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Background: Sepsis is a global health burden characterized by high

heterogeneity and uncontrolled immune response, with a notable lack of

reliable methods for early prognosis and risk stratification. Epigenetic

modifications, particularly lactylation, have recently emerged as key regulators

in the early pathophysiology of sepsis. However, their potential for immune-

related mortality risk stratification remains largely unexplored. This study aimed

to investigate dynamic changes in lactylation during sepsis progression and to

develop a rapid, lactylation-based prognostic signature.

Methods: Blood transcriptional profiles and single-cell RNA sequencing data

from septic patients were analyzed to assess glycolytic activity and lactylation in

relation to patient mortality. Patients were stratified into subgroups using k-

means clustering based on lactylation levels. Machine learning algorithms,

integrated with pseudotime trajectory reconstruction, were employed to map

the temporal dynamics of lactylation. A prognostic model was then constructed

using lactylation-associated hub genes and validated in external transcriptomic

datasets, a prospective single-center clinical cohort. The underlying mechanism

was further explored in vitro using human monocytes.

Results: The study systematically characterized the dynamic alterations in

lactylation patterns and immune microenvironment across distinct patient

clusters. A lactylation-based prognostic model was developed, comprising

eight key genes (CD160, HELB, ING4, PIP5K1C, SRPRA, CDCA7, FAM3A,

PPP1R15A), and demonstrated strong predictive performance for sepsis

outcomes (AUC = 0.78 in the training cohort; AUC = 0.73 in the validation

cohort). Temporal expression patterns of lactylation-related hub genes revealed

dynamic immune responses throughout disease progression. In the prospective

cohort of septic patients (N = 51), the model showed high predictive accuracy for

survival, with AUCs of 0.82 (7-day), 0.80 (14-day), and 0.86 (28-day). Additionally,

global lactylation levels were significantly elevated in THP-1 cells following

treatment with Sephin1, a selective PPP1R15A inhibitor, suggesting a

mechanistic link.
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Conclusions: Lactylation is significantly associated with increased mortality risk

in sepsis. The proposed individualized prognostic model, based on dysregulated

immune cell metabolism, accurately predicts early mortality and may inform

optimized clinical management of septic patients.
KEYWORDS

sepsis, metabolism, epigenetic modifications, lactylation, early prognostic
prediction, PPP1R15A
1 Introduction

Sepsis is a critical condition involving organ dysfunction due to

an abnormal host response to infection, marked by considerable

variability and immune system imbalance (1). As a major global

health challenge, sepsis has been recognized by the World Health

Organization as a global health priority in 2017 due to its substantial

acute mortality and long-term morbidity (2, 3). Thus, deeply

comprehending the inherent pathophysiological changes in sepsis

and the evolving immune responses during its onset is crucial for

treating and managing sepsis patients (4). Regarding the clinical

practice, due to the lack of sufficient and effective clinical

parameters and molecular biomarkers, the rapid and reliable

sepsis diagnosis/prognosis have long remained a significant

challenge (5–7). However, current therapeutic strategies have

failed to significantly reduce mortality rates in sepsis patients,

highlighting the urgent need for more personalized treatment and

deeper understanding of pathophysiology (8, 9).

Epigenetic modifications during sepsis could occur in the very

early stage. As a novel epigenetic modification, lactylation has been

shown to function in various diseases, including infection and

cancer (10). As a product of the Warburg effect, high

concentrations of lactate is the primary driver of lactylation (11).

Similar to other post-translational modifications, lactylation plays

diverse roles in different diseases (12). Lactylation mediates the

immunosuppressive function of myeloid cells in tumor

microenvironment, thereby facilitating tumor immune escape

(13). In sepsis studies, researchers found that lactylation could

increase the release of CIRP in macrophages, which triggers the

PANoptosis in endothelial cells (14). Additionally, some researchers

suggest that lactylation can also promote the macrophage release of

exosomes containing HMGB1, which similarly causes damage to

endothelial cells (15).

However, the effects mediated by lactylation in sepsis have not

yet been fully elucidated. In recent years, emerging evidence

suggests the lactate, a common metabolite of immune cells, could

serve as a biomarker associated with clinical outcome in sepsis

patients (12). However, its utility is limited in clinical practice due to

several reasons. For example, the level of lactate shows non-specific
02
elevation across multiple diseases. Moreover, as a result of

measurement limitations, the current clinical detection could only

capture the circulating lactate. This may consequently lead to the

decreased sensitivity in the prognosis of sepsis patients, since

the immune cells exhibit intracellular lactate accumulation during

the early phase of sepsis due to the metabolic dysfunction (16).

In our current study, we developed a novel approach to estimate

the dysregulated metabolism of immune cells. We integrated

lactylation-related genes previously published (17–19), and

conducted a comprehensive analysis on the whole blood

transcriptional profiling of sepsis patients using machine learning

and pseudotime analyses. The hub genes were explored and a

prognostic model was constructed, which showed a stable and

good performance in the prognosis of sepsis patients. Moreover,

we collected the PBMC samples from clinical sepsis patients in our

own hospital to further validate our findings, and the results

demonstrated a high accuracy and good performance. The

potential underlying mechanism has been explored through vitro

experiments. The lactylation and its related molecules demonstrate

significant potential as a sepsis prognostic marker.
2 Materials and methods

2.1 Data preprocessing

The Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) provided genome-wide blood transcriptional profiles for both

sepsis patients and healthy individuals, incorporating the GSE65682

cohort (N= 802) and GSE95233 cohort (N=124). The detailed

information of the cohorts is included in Supplementary Table S1.

The data preprocessing was executed following these steps: 1).

Exclude samples that lack clinical information. 2). Log2-

transformation of the Data. 3). Retention the genes of expression >0.

