIT cell responses to Ms infection than
control UT cells, while IFNP pre-treatment did not generate a
significantly different dose-response curve (Figure 7E). These data
indicate that IFNy plays the largest role in stimulating MRI
expression and function.

We quantified IRFI and NLRCS5 transcripts to further explore
how MR1 and MHC-I expression are differentially stimulated by
IFNP and IENy. Although both IFNy and IFNP increased IRFI
expression, the relative fold change was significantly greater with
IFNYy than IFNP (Figure 7F, Supplementary Figure 4,
Supplementary Table 5). Both interferons induced significant
increases in NLRC5 and B2m expression (Figures 7G, H,
Supplementary Figure 4, Supplementary Table 5). In light of our
finding that IFNY stimulates MRI transcription through IRF1 and
not NLRC5, this magnitude of IRFI induction may relate to the
specific induction of MRI1 surface expression and antigen
presentation by IFNy and not IFNP. Further, these results
indicate that transcription of MRI and HLAA occur via distinct
IFNY-stimulated mechanisms.

Together, our data support a feed-forward model of
inflammatory signaling (Figure 8). MR1 antigen presentation by
an infected cell activates a MAIT cell to release IFNYy, which then
acts on the airway epithelial cell to stimulate IRFI expression
through a pSTAT1 pathway. IRF1 then binds to the MRI

Frontiers in Immunology

10.3389/fimmu.2025.1624767

promoter to induce MRI transcription, leading to more MRI1
protein available for antigen presentation and subsequent MAIT
cell activation.

Discussion

MAIT cells are key components of early infection responses.
The variety of pathogens producing MR1 antigens and rapid MAIT
cell effector function poise MAIT cells to bridge innate and adaptive
immune responses. Strict regulation of MAIT cell activation is
required to prevent inflammatory damage. Research over the past
decade has defined many complementary pathways regulating MR1
intracellular localization, antigen binding, surface translocation,
and protein recycling (12-14). These studies affirm that defining
the mechanisms that regulate MR1 is critical to understanding
regulation of MAIT cells themselves. Only recently have we begun
to appreciate the role of epigenetic regulation in controlling MR1
expression and antigen presentation. Studies of MRI DNA
methylation and RNA expression suggest that MRI transcription
is increased during infection (38-41), although effector molecules
from herpes simplex viruses were shown to degrade MRI
transcripts (42-44). Altered epigenetic regulation of MRI in
respiratory inflammation (22-24, 45) and cancer (21, 46)
illustrate the complex interplay of activation and repression
signals in these diseases.

Here, we demonstrate for the first time that IFNy stimulates
MRI transcription. We investigated the role of two IFNYy-stimulated
transcription factors, IRF1 and NLRC5, in regulating MRI
transcription. In-silico analysis of the MRI promoter revealed
potential binding sites for IRF1 and components of the NLRC5
enhanceosome (18, 19). Using both siRNA knockdown and
CRISPR/Cas9 knockout systems, we observed that IFNy-induced
MRI transcription was dependent on IRFI, but not NLRC5.
Treatment with IFNY failed to increase MR1 surface expression
and antigen presentation in IRF17 cells. These results pointed to
IRF1 as the primary driver of IFNy-induced MRI transcription in
our experimental conditions. The rapid increase in IRFI expression
after IFNY treatment is consistent with established models of IRF1
kinetics (18, 47). Recently, Rosain and colleagues performed a
comprehensive characterization of two young patients with IRF1-
inactivating mutations (48). MRI was among the genes upregulated
in primary fibroblasts from healthy controls after 8 hours of IFNYy
treatment, while MRI was not upregulated in IFNYy-treated
fibroblasts with IRF1-inactivation, STAT1-deficiency, or loss of
IFNGR1/2 (48). Our co-culture experiments showed that antigen-
activated MAIT cells produced sufficient IFNy to induce IRFI
expression in both primary AEC and BEAS-2B cells. In similar
conditions with Ms infection or 5-OP-RU treatment and MAIT cell
co-culture, IRF17" cells failed to replicate the increase in MRI
mRNA expression seen with control Cas9" cells. We therefore
concluded that MAIT cell activation acts through IRF1 to
promote MRI transcription. The case study of IRF1-deficient
patients observed only slightly lower blood MAIT cell frequencies
in one individual (48). However, both experienced persistent early
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childhood infections from weakly-infectious Mycobacterium avium
and/or breakthrough infection from the BCG vaccine, consistent
with impaired IFNy immunity (48). Although many factors may
contribute to reduced immune function in these individuals, MAIT
cells have been tightly linked to anti-mycobacterial immunity (49,
50). A case study of a T-bet-deficient individual with very low
MAIT cells underscored the specific importance of IFNy production
by innate-like lymphocytes in controlling Mtb infection (51). It is
therefore possible that loss of IRF1 function could foster
mycobacterial susceptibility through weaker induction of MRI
transcription and delayed MAIT cell responses. Directly
characterizing the dynamics of MRI expression in these
individuals would shed light on this hypothesis.