For scRNA-seq data of human PBMCs (survivor and non-

survivor of gram-negative sepsis patients, N=12), preprocessing was

performed using Seurat (v 5.0.1). Specifically, the transcriptional

profiling was filtered with UMI count >1000, gene features between

200~6000, and mitochondrial percentage < 25%. Then the filtered
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gene matrix were normalized through LogNormalize method in

seurat with default parameters. After principal component analysis

(PCA) was performed, dimensional reduction was achieved via

t-SNE. Cell clusters were identified at a resolution of 1.0. Then we

used marker genes and “FindAllMarkers” function to define each

cell cluster, for example, Monocyte (CD14), T cells (CD3), DCs

(FCER1A), B cells (MS4A1) (Details in Supplementary Table S2).

The processed transcriptional profiles were utilized for

subsequent analysis.
2.2 Gene set enrichment analysis

We employed GSEA to delineate differentially enriched gene

sets in sepsis patients compared to healthy individuals.

Additionally, GSVA was performed to calculate the gene sets

(including lactylation and immune cells) enrichment, which

allows for the assessment of biological activity levels in a

single sample.
2.3 DEG analysis and survival analysis

DEG were identified by “limma” package in R, and FDR <0.05

was set as the threshold. Kaplan-Meier survival analysis coupled

with Log-rank testing was performed to determine significant

differences in mortality rates between groups.
2.4 Identification of distinct sub-clusters in
sepsis patients

The lactylation-related sub-clusters in sepsis patients were identified

using k-means consensus clustering (“ConsensusClusterPlus” package

in R) based on the expression profile of the lactylation-related genes. To

ensure the stability of the classification, the calculation was repeated

1,000 times iteratively. And the knee point was utilized to determine the

optimal cluster number.
2.5 Calculation of immune cell abundance
and microenvironment activity in sepsis
patients

Using established immune cell gene signatures, we performed

GSVA to quantify immune cell infiltration patterns. To minimize

potential biases associated with relying on a single computational

method, we further validated the reliability of the results by

comparing them with those obtained from alternative immune

cell abundance estimation methods, including EPIC and MCP-

counter. Furthermore, The ESTIMATE method was employed to

assess immune infiltration levels across all samples, providing an

overall assessment of the immune microenvironment. Additionally,

we applied the Immunophenoscore (IPS) algorithm to calculate

detailed information, including EC (effector cells), CP (immune
Frontiers in Immunology 03
checkpoints), MHC (MHC molecules), SC (suppressor cells), and

total Immunophenoscore.
2.6 Construction of lactylation-related
prognosis signature

The sepsis patients sample in GSE65682 cohort were used to

construct the lactylation-related prognosis signature. The hub gene

filtering procedure was conducted according to the following steps:

1) Identification of DEGs: We conducted two parallel differential

expression analyses: between Cluster 3 versus other clusters, and

between deceased versus surviving patients. 2) The intersecting

genes were subjected to univariate Cox proportional hazards

regression analysis, and p<0.05 was set as the threshold.

3).LASSO regression and Elastic Net algorithms were applied to

reduce the number of variables and avoid overfitting 4).

Multivariate Cox proportional hazards regression to assess their

prognostic significance. P value <0.05 were considered statistically

significant and included to construct the lactylation-related

prognosis signature.

Patients were randomly allocated to training (70%) and

validation (30%) cohorts using a stratified randomization

approach. Multivariate Cox regression analysis was performed in

the training set, and the regression coefficients were utilized to

construct the lactylation-related prognosis signature. ROC curves

and AUC values were used to evaluate the performance of signature,

and the validation set was used to confirm the results.
2.7 Pseudotime analysis

Pseudotime analysis is a widely used method in transcriptomics

that infers the temporal sequence of cellular development or

changes by ordering transcriptomic data along a specific

biological trajectories. The pseudotime analysis was performed

using “Monocle2” package in R with default parameters.
2.8 Western blot

After treatment, cells were harvested, and total protein was

extracted. The proteins were transferred onto a PVDF

(polyvinylidene difluoride) membrane after SDS-PAGE gels

electrophoresis. The PVDF membrane was first incubated with

primary antibodies for 12 hours, followed by incubation with HRP-

conjugated secondary antibodies for 1–2 h at room temperature. The

protein bands were detected using a Bio-Rad detection system with

ECL solution kit. Primary antibodies used in our study were listed as

follows: PPP1R15A (Abclone, #A16260, 1:1000), AARS1 (Abclone,

#A15017, 1:2000), AARS2 (Proteintech, #22696-1-AP, 1:1500), LDHA

(Abclone, #A1146, 1:500), GLUT1 (Abclone, #A11208, 1:500), pan-

Klac (PTMBio, #1401RM), Na+/K+-ATPase (Abclone, #A11683,

1:1000). The HRP-conjugated anti-mouse and anti-rabbit secondary

antibodies were purchased from Abclone.
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2.9 PBMC isolation and real-time
quantitative PCR analysis

Within the first 24h of ICU admission, blood samples (2.5ml)

were collected from patients. The peripheral blood mononuclear

cells (PBMCs) were isolated within 1 hour using Ficoll (Sigma-

Aldrich, USA) density gradient centrifugation according to the

manufacturer’s protocol.

Cells were harvested, and total RNA was extracted using TRIzol

(Biosharp, #BS258A) according to the manufacturer’s instructions.

Then the extracted RNA was reverse-transcribed into cDNAs using

reverse transcription kit, and the qPCR reaction was performed

using the SYBR Green mix in the Bio-rad real-time PCR system.

The reverse transcription kit and the SYBR Green mix were

purchased from Yeasen Bio. The primer sequences are listed in

Supplementary Table S3.
2.10 Statistical analysis

Bioinformatic analysis was conducted in R (v4.3). The whole

blood transcriptional profiling of sepsis patients cohorts were

derived from GEO database. DEG analysis was conducted using

the “limma” package. LASSO regression and Elastic Net algorithms

were utilized to reduce the number of variables. Univariate and

multivariate Cox regression analyses were conducted to filter genes.

Kaplan-Meier (KM) plots was used to show the survival difference

between different groups, and Log-rank test was used to determine

the statistical significance. Pearson correlation analysis was

performed to evaluate the relationships between continuous

variables. For experimental data, ImageJ and Graphpad Prism

were used to complete statistical analysis. The statistical difference

between two groups was determined using unpaired Student’s t-test.

P<0.05 was considered statistical significant in our study (*: p< 0.05,

**: p < 0.01, ***: p < 0.001).
3 Result

3.1 Classification of lactylation-related
sub-clusters in sepsis patient

Sepsis is a disorder with significant heterogeneity. To explore the

molecule features in sepsis patient, we obtained the public whole

blood transcriptional profiling from GSE65682 in GEO database,

which contained the gene expression data of 760 sepsis patients and

42 healthy volunteers (Figure 1A). As shown in Figure 1B, the

principal component analysis (PCA) showed the obvious difference

transcriptional pattern between sepsis patients and healthy controls.

Next, we performed GSEA to evaluate the biological function/process

enriched in sepsis. Diverse hallmarks were enrich in sepsis, such as

IFN-g response, cholesterol homeostasis, and epithelial mesenchymal

transition (EMT) (Supplementary Figure S1A). Notably, we found

that glycolysis is significantly enriched in sepsis. The high-intensity

glycolysis results in the high concentration of lactate, which is the
Frontiers in Immunology 04
primary drive of lactylation. Lactylation, a novel post-translational

modification driven by lactate metabolism, exhibits multifaceted

regulatory roles in cellular processes, including epigenetic

reprogramming (e.g. competes with acetylation at shared lysine

sites), metabolic adaptation, and immune modulation. These

lactylation-induced effects prompt us to investigate their potential

roles in the pathogenesis and progression of sepsis.

To characterize the lactylation level in each sample, we curated

332 lactylation-related genes from prior studies (19), of which 48

genes were upregulated in sepsis (Figure 1C). GSVA was used to

compute the enrichment level of the lactylation in each samples

with the lactylation-associated gene sets as a reference, which

indicated the lactylation-associated genes transcriptional level,

thereby indirectly reflecting the lactylation enrichment levels in

the samples. Using consensus clustering (k-means) and GSVA with

the 48-gene set, we identified four stable sub-clusters (optimal K =

4, determined by CDF; Supplementary Figures S1B, C). The

enrichment level of lactylation in blood samples was inferred

through the GSVA of lactylation-related gene set. Sepsis patients

were stratified into four sub-clusters with distinct lactylation

enrichment patterns (cluster 1-4, n = 197, 253, 166, 144,

respectively. Figure 1D). Lactylation enrichment levels did not

correlate with age, sex, diabetes history (p > 0.05; Figure 1E), or

pneumonia type (CAP vs. HAP; Supplementary Figure S1D).

However, patients with severe clinical status or mortality

exhibited higher lactylation (Supplementary Figure S1E), and

Cluster 3 (highest lactylation) was enriched for Mars I endotype

patients—a subgroup with the worst outcomes. These findings

suggest lactylation may drive poor prognosis in sepsis.
3.2 Evaluation of immune landscape across
sub-clusters

To evaluate the immune landscape in each sub-cluster, ssGSEA

was conducted to quantify immune cell abundance. Considering the

potential biases brought by a single calculation, two additional

algorithms EPIC and MCP-counter were utilized to infer the

immune states. The abundance of the same type of immune cells

calculated by different methods were compared (Supplementary

Figure S2). According to the correlation analysis, the 6 overlapping

immune cells (B cells, CD8+ T cells, total T cells, DCs, Neutrophils,

Monocyte/Macrophage) showed a high degree of similarity with the

relative abundance calculated by ssGSEA. For example, the relative

abundance of CD8+ T cells calculated by ssGSEA was consistent with

the other two quantification methods (EPIC: 0.57. MCP-counter:

0.63, Pearson correlation analysis, Supplementary Figure S2), which

confirmed the stability of the results. As depicted in the heatmap in

Figure 2A, the patterns of immune cell abundance showed distinct

differences among different sub-clusters. Specifically, cluster-1 was

characterized by a high level of macrophages, neutrophils, and Th17

cells. cluster-2 tended to have a relatively higher abundance of central

memory T cells (Tcm). cluster-4 exhibited higher infiltration of gd
Tcells and effector memory T cells (Tem). As for cluster-3, the DCs

and NK cells showed an evident increase, while the abundance of
frontiersin.org
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other immune cells (macrophages, neutrophils, Th17 cells, CD8+T)

appeared to be lower as compared to the other sub-

clusters (Figure 2B).

Additionally, we evaluated the expression of immune

checkpoints which might have potential function in infectious

diseases (20). The results revealed that several immune

checkpoints including PD1(PDCD1)/PDL1(CD274)/PDL2

(PDCD1LG2), CTLA4, TIM3(HAVCR2), IDO1, and LAG3
Frontiers in Immunology 05
showed different expression patterns among four sub-clusters.

The results revealed the apparently high levels of PD1 and PDL2

expression in cluster-3 samples (Figure 2B). Moreover, the cluster-3

exhibited the lowest expression level of HAVCR2 as compared to

the clusters 1, 2, and 4. The results indicated that the different sub-

clusters showed distinct immune checkpoint expression and

immune cell abundance patterns. To further analyze the immune

states in each sub-cluster, IPS (Immunophenoscore) and
FIGURE 1

Identification of the lactylation-based sub-clusters in sepsis. (A) Expression data of 760 sepsis patients and 42 healthy volunteers. (B) Principle
components analysis (PCA) shows the distinct blood transcriptional profiling between healthy volunteers and sepsis patients. (C) The differentially
expressed genes are displayed in the volcano plot, with 3,504 up-regulated and 4,833 down-regulated genes identified. The black circles represent
the expression changes of lactylation-related genes. (D) Sepsis patients were divided into four sub-clusters according to the consensus clustering.
(E) The comparison of lactylation based on different clinical characteristics.
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ESTIMATE algorithms were conducted. In line with the above