We were surprised to observe that NLRC5 was not required for
the IFNYy-induced increase in MRI1 expression or antigen
presentation, given the importance of NLRC5 in mediating HLA
transcription (15, 16, 19). Although MRI1 is an MHC-I-like
molecule and they share broad structural homology, the genes
reside on different chromosomes and have distinct promoter
features (7). We confirmed that HLA-A expression was reduced
in NLRC5™" cells. Since IRF1 can also induce NLRC5 transcription,
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we considered whether IRF1 and NLRC5 play a synergistic role in
regulating MR1 expression. While the combined loss of IRF1 and
NLRC5 reduces Class I mRNA expression, we saw no further
impact to MR1 expression or antigen presentation. These results
prompted us to explore how MHC-Ia and MRI transcription
signaling pathways diverge. Both type I and type II IFNs are
known to stimulate expression of IRF1 and MHC-Ia (15-18, 33,
34). We explored whether IFNP might induce MRI transcription
similarly to IFNY. Although both interferons increased MRI mRNA
expression, IFNYy stimulated a significantly greater increase in MRI
transcription than IFNP. Furthermore, only IFNy induced MRI
surface protein expression and antigen presentation to MAIT cells.
Previously, Ussher et al. demonstrated that MAIT cell responses to
fixed intact E. coli were significantly increased when THP1 cells
were incubated with either IFNa. or IFNy overnight (52). This type I
IFN increase does not match our results. However, several other
groups observed that directly stimulating MAIT cells with IFNf or
IFNo led to increased TCR-dependent and -independent MAIT cell
responses to influenza virus and Klebsiella pneumoniae infection
(53-55). Therefore, type I interferon-induced signaling within
MAIT cells may be the primary driver of the observed increase in
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MAIT cell responses (52). Type III interferons signal through
similar pathways as type I interferons and are critical to some
mucosal inflammatory responses (56). We failed to measure any
notable increase in MRI or HLA-A expression following IFNA
treatment. We observed significant increases in IRFI and [32m
expression with IFNA; however, these increases were significantly
weaker than any IFNy- or IFNB-induced IRFI or f32m expression.
This result is consistent with research from Forero et al., who found
that IFNA primarily induces tissue repair pathways and fails to
stimulate IRF1 expression (57, 58).

Others have shown that IFNY, not IFN, is the primary driver of
IRFI expression (48). We quantified the relative increase in IRFI
transcripts following stimulation by IFNy or IFNP and likewise
observed the increase in IRFI expression was significantly higher
with IFNy compared to IFN. In contrast, both interferons led to
similar ranges of NLRC5 expression. One possible model of this
data suggests that IFNYy signaling induces sufficient IRF1 expression
to promote MRI transcription. IFNP induces less IRFI
transcription, leading to expression of NLRC5, MHC-Ia, and
B,m, but not enough to stimulate MR1 expression and function.
It is tempting to speculate that the specificity of MR1 stimulation by
IFNy may help to compartmentalize immune responses to innate
signaling and prevent simultaneous overstimulation of both MHC-
Ia and MR1.