analysis, the IPS results showed that cluster-3 exhibited a relatively

higher suppressor cells scores among four sub-clusters (Figure 2C),

indicating the higher immunosuppressive effects. Moreover, the

samples in cluster-3 appeared to have the lowest immune scores

according to the ESTIMATE, which might indicate the low

immunoreactivity in cluster-3 (Figure 2C). Despite exhibiting

elevated IPS scores, cluster 4 demonstrates concurrently high

suppressor cell (SC) scores and upregulated immune checkpoint

molecule expression. Notably, the immune checkpoint HAVCR2

shows significant over-expression in clusters 1, 2, and 4 compared

to cluster 3. These findings collectively indicate that potential

immunosuppressive effects are not exclusive to cluster 3 and

distinct immune dysregulation patterns exist across sepsis

sub-clusters.
Frontiers in Immunology 06
Considering the distinct immune landscape shown above,

patients in cluster 3 displayed markedly elevated lactylation levels,

and a distinct immune cells abundance pattern. Strikingly, sepsis

patients in this sub-cluster exhibited upregulation of immune

checkpoint molecules and pronounced immune activation/

immunosuppressive state, collectively suggesting a profound state of

immune dysregulation. Therefore we further explored the prognosis

between cluster 3 and other clusters. The Kaplan-Meier curves

illustrated the survival difference across different clusters, and the

results were statistically significant (p=0.011, Figure 2D). Obviously,

the sepsis patients in cluster 3 experienced the worst prognosis as

compared to the other clusters (Figure 2D). Given the previous

analyses, the patients in cluster-3 appeared to have a higher degree

of lactylation, lower immunoreactivity, higher immunosuppressive

effects, and a poor prognosis. These results collectively identify cluster
FIGURE 2

The immune characteristics of different sub-clusters. (A) The immune landscapes of different sub-clusters annotated with the lactylation enrichment
level and clinical characteristics (history of diabetes mellitus, endotype, pneumonia, age, and gender). (B) The abundance of immune cells and
immune checkpoints exhibited distinct patterns. One-way ANOVA was employed for statistical analysis among four sub-clusters: *p < 0.05, **p <
0.01, and ***p < 0.001. (C) The clusters3 showed lower immunoreactivity and higher immunosuppressive effects according to ESTIMATE and IPS
scores. (D) Kaplan-Meier plot illustrated survival difference among sub-clusters, and patients in cluster3 had the poorest outcome (log-rank test,
p<0.05).
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3 as a distinct lactylation-driven sub-cluster with poor prognosis,

guiding our subsequent hub gene analysis.
3.3 Key genes related to lactylation in
sepsis

We sought to excavate the key genes based on the lactylation-

related clusters, and a series of bioinformatic analyses and machine

learning approaches were performed in sequence. The workflow is
Frontiers in Immunology 07
presented in Figure 3A. Gene selection pipeline proceeded as

follows: First, we identified differentially expressed genes (DEGs)

between cluster 3 and non-cluster 3 septic patients. Subsequently,

we extracted DEGs between sepsis survivors and non-survivors.

The intersection of these two steps yielded our candidate genes for

further analysis. We next performed univariate Cox proportional

hazards regression, and genes without HR statistical significance

were filtered out. To reduce the number of candidate genes, we

applied two machine learning approaches LASSO and Elastic Net.

The LASSO algorithm, which imposing an L1 penalty on the
FIGURE 3

The detection and isolation of the key genes. (A) Flow chart showed the screening and selection of hub genes. (B) The expression of hub genes
exhibits differential profiles between survivors and non-survivors. (C) Pseudo-time trajectories depicted the variation of lactylation in the sepsis
process. (D) Pseudo-time trajectories showed the expression level of hub genes (HR>1) changed with the enrichment level of lactylation.
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regression, is widely employed in variable selection and

identification of the most relevant biomarkers in scientific

research. Similar to LASSO, the Elastic Net algorithm, combining

the advantages of L1 penalty and Ridge regression (L2 penalty), has

been commonly employed in robust variable selection. The variable

selection process via LASSO regression and Elastic Net is presented

in the supplementary figures (Supplementary Figure S3A). After the

machine learning screening, Multivariate Cox proportional hazards

modeling was employed to screen for genes exhibiting independent

prognostic significance. Ultimately, 8 key genes were identified:

CD160, HELB, ING4, PIP5K1C, SRPRA (HR < 1); and CDCA7,

FAM3A, PPP1R15A (HR > 1), and the hub genes showed apparent

differences in expression between alive and dead sepsis

patients (Figure 3B).

To further explore the continuous process in sepsis, we applied

pseudotime analysis to reconstruct the dynamics. The results

revealed that all the developmental trajectory of sepsis were

assigned into five states (Figure 3C, depicted in different colors)

with two branch points. State 5 was selected as pseudotime root due

to its minimal calculated lactylation level, representing the

presumptive starting point of lactylation dynamics in sepsis

progression. From State 5, the developmental trajectory crosses

the branch point 1 and transitions to State 2, followed by a

transition to State 3/4, while moving rightward leads to State 1

(Figure 3C). Overall, the leftward trajectory (state 5-2-3,4) exhibits a

gradual increase in lactylation levels, whereas the rightward

trajectory (to State 1) shows no significant increase (or a slight

decrease). Temporally, State 1 slightly precedes State 3/4, and

throughout the developmental process, lactylation levels tend to

increase (Figure 3C). Notably, patients in cluster 3 are

predominantly distributed at the terminal branch of State 3, while

cluster 1 patients are primarily located at the end of state 1 branch.

The pseudotime trajectory indicated that in the process of sepsis,

some patients might develop or sustain a high level of lactylation,

resulting in a high rate of mortality. Then we evaluated the

expression of 3 hub genes (CDCA7, FAM3A, PPP1R15A, HR>1)

in the trajectory process in sepsis (trajectory process of the other 5

hub genes were shown in Supplementary Figure S4). The results

showed that all trajectories exhibited consistent upregulated

tendencies. From the root state 5, all three hub genes showed

lower expression compared to the other states. In line with the

changes of lactylation, during the continuous process of sepsis, all

three genes gradually increased, and reached the peak when the

branch reached to the terminal state (Figure 3D). The expression of

the three key genes appeared to reflect the levels of lactylation in

relation to the results.
3.4 Construction of the lactylation-related
prognostic signature

In previous studies, sepsis is a systemic inflammatory

dysfunction with complicated changes, which lacks reliable
Frontiers in Immunology 08
prognostic biomarkers due to the individual heterogeneity.

Considering the above results, we endeavored to establish a

lactylation-related prognostic signature in the following analyses.

First, all samples were randomly assigned into the training set

(n=335) and the validation set (n=144) with a 7:3 ratio. The

multivariate Cox regression analysis was performed, the 8-hub

genes (CD160, HELB, ING4, PIP5K1C, SRPRA, CDCA7,

FAM3A, PPP1R15A) and their calculated coefficients were

utilized for the establishment of the lactylation-related prognostic

signature. The regression coefficients table and hazard ratios (HR)

of these 8 candidate genes are illustrated in the corresponding

figures (Supplementary Figure S3B).

Sepsis patients were stratified into high and low risk groups

based on the optimal cutoff value determined by X-tile software

(Figure 4A). Patients stratified into the high-risk group exhibited

poorer survival outcomes coupled with upregulated expression of

prognostic risk genes compared to their low-risk counterparts

(FAM3A, CDCA7, PPP1R15A, Figure 4A). Kaplan-Meier analysis

revealed significantly worse survival outcomes in high-risk patients

compared to low-risk counterparts (log-rank p<0.0001, Figure 4B).

Furthermore, Pearson correlation analysis demonstrated a robust

association between prognostic risk scores and lactylation levels

(Figure 4C).Therefore we evaluate the risk score among all four sub-

clusters, and patients in cluster-3 showed the highest (Figure 4D).

The performance of the prognostic signature was further examined

with ROC curves and the corresponding AUC values. In the

training set, ROC analysis demonstrated strong predictive

performance of the lactylation-related signature for survival time

with AUCs 0.77 at 3 days, 0.77 at 14 days, and 0.78 at 28 days,

respectively (Figure 4E). Notably, the signature was applied in the

mortality prediction of sepsis patients, and the ROC curve indicated

a good accuracy with 0.78 AUC value (Figure 4F).

In order to assess the stability of the lactylation-related

prognostic signature, The prognostic signature’s predictive

performance was rigorously validated in the validation cohort

using the same risk score cutoff established in the training set.

Consistent with training results, high-risk patients exhibited both

elevated expression of risk genes (Supplementary Figure S3C) and

significantly reduced survival times compared to low-risk

counterparts. Survival analysis was conducted, and the result was

depicted in the Kaplan-Meier plot. Similar to the training set, the

significant survival difference was shown between the high and low

risk group (Log-rank test, p<0.0001, Supplementary Figure S3D).

The same positive correlation was observed between risk score and

lactylation according to the Pearson correlation analysis in the

validation set (Supplementary Figure S3E). In the prognostic

prediction of patients survival time, the AUC value of the

lactylation-related prognostic signature was 0.73 at 3 days, 0.70 at

14 days, 0.73 at 28 days, respectively (Supplementary Figure S3F).

Additionally, the AUC value reached 0.73 in the prediction of

mortality in the validation set (Supplementary Figure S3G). Taken

together, the analyses establish that the lactylation-associated

prognostic model maintains high accuracy and stability.
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3.5 Dysregulated lactylation a common
phenomenon in sepsis

For a comprehensive understanding of lactylation in sepsis,

another whole blood transcriptional profiling was analyzed

(GSE95233), which contained 51 septic shock patients and 22

healthy volunteers with corresponding clinical information. GSEA

was performed, with hallmarks and several genesets related to

lactate set as the references. In comparison to healthy volunteers,

glycolysis and lactate-related pathways were significantly enriched

in the sepsis patients (Figures 5A, B), which was consistent with the

former results. The result indicated that the lactylation level

increased in sepsis. The lactylation gene set was utilized to

quantify the level of lactylation using GSVA. Similarly, the result

revealed that the level of lactylation is obviously higher in sepsis

patients as compared to the healthy volunteers. Additionally, in line

with the former results, the three risk genes (FAM3A, PPP1R15A,

CDCA7) were up-regulated in the sepsis patients (Figure 5C).

Notably, the patients who did not survive depicted the highest

quantification of lactylation (HC: healthy controls. S:survivors. NS:

non-survivors, Figure 5D), indicating the correlation between poor

prognosis and lactylation.
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To investigate lactylation dynamics in sepsis, we analyzed

single-cell RNA-seq data of human PBMCs from GEO

(GSE167363), including healthy controls (n=2), survivors (n=6),

and non-survivors (n=4). After quality control (Supplementary

Figure S5A), dimension reduction, and clustering, the whole cells

were assigned into different clusters. The canonical markers of

immune cells were annotated in the t-sne plot (Supplementary

Figure S5B). Based on the canonical markers and the SingleR cell

type annotation tool, cell clusters have been defined, including T

cells, platelets, B cells, monocytes, NK cells, neutrophils, DCs, and

erythroblast (Figure 5E). GSVA revealed significantly elevated

lactylation levels in sepsis patients (Figure 5F). Monocytes, the

primary innate immune cells in PBMC, were separated for further

analysis. Similarly, the lactylation level of monocytes was significant

higher in sepsis patients, especially in patients who did not survive

(Figure 5G). Subsequentially, the pseudotime analysis was

conducted to evaluate the changes of lactylation level in

monocytes during the process of sepsis. The whole monocytes

were classified into eight states with four branch points

(Figure 5H). As depicted in the trajectory, the healthy controls

were located in the terminal of states 6/7, therefore the states 6/7

were determined as the root states (Figure 5H). Obviously, during
FIGURE 4

Construction of a lactylation-related prognosis signature. (A) The distribution of risk scores, survival time, expression patterns of signature genes in the
training set. (B) Kaplan-Meier plot revealed evident survival outcome difference between high and low risk groups (log-rank test, p<0.001). (C) Pearson
correlation analysis of the correlation between risk scores and lactylation. (D) The comparison of risk scores between different lactylation-related subclusters.
(E, F) The performance of the signature was evaluated with ROC curves in the prediction of survival time and mortality of sepsis patients.
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FIGURE 5