We also observed a slight increase in IRFI expression following
TNFo treatment, yet no increase in HLAA, B2m, or MRI
expression. It was surprising that TNFa did not stimulate any
significant increase in IRF1-induced genes. The TNF receptor-
associated factor 6 (TRAF6) works with cellular inhibitor of
apoptosis 2 (cIAP2) to K63 ubiquitinate IRF1, leading to
increased function and blocking K48 ubiquitin-mediated IRF1
proteasomal degradation (18, 47, 59-63). This process, however,
functions in concert with Src-family kinases following TLR4, TLR7/
9, or IL-1 signaling (18, 47, 61-65). It is possible that this signaling
occurred in our experimental condition with primary AEC infected
with TLR4 ligand-producing S. pneumoniae, since we observed
increases in IRFI and HLA-A expression with or without MAIT
cells. However, we also observed IRF1-dependent MRI expression
following 5-OP-RU-induced MAIT cell activation, in which
circumstance TLR signaling was likely inactive. Exploring the role
of innate sensors and non-interferon cytokines in modulating IRF1
activity may reveal additional factors that can induce or repress
MRI expression.

In co-culture settings, IFNYy-stimulated increases in MRI
expression resulted in greater MRI antigen presentation and
subsequent MAIT cell activation. MAIT cells activated by MRI
antigen presentation produced sufficient IFNy to promote MRI
transcription and increased MR1 surface expression. This feed-
forward signaling model would support the function of MAIT cells
in immune surveillance and early infection response. Robust
stimulation of MR1-dependent MAIT cell activation could be
beneficial during infection onset, allowing minimal antigen
stimulus to generate expansive and rapid proinflammatory
activity. MAIT cell effector functions are well-established in
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priming myeloid cells and recruiting CD4" and CD8" T cells (66,
67). In addition to MAIT cells, a number of other cells could
produce IFNYy and initiate this feed-forward loop. Local IFNy
production by professional antigen-presenting cells has been
observed in infection contexts; for example, alveolar macrophages
produce IFNy during M. tuberculosis infection (68, 69). NK cells,
ILC, airway-resident lymphocytes, and circulating lymphocytes are
also known to make IFNY in response to a variety of inflammatory
stimuli as well (70, 71). Beyond cytokine signaling, TLRs and C-type
lectin receptors can also stimulate expression of IRFI and IRF1-
inducible genes, suggesting that IRF1 inflammation could be
mediated in response to non-interferon stimuli (72). Lepore et al.
found that tumor cell self-antigens were presented by MR1 to non-
MAIT MRI-restricted T (MRIT) cells (73, 74). In this context,
MRIT cell activation could induce MRI expression and stimulate
immune responses despite the absence of TLR ligands or other
foreign molecules. IFNYy and IRF1 signaling through any of these
sources could stimulate MR1 expression and activate MAIT cells,
leading to enhanced inflammatory responses.

However, dysregulation of this feed-forward loop could also
lead to MAIT cell-caused pathology. Inappropriate MAIT cell
activation is implicated in autoimmune diseases and chronic
inflammation (75, 76). Overproduction of IFNY contributes to
inflammatory lung damage and can stimulate further IFNy
production by alveolar macrophages (68, 77-79). CD8" T cell
infiltration is associated with increased disease severity in chronic
obstructive pulmonary disease (COPD), and IFNYy signaling is
increased in the lungs of COPD patients (79-82). MRI
transcriptional expression was increased in AEC (22) and PBMC
(24) from infected COPD donors. It is possible that the increased
IFNY present in the COPD airway environment could stimulate
MRI expression and lead to increased MAIT cell activity via the
proposed feed-forward signaling loop. IFNY signaling in response to
inappropriate stimuli (e.g. antigens from commensal microbes)
could also induce MRI transcription and promote ligand-driven
MAIT cell inflammatory pathology.