External validation of the lactylation-related signature. (A, B) GSEA analysis results of biological processes enriched in sepsis patients. (C) The risk
genes (FAM3A, PPP1R15A, CDCA7) up-regulated in sepsis were depicted in the volcano plot. (D) Comparison of lactylation enrichment level between
septic patients (non-survivors/survivors) and healthy controls (i.e. 1. Septic non-survivors vs healthy controls. 2.Septic survivors vs healthy controls).
Statistical significance between groups (vs. healthy controls) is indicated above the bars: ***p < 0.001. (E) The t-sne plot of single-cell RNA
sequencing data annotated with immune cells or sample groups. (F) The whole PBMC lactylation enrichment level was higher in sepsis patients. The
comparison included septic non-survivors vs healthy controls and septic survivors vs healthy controls. Statistical significance (vs. healthy controls) is
indicated above the bars: ***p < 0.001. (G) The monocyte lactylation enrichment level was elevated in sepsis patients. The comparison included
septic non-survivors vs healthy controls and septic survivors vs healthy controls. Statistical significance (vs. healthy controls) is indicated above the
bars: ***p < 0.001. (H) Pseudo-time trajectories of monocytes with status and states depicted in the plots. (I) Pseudo-time analysis of monocytes in
survivor sepsis patients. (J) Pseudo-time analysis of monocytes in non-survivor sepsis patients.
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the development of process (from rightward to the leftward in the

trajectory plot), the monocytes exhibited a continuous increase of

lactylation level (Figure 5H). Additionally, we analyzed the

monocytes pseudo-time trajectory of sepsis survivors and sepsis

non-survivors, respectively. The cells were assigned into different

states, and the root states were determined based on the sample

time-points referred by the clinical information (Figures 5I, J). In

the survivor patients, the lactylation level of monocytes showed a

slightly decrease tendency across the development process

(Figure 5I). While in the non-survivor patients, the monocytes

exhibited an evident increase in lactylation (Figure 5J). Combining

the above results, the lactylation dysregulation is a common

condition during the development of sepsis. The different

alterations of lactylation between survivors and non-survivors

indicated the potential association between lactylation and poor

survival outcome.
3.6 Dynamic changes of lactylation and key
genes during the progression of sepsis

We further explored the changes of lactylation in the GSE95233

cohort. Pseudotime trajectory depicted the development of sepsis.

The whole cohort samples were classified into three states with one

branch point. According to the corresponding clinical information,

the healthy controls (HC) were distributed mainly in the end of

state 1. Therefore state 1 was defined as the root state (Figure 6A).

Similar to the previous results, the lactylation level showed an

obvious increase throughout the temporal sequence (Figure 6B).

Furthermore, expression analysis of the three risk genes revealed a

consistent upregulation pattern (Figures 6C–E). Subsequently, we

computed individual risk scores using the established methodology.

We analyzed the correlations of risk genes or risk scores with

lactylation across sepsis patients. The results demonstrated the

evident positive correlations between lactylation level and risk

scores or risk genes (Figures 6F–I). Consequently, the lactylation-

related prognostic signature had a strong association with

lactylation, which could predict the prognosis of sepsis from the

perspective of lactylation.

In the following analyses, the temporal dynamics of risk gene

expression were assessed within individual patients. The GSE95233

whole blood transcriptional profiling contained information for

different time points. Some sepsis patients were sampled a second

time at day 2 or day 3 since the admission day according to the

clinical information. The transcriptional levels of the three risk

genes, derived risk scores, and lactylation measurements were

assessed across survival outcomes, respectively. The lines depicted

in the plot between different time groups represented the same

patients. Notably, in the survivor patients, both lactylation and the

risk score showed a evident decrease at day2 or day3 (Figure 6J).

Moreover, the risk genes PPP1R15A and FAM3A exhibited a

similar tendency of decrease as the time progressed (Figure 6J).

Unlike the survivors’ group, the level of lactylation and risk score

maintained high levels during the progression, and the risk genes

showed no decrease during the progression (Figure 6K). Thus, we
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considered that the persistent high level of lactylation might

contribute to the high rate of mortality in the progression of sepsis.
3.7 In vitro experiments and clinical
validation of the prognostic model in our
own cohort

To study the global lactylation in monocytes, THP-1 cells were

subjected to lipopolysaccharide (LPS) for indicated times to trigger

acute inflammation. Pan-Kla denotes broad detection of lysine

lactylation modifications across the proteome, serving as a global

indicator of cellular lactylation status. The cellular lactylation level was

measured by Western Blot (anti-Pan-Klac). Accordingly, the

expression of Pan-Klac and PPP1R15A were significantly increased

in a time-dependent manner after LPS stimulation, with the results

demonstrating clear statistical significance (Figure 7A; Supplementary

Figure S7). Similarly, the mRNA level of PPP1R15A was significantly

increased in THP-1 cells subjected to LPS for indicated times

(Figure 7B). Thus, Sephin1, a selective PPP1R15A inhibitor, was

used to explore the potential role of PPP1R15A in the global

lactylation modification. Compared to the LPS stimulation alone,

the LPS plus Sephin1 group showed a higher level of lactylation.

Notably, GLUT1, a critical glucose transporter, exhibited similarly up-

regulated expression levels following treatment with the PPP1R15A

inhibitor. (Figure 7C; Supplementary Figure S6A). The above results

suggest that PPP1R15A exerts significant effects on immune cell

lactylation modification.