Given the potential for inflammatory damage due to this feed-
forward loop, we hypothesize that a dampening mechanism exists to
turn off this pathway. Constantin et al. revealed a potential role for
ERK1/2 kinases in suppressing MRI expression in melanoma,
indicating repression mechanisms can modulate MRI transcription
(46). Specifically, they found the transcription factor ELF1 binds to the
MRI promoter to stimulate MRI expression. ERK1/2, members of the
MAPK/MEK signaling cascade, inhibited ELF1 function and
subsequent MRI transcription. The authors suggested ELF1
inhibition may occur through post-translational modification
performed by a downstream intermediary protein (46). Signaling
through MEK/ERK was recently demonstrated to inhibit IRF1
expression and activity in TLR-stimulated macrophages; however,
ELF1 mediates antiviral activity in airway epithelial cells independent
of interferon and IRF1 transcriptional activity (83, 84). Multiple distinct
mechanisms of MRI transcriptional activation could serve several
functions: flexible induction of MRI expression and function in the
context of distinct stimuli, complementary activation to rapidly
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enhance MAIT cell responses, and/or as a checkpoint requiring a
secondary signal to prevent overactivation. It is well-documented that
pathogens target IFNY signaling and MHC transcription mechanisms
to evade immune recognition (34, 85, 86). Several MHC-Ia post-
transcriptional repression mechanisms have been identified, including
through IRF1 degradation or downregulation of NLRC5 expression
(16, 87, 88). In human fibroblasts, MRI transcripts were degraded by
an RNase protein from herpes simplex virus types 1 and 2, although
this mechanism was not specific to MRI (42, 43). A greater
understanding of how MRI transcription is regulated could shed
light on these host-pathogen dynamics.

Put together, this work demonstrates that IFNy signaling stimulates
MRI transcription, surface expression, and antigen presentation. While
we limited our study to airway epithelial cells infected with respiratory
pathogens, our model of IFNy-induced MRI transcription may raises
intriguing questions outside of this context. Given the variety in
baseline MRI expression across cell types and tissues (89, 90),
exploration of this pathway in additional cells could shed light on
MR1 function within these organs. Furthermore, MAIT cells and
MRIT cells play key roles in cancer responses and tissue repair (5,
91). Understanding the mechanisms of MRI transcriptional regulation
may provide insights into broader immune signaling networks and
better inform our knowledge of the roles MR1 and MAIT cells play in
infection and inflammatory diseases.

Materials & methods
Human subjects

This study was conducted according to the principles expressed
in the Declaration of Helsinki. Study participants, protocols and
consent forms were approved by Oregon Health & Science
University Institutional Review Board (IRB00000186). Written
and informed consent was obtained from all donors. Human
participants are not directly involved in the study. Healthy adults
were recruited from among employees at Oregon Health & Science
University as previously described to obtain human serum (92).

Cells and bacteria

Primary airway epithelial cells (AEC) were purchased from Lonza
Biosciences or harvested from deceased human donor lung tissue
through the Cascade Alliance (formerly Pacific Northwest Transplant
Bank) as previously described (22, 93). The healthy donor AEC from
(22) were likewise grown in Bronchial Epithelial Growth Media
(“BEGM”, CC-3170) and harvested using ReagentPack Subculture
reagents (CC-5034) per manufacturer’s protocols (Lonza).

The BEAS-2B bronchial epithelial cell line (CRL-9609,
American Type Culture Collection) was grown in DMEM
medium (Gibco) supplemented with L-glutamine (25030164, Life
Technologies) and 10% heat-inactivated fetal bovine serum
(“DMEM-FBS”). BEAS-2B cells overexpressing MR1-GFP under a
tetracycline-inducible promoter (“BEAS-2B:doxMRI1-GFP”) (11)
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were similarly cultured in DMEM-FBS. Expression of MR1-GFP
was induced with doxycycline for 16 hours prior to harvest. BEAS-
2B cells stably expressing Cas9 (94) were grown in DMEM-FBS and
used to generate CRISPR knockouts.

The MRI-restricted T cell clone (D426G11) was generated and
expanded in RPMI medium (Gibco) supplemented with L-
glutamine and 10% heat-inactivated human serum (“RPMI-HuS”)
as previously described (2, 92).

Streptococcus pneumoniae (95) and Mycobacterium smegmatis Mc
(2)155 (ATCC) were grown as described in the supplement of (22)
and used from frozen stocks. At late log phase, M. smegmatis were
pelleted and the supernatant was passed through a syringe-driven
0.22 um filter and frozen for use as antigen in ELISPOT assays.

Generation of stable CRISPR/Cas9 IRF1 or
NLRC5 knockout BEAS-2B cells

We generated IRF17~ and NLRC5”~ CRISPR knockout BEAS-2B
cells as previously described (94). Early passage Cas9" BEAS-2B cells
were transduced with sgRNA constructs targeting IRF1
(CRISPR845545_LV, ThermoFisher) or NLRC5 (CRISPR1120312_LV,
ThermoFisher) in the presence of 200 ug Polybrene (Sigma). Following
puromycin selection, monoclonal populations were produced by
limiting dilution and screened by Western blot or ELISPOT. We
validated genomic editing by Sanger sequencing. DNA was isolated
from control Cas9", IRF1”", and NLRC5"" BEAS-2B clones using the
QIAamp DNA Micro Kit (Qiagen) and amplified by PCR. The OHSU
Vollum Institute DNA Sequencing Core performed Sanger sequencing
and the resulting sequences were analyzed by TIDE (96) and ICE (97).

Reagents and antibodies

6-formylpterin (6-FP, Schirck’s Laboratories) was suspended in
0.01 M NaOH and used at a final concentration of 100 uM. 5-(2-
oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) was
freshly prepared from equal volumes of 32 mM 5-amino-6-d-
ribitylaminouracil (5-A-RU)*HCI (OHSU Medicinal Chemistry
Core) (98) and 650 mM methylglyoxal (Sigma) exactly following
the second method described in (94) and used at a final
concentration of 500 pM. Phytohemagglutinin PHA-L (L4144
Sigma) was suspended in RPMI-HuS and used at 1 pg/well.
Doxycycline (Sigma) was suspended in sterile water and used at 2
ug/ml.

Recombinant human cytokines were reconstituted in sterile
water and supplemented with bovine serum albumin as per
manufacturer recommendations. Final concentrations used were:
66 ng/ml IFNy (R&D Systems 285-IF-100), 66 ng/ml IFNfB (R&D
Systems 8199-IF-010), 132 ng/ml IFNA (PeproTech 300-02K), 66
ng/ml TNFo (R&D Systems 10291-TA-050), and 66 ng/ml IL-17
(PeproTech 200-17). Cells were treated with cytokines for 12 hours
unless otherwise noted.

Antibodies used for ELISPOT assays: a-IFNy (1-D1K,
Mabtech) and alkaline phosphatase-conjugated secondary
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antibody (7-B6-1-ALP, Mabtech). Antibodies used for Western
blot: o-IRF1 (D5E4, Cell Signaling Technology), o-Vinculin
(V284, Bio-Rad). Antibodies used for flow cytometry: o-MR1
(26.5, conjugated to APC, Biolegend), a-HLA-A,B,C (W6/32,
conjugated to APC, Biolegend), IgG2a isotype (MOPC-173,
conjugated to APC, Biolegend), o-phospho-STAT1 (KIKSI0803,
conjugated to PE, eBioscience).

Co-culture experiments

Primary AEC were infected with S. pneumoniae (20 MOI) in
antibiotic-free BEGM. After 1 hour, AEC were washed with PBS to
remove non-adhered bacteria, then MAIT cells were added at a 1:1
ratio in BEGM complete with gentamycin-amphotericin (GA-1000,
Lonza). BEAS-2B cells in antibiotic-free DMEM-FBS were infected
with M. smegmatis or treated with 6-FP or 5-OP-RU for 1 hour,
washed with PBS, then MAIT cells were added at a 1:1 ratio in
DMEM-FBS with gentamycin. Following overnight co-culture,
wells were extensively washed with PBS to remove MAIT cells
before harvesting AEC or BEAS-2B cells.