To further validate the predictive performance of the

lactylation-derived prognostic signature, we collected the blood

samples from the ICU at our institution (N=51) and isolated the

PBMCs within the first 24 h of ICU admission. The relevant clinical

information was detailed in Supplementary Table S4. Total RNA

was extracted and reversed into cDNA. Then RT-qPCR was

performed to quantify the relative expression of the eight genes

(CD160, HELB, ING4, PIP5K1C, SRPRA, CDCA7, FAM3A,

PPP1R15A) with b-actin as the control. The optimal risk score

cutoff was identified using X-tile. As shown in the Figure 7D, the

high-risk group showed an evident increase in the expression of

PPP1R15A. Then we compared the risk scores among different

clinical characteristics (including age, gender, the history of

diabetes, chronic pulmonary disease, chronic heart disease,

chronic renal disease, source of infection, CRRT utilization), and

no statistically significant differences were observed (Figures 7E–G,

Supplementary Figures S8A–E). However, patients receiving

mechanical ventilation within 24 hours of admission showed a

higher risk scores compared to those without ventilator support

(Figure 7H). Notably, the risk scores were significantly higher in

deceased patients compared to survivors (Figure 7I), which was in

line with the analyses before. Additionally, the APACH II scores,

which are widely used to evaluate the severity of ICU patients,

showed a strong association with risk scores (Figures 7J–L, patients

with high risk scores demonstrated elevated APACHE II scores).

The signature demonstrated significant prognostic value, with ROC

analysis confirming its robust predictive performance in our cohort
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1625311
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1625311
(Figures 7M–P). For 28-day mortality prediction, the AUC reached

0.86 (Figure 7M). Time-dependent AUC values for survival

prediction were 0.69 (3-day), 0.82 (7-day), 0.80 (14-day), and 0.86

(28-day) (Figure 7N). Notably, low-risk patients exhibited
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significantly improved survival outcomes compared to their high-

risk counterparts (Figures 7N–O). Collectively, the lactylation-

related prognostic signature exhibited a good performance and

stability in our own cohort.
FIGURE 6

The continuous changes of lactylation and key genes in sepsis. (A) Pseudo-time analysis of blood transcriptional profiling in GSE95233 cohort. (B-E) The
changes of lactylation and three risk genes (FAM3A, PPP1R15A, CDCA7) in temporal sequence according to the pseudo-time trajectories. (F-I) Pearson
correlation analysis of the correlation between risk scores or risk genes and lactylation. (J) The continuous changes of lactylation, risk scores, and expression
of risk genes in survivors. (K) The continuous changes of lactylation, risk scores, and expression of risk genes in non-survivors.
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FIGURE 7

Validation of lactylation-related signature in our own cohort. (A) THP-1 cells were treated with LPS in a time-dependent manner and blotted for
PPP1R15A, AARS1, AARS2, LDHA, and Pan-Klac. (B) THP-1 cells were treated with LPS for 24h. The PPP1R15A showed a significant increase in mRNA
level with b-actin as a control. The statistical difference between naive and LPS groups was determined using unpaired Student’s t-test. ***p<0.001
(C). Sephin1 (a selective PPP1R15A inhibitor) increased the global level of lactylation in THP-1 cells. (D) The distribution of risk-scores, survival time,
expression patterns of signature genes in our own ICU cohort. (E-G) The risk-scores showed no difference between patients with different age,
genders, and history of diabetes. The statistical difference between two groups was determined using unpaired Student’s t-test. P<0.05 was
considered statistical significant [(E-K), *p< 0.05, **p < 0.01, ***p < 0.001] (H). The comparison of risk-scores between patients treated with
ventilator or not in the first 24h after ICU admission. (I) The comparison of risk-scores between patients with different survival outcomes. (J-L) The
correlation of risk-scores and APACHII scores. (M) The performance of the signature was evaluated with ROC curves in the prediction of mortality.
(N, O) The Kaplan-Meier plot revealed different survival outcome between high and low risk groups [(N), the median value of risk-scores of our own
cohorts was set as the cut-off value, Log-rank test p=0.044. (O), the optimal cut-off value was determined by X-title, Log-rank test p<0.0001].
(P) The performance of the signature was evaluated with ROC curves in the prediction of survival time.
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4 Discussion

Sepsis is a severe medical condition with a high rate of

mortality, which has been defined as a global health issue (21).

The dysregulation of the inflammatory responses is commonly

observed in sepsis patients (22). The dynamic balance and

imbalance between SIRS and CARS contribute to the high

heterogeneity of sepsis (23). In recent decades, significant

breakthroughs have been made in the pathogenesis of sepsis (24).

Despite the advances in insights into the pathophysiology

underlying the disorder, sepsis still lacks of reliable diagnostic and

prognostic biomarkers (25), which drives the scientific researchers

to explore the sepsis molecular mechanism from multiple aspects.

Lactylation, which is a newly identified post-translational

modification, has been demonstrated to play a role in multiple

disease processes (11). It has been proved that glycolysis is

significantly enhanced in sepsis (26), which results in the high

concentration level of lactate, therefore increasing the global

lactylation level. Lactylation plays important roles in multiple

diseases including sepsis. Molecularly, lactylation enhances or

weakens the original biological functions of certain molecules, or

produces novel effects (27). In recent years, several studies have

revealed that lactylation could regulate the activities of transcription

factors, histones, mitochondrial-related proteins (28), thus having

the potential to impact the balance of immune response or

contribute to the immune paralysis in sepsis. However, the

understanding of lactylation is not sufficient, and we lack efficient,

simple, and affordable approaches to measure the level of lactylation

in sepsis. To fill this gap, we sought to probe the dynamic changes of

lactylation and establish a signature that could quickly and stably

predict the mortality and survival outcome of sepsis patients. By

utilizing integrative multiple analyses and in vitro investigations, we

elucidated the potential molecular mechanisms mediating

lactylation. In addition, lactylation, particularly histone

lactylation, emerges as a key metabolic-epigenetic mechanism in

trained immunity, as the lactate-lactylation axis directly couples

glycolytic metabolism to long-term innate immune memory (29).

These findings suggest that lactylation may also play a functional

role in sepsis-induced trained immunity.

In our current study, by utilizing consensus clustering, four

distinct lactylation-related sepsis subclusters were discovered. Then

we depicted the characteristics and immune landscape of different

subclusters using the bioinformatics analyses. The results revealed

that the sepsis patients in cluster 3 had the highest level of lactylation.