Real-time quantitative PCR

Cell pellets washed with PBS were either used fresh or stored
dry at -80 °C before thawing in 37 °C water bath. RNA was isolated
using the RNEasy Plus kit (Qiagen) and ¢cDNA was synthesized
using the High Capacity cDNA Reverse Transcription Kit (Life
Technologies) as per the manufacturers’ protocols. RT-qPCR was
performed using TagMan (Applied Biosystems) gene expression
assays: HPRT1 (Hs02800695_m1), MR1 (Hs01042278_m1), HLA-
A,H (Hs01058806_gl1), IRFI (Hs00971965_m1), NLRC5
(Hs01072123_m1), and f2m (Hs00187842_m1). Gene expression
data were normalized to internal control HPRTI and relative
expression levels for each target gene were determined using the
2724C method (99). Some uninfected AEC HPRTI and MRI data
were used as controls in (22).

Flow cytometry

To quantify surface expression of MR1 and MHC-I, AEC and
BEAS-2B cells were treated as indicated and harvested. Samples
were blocked in FACS buffer containing 2% heat-inactivated
human serum, 2% heat-inactivated goat serum, and 0.5% heat-
inactivated FBS for 30 minutes on ice, then stained with APC-
conjugated IgG2a, o-MR1, or a-HLA-A,B,C antibody for 40
minutes. For pSTAT1 staining, cells were permeabilized with
0.2% saponin during the blocking step. Cells were washed with
PBS and fixed with 1% paraformaldehyde, then analyzed with a
Beckman Coulter CytoflexS. All analyses were performed using
FlowJo10 (TreeStar).
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Enzyme-linked immunospot assays

IENYELISPOT assays were performed as previously described (100)
with the following modifications: ELISPOT plates (MSHAS4510,
MilliporeSigma) were coated overnight with o-IFNY antibody, then
washed and blocked for 1 hour in RPMI-HuS. BEAS-2B cells were
seeded in duplicate ( 1x10°) cells/well) and infected with M. smegmatis,
treated with a titration of M. smegmatis supernatant, or incubated with
control PHA or RPMI-HuS medium for 1 hour at 37 C. D426Gl11
MAIT cell clones were added at a 1:1 ratio in RPMI-HuS with
gentamycin for overnight incubation at 37 C. Following extensive
washing with PBS-0.05% Tween 20, plates were incubated with ALP
secondary antibody for 2 hours before additional washing and
colorimetric development. IFNy spot—forming units (SFU) were
quantified by AID ELISPOT reader. For experiments with cytokine
pre-treatment, BEAS-2B cells were seeded in 6-well plates and treated
with cytokines for 12 hours, then washed 3 times with PBS to remove
any excess cytokine before harvesting and seeding into ELISPOT plate.

siRNA gene silencing

Gene silencing in wildtype, Cas9", or NLRC5”" BEAS-2B cells was
performed through nucleofection as in (101) and following the Amaxa
Cell Line Nucleofector Kit T (Lonza) protocols. In brief, 2 ug total of
Missense (4390843, ThermoFisher), IRF1 (s7501, ThermoFisher), and/
or NLRC5 (538591, ThermoFisher) siRNA were added to 1x10° cells
and transfected by the Amaxa Nucleofector 2b machine (Lonza) using
program G-016. Cells were incubated for 48 hours before use in assays.
Efficiency of gene silencing was validated by RT-qPCR.

Transcription factor binding sites

Putative transcription factor binding sites were acquired through
the Eukaryotic Promoter Database browser using the Search Motif Tool
to perform on-the-fly scanning for transcription factor motifs using the
FindM tool from the Signal Search Analysis (SSA) Server toolkit (28,
102-104).

Data analysis
All data were analyzed using Prism (GraphPad) and plots were
generated using R 4.4.0 and packages such as tidyverse, ggprism,

and rstatix. Statistical significance was determined as indicated by
two-tailed unpaired or pairwise t tests, using ot=0.05.
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SUPPLEMENTARY FIGURE 1

Associated with Figure 1 and 2. Panels A-E are alternate presentations of data
shown in Figure 1A-E, respectively. (A) RT-gPCR of RNA isolated from
primary human AECs (n=5) infected with S. pneumoniae (Sp) for one hour
and incubated overnight with MAIT cell clone. MR1 expression was calculated
relative to HPRT1 expression and uninfected no-MAIT (Ul-) controls, paired
by individual donor. MR1 (B) mRNA and (C) surface expression of BEAS-2B
cells infected with M. smegmatis (Ms) for one hour and incubated overnight
with MAIT cell clone. (B) RT-gPCR of MR1 expression was calculated relative
to HPRT1 expression and Ul- control, paired by experimental replicate. (C)
Left, gMFI of surface MR1 stained with a.-MR1 26.5 Ab, paired by experimental
replicate. Right, representative a-MR1 stain histograms. MR1 (D) mRNA and
(E) surface expression of BEAS-2B cells treated with 5-OP-RU (left, “5-OP") or
6-FP (right) for one hour and incubated overnight with MAIT cell clone. (D)
RT-gPCR of MR1 expression was calculated relative to HPRT1 expression and
media no-MAIT (UT-) control, paired by experimental replicate. (E) gMFI of
surface MR1 stained with a-26.5 Ab, paired by experimental replicate. (F)
Representative a-MR1 stain histograms of BEAS-2B cells treated with media
control (UT) or IFNY. Data are representative of flow cytometry staining shown
in Figure 2D. Pairwise statistical analyses are in Supplementary Table 1
Triangles represent data from primary AEC and circles represent data from
BEAS-2B cells.

SUPPLEMENTARY FIGURE 2

Associated with Figure 4. (A, B) RT-gPCR of BEAS-2B cells treated with IRF1,
NLRCS5, and/or missense siRNA as indicated for 36 hours, then incubated with
IFNY for 12 hours. (A) IRF1 and (B) NLRC5 expression were calculated relative
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to HPRT1 expression and missense UT control, paired by experimental
replicate. (C, D) RT-qPCR of Cas9* or NLRC5”~ BEAS-2B cells treated with
IRF1 or missense siRNA for 36 hours, then incubated with IFNy for 12 hours.
Gene expression of (C) NLRC5” clone #1 or (D) NLRC5”" clone #2 were
calculated relative to HPRT1 expression and Cas9* or NLRC5”" clone
missense UT controls, paired by experimental replicate. (E) Flow cytometry
of cells from (C-D). gMFI of surface MR1 (a-26.5 Ab) are from IFNy-treated
Cas9* (left), NLRC5”" clone #1 (middle), and NLRC5™/~ clone #2 (right). (F)
RT-qPCR of Cas9* or IRF1”/~ clone #1 BEAS-2B cells treated with IFNy for 12
hours. MR1 expression was calculated relative to HPRT1 expression and Cas9*
or IRF17/" clone #1 UT controls, paired by experimental replicate. (G) Flow
cytometry of Cas9* or IRF1”/~ clone #2 BEAS-2B cells treated with IFNy for 12
hours. gMFI of surface MR1 (left, a-26.5 Ab) and MHC-la (left, a-W6/32 Ab)
are paired by experimental replicate. Statistical analyses are in Supplementary
Table 2. Yellow symbols indicate IFNy treatment alone. For visual clarity,
silencing of IRF1 (green), NLRC5 (teal), or both (dark blue) are also indicated. In
(F, G), light green distinguishes media control IRF1”~ cells from IFNy-treated
IRF17/~ cells (dark green).

SUPPLEMENTARY FIGURE 3

Associated with Figure 5 and Figure 6. Panels (A-D, G) are alternate
presentations of data shown in Figure 5A, C, F,D, G, respectively. Panels (E,
F, H, 1) are alternate presentations of data shown in Figures 6A-D,
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