In addition, according to the immune-related calculation, the

immunosuppressive effects were more pronounced in cluster 3

compared to the other clusters. Notably, as the Kaplan-Meier

survival curves depicted, sepsis patients in cluster-3 had an evident

poor survival outcome in comparison with the others. Thus, cluster 3

was defined as the special cluster, and from this, we sought to explore

the hub genes involved in the lactylation using several bioinformatics

analyses and machine learning. Briefly, we overlapped the genes that
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were altered both in cluster 3 and dead patients, and filtered out the

variables without prognostic value. The candidate gene number was

further reduced using LASSO and Elastic Net. Lastly, multivariate

Cox regression identified critical hub genes, while pseudotime

trajectory analysis revealed progressive increases in both risk gene

expression and lactylation levels during sepsis progression. Notably,

by separating the sepsis transcriptional profiling of survivors and

non-survivors, we noticed that the lactylation level of non-survivors

sustained a high degree, while lactylation in survivors showed the

opposite, demonstrating that the lactylation might contribute to the

mortality. While pseudotime reconstruction provided valuable

insights into lactylation dynamics during sepsis progression, several

methodological constraints warrant consideration: First, while our

application of pseudotime analysis to bulk RNA-seq data is

theoretically justified by the continuous development of sepsis

progression, we acknowledge the approach was originally

developed for single-cell transcriptomics. Second, the approach

cannot resolve dynamics at single cell level, potentially masking

cell-type-specific patterns. These limitations highlight the need for

future validation using single-cell RNA-seq in longitudinal cohorts.

Besides, we established a sepsis lactylation-related signature

utilizing the hub genes explored in above analyses. The signature

had a good and stable performance in the prediction of survival time

and mortality outcome in sepsis patients. Specifically, in the training

set, the AUC values of the signature were 0.77, 0.77, and 0.78 at 3, 14,

and 28 days, respectively. The AUC value of mortality prediction

reached 0.78. In the validation cohort, the AUC values of the

signature were 0.73, 0.70, and 0.73 at 3, 14, and 28 days, and the

AUC value of mortality prediction reached 0.73. The signature and

risk genes were further validated in an external whole blood

transcriptional profiling and a single-cell RNA-sequencing of

human PBMCs. Overall, the lactylation-related signature showed a

good performance and high accuracy. Moreover, to increase the

credibility of the results, we sampled the sepsis blood in our own

hospital and isolated the RNA at intensive care unit admission. The

expression level of genes involved in the signature were quantified

using rt-qPCR. By integrating the PCR results and the corresponding

clinical information of sepsis patients, we further demonstrated that

the lactylation-related signature has good performance.

Additionally, PPP1R15A (GADD34) which could prevent the

hyperphosphorylation of the translation initiation factor eIF-2a (30),

has been identified as the hub gene with high risk coefficient.

Endoplasmic reticulum (ER) stress represents a pathological state

induced by excessive unfolded/misfolded protein accumulation in the

ER (31), often occurs in cancer and infectious diseases (32). PERK

(Protein kinase RNA-like Endoplasmic Reticulum Kinase) undergoes

autophosphorylation, which induces the phosphorylation of the

eukaryotic translation initiation factor 2a. It serves a dual role: it

suppresses overall protein synthesis to alleviate the burden of nascent

proteins on the ER, while selectively enhancing the translation of

certain molecules, including activating transcription factor 4 (ATF4).

ATF4 subsequently increases the mRNA level of PPP1R15A (28). A
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recent study suggests that ATF4 could increase the expression level of

GLUT1, subsequently allowing glucose greater access to the

intracellular environment, resulting in a high global glycolysis level

(33). The similar phenomenon was confirmed in our in vitro

experiment. Moreover, Sephin1, a selective PPP1R15A inhibitor

(34), has been used to explore the potential effects of PPP1R15A.

Consistent with our preconceptions, the expression level of

PPP1R15A could indicate the lactylation, and the activity of

PPP1R15A could alter the global lactylation level.

In conclusion, we have demonstrated the dynamic changes of

lactylation in sepsis through a comprehensive integrated analysis.

This study establishes an innovative approach for prognosis of sepsis

patients, but also a novel insight into the pathophysiologymechanism

of sepsis from the lactylation perspective. The following limitations of

this research should be noted: Firstly, not many comparisons have

been performed in the characteristics analysis due to the limited

clinical information. Certain cohorts were missing data on outcomes

and survival time, which is unavoidable since it was a retrospective

analysis. In our study, though we directly measured the overall

lactylation of the THP-1 cells, the GSVA-based lactylation scores

was served as inferences for cellular lactylation activity in the clinical

cohorts, which is not a direct post-translational modification

measurement. Thus, our findings demonstrate that while the

computationally inferred values based on related gene expression

patterns in the transcriptome might serve as indicators of lactylation

activity, they do not fully represent the comprehensive lactylation

status at the cellular level. Considering the limitation, future

lactylation proteomics analyses and studies are needed for

definitive quantification. Despite utilizing clinical samples and

analyzing multiple datasets in this study, the findings require

validation in larger, independent clinical cohorts to determine their

practical clinical applicability.
5 Conclusions

This study systematically investigated the lactylation in sepsis,

revealing its significant association with disease progression and

patient outcomes. Through comprehensive bioinformatics analyses

of multiple datasets, we identified four distinct lactylation-related

sepsis subclusters. We further developed an 8-gene lactylation-

based prognostic signature (CD160, HELB, ING4, PIP5K1C,

SRPRA, CDCA7, FAM3A, PPP1R15A) that effectively predicted

mortality risk in both training (AUC 0.77-0.78) and validation

cohorts (AUC 0.70-0.73). In vitro experiments confirmed that

PPP1R15A inhibition altered global lactylation levels. Clinical

validation in our own hospital using patient-derived PBMCs

supported the signature’s predictive accuracy (28-day mortality

AUC=0.86). Based on the dysregulated immune cell metabolism,

a novel signature was established with potential applicability for

rapid prognosis prediction in sepsis management.
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