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Sepsis, a life-threatening organ dysfunction caused by a dysregulated host

response to infection, presents a major clinical challenge. While the complex

interplay of inflammatory mediators and immune cells during sepsis is

increasingly understood, the role of neurotransmitters, particularly dopamine,

in modulating the innate immune response is emerging as a crucial area of

investigation. Dopamine, traditionally recognized for its role in the central

nervous system, acts as an endogenous regulator of innate immunity,

significantly influencing the course and outcome of sepsis. In this mini-review,

we highlight our recent finding of dopamine’s critical role in regulating aconitate

decarboxylase 1 (ACOD1) in sepsis.
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Introduction

Sepsis is a life-threatening condition that arises when the body’s response to infections

triggers a dysregulated production of various inflammatory cytokines (1). It accounts for

almost 20% of total deaths worldwide (2), and annually cost >$60 billion in the U.S. alone.

Animal models remain indispensable in sepsis research, providing a controlled

environment to unravel complex pathophysiological mechanisms, identify therapeutic

targets, and evaluate novel interventions (3). The intricate interplay of various innate

immune cells, inflammatory mediators, and signaling pathways contributes to the

pathogenesis and progression of sepsis (4, 5). While the inflammatory cascade initiated

by the innate immune system is crucial for pathogen clearance, its dysregulation can lead to

detrimental systemic inflammation and subsequent immunosuppression (6, 7).

Understanding the intricate mechanisms governing this immune response is critical for

developing effective therapeutic strategies.

Dopamine (DA), traditionally recognized for its role in the central nervous system (8),

acts as an endogenous regulator of innate immunity through a complex interplay with

various immune cells expressing dopamine receptors, primarily D1-like (DRD1 and

DRD5) and D2-like (DRD2, DRD3, and DRD4) receptors (9), thereby significantly
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influencing the course and outcome of sepsis. Depending on the

receptor subtype and the specific context, dopamine can trigger

intracellular signaling cascades that can either enhance or suppress

immune cell activities.
Dopamine as a bridge between the
nervous and innate immune systems

Dopamine (DA) is a central nervous system (CNS)

neurotransmitter involved in the control of several key functions,

such as cognition and movement. In the periphery, DA is produced

by neuroendocrine cells, the adrenal glands, and neuronal fibers,

and influence functions like blood pressure, sodium balance and

adrenal and renal functions (10, 11), as well as glucose homeostasis

and body weight (12). In addition to its primary role in the CNS,

DA is now recognized as a key modulator of the innate immune

response in sepsis. For instance, dopamine is produced and released

by various types of immune cells including lymphocytes,

macrophages, peripheral blood mononuclear cells (PBMCs), and

dendritic cells (8, 13–17) during inflammation (18). This localized

production suggests dopamine’s involvement in modulating

immune responses through paracrine or autocrine signaling,

regulating both neurological and immunological responses (16,

19, 20).

It is plausible that dopamine release is tightly regulated and

triggered by specific immunological stimuli, such as pathogen-

associated molecular pattern molecules (PAMPs) or damage-

associated molecular pattern molecules (DAMPs). Understanding the

temporal dynamics of dopamine production—when and for how long

it is released in response to specific immune challenges—is crucial.

Furthermore, different tissues might exhibit varying abundances of

these cells, leading to tissue-specific effects of dopamine signaling.

Therefore, a deeper understanding of this interplay between temporal

and spatial dynamics of dopamine production is essential for

developing targeted therapies that effectively harness the

immunomodulatory potential of dopamine signaling in immune-

related diseases. This includes further research into the precise

regulation of dopamine release, variations in its production across

different immune cell types and tissues, and the intricate relationship

between neuronal and immune-derived dopamine.

DA interacts with D1-like (DRD1, DRD5) and D2-like (DRD2,

DRD3, DRD4) receptors on immune cells, triggering specific

intracellular signaling cascades and influencing immune cell

activity depending on receptor subtype and the specific immune

cell involved. For instance, DA modulates innate immunity, in part,

by influencing neutrophil functions. As the first line of defense

against invading pathogens, neutrophils are crucial for bacterial

clearance. Expressing DRD3, DRD5, and to a lesser extent, DRD2

and DRD4 dopamine receptors (21), neutrophils are responsive to

dopamine signaling. For instance, acting via D1-like receptors, DA

inhibits neutrophil chemotaxis and phagocytosis (22), potentially

mitigating excessive inflammation and tissue damage (23). While

this inhibition may be beneficial in early sepsis by attenuating an

overwhelming inflammatory response, prolonged suppression of
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neutrophil activity can compromise bacterial clearance and increase

the risk of secondary infections. Furthermore, DA reduces

neutrophil activity by decreasing endothelial adherence, reactive

oxygen species and cytokine production (18), and impairing cell

migration and phagocytosis (22, 24–27).

Human monocytes predominantly express DRD2 and DRD3,

with lower expression of DRD4 and DRD5 (21). Consequently, DA

suppresses LPS-mediated NF-kB activation and cytokine

production in these cells (28). Additionally, DA modulates

macrophage polarization towards the M2 phenotype, which

contribute to tissue repair and resolution of inflammation (9),

suggesting a potential role for DA in the later stages of sepsis by

fostering an anti-inflammatory action. In vivo, DA and its agonists

suppress inflammatory responses in mice, reducing LPS-induced

production of IL-12p40 (29), TNF (30), IFN-g, and nitric oxide in

macrophages (31) primarily via D2-like receptors (DRD2/DRD3/

DRD4) (32). Conversely, DA stimulates the production of anti-

inflammatory cytokines, such as IL-10, in macrophages (32, 33),

mounting an anti-inflammatory response.
Therapeutic potential of dopamine-
based agents

DA exerts cardiovascular effects by acting on a- and b-
adrenergic receptors, increasing cardiac output, systemic vascular

resistance, and blood pressure (34), thereby counteracting the

hypotension and hypoperfusion characteristic of organ

dysfunction. Consequently, DA is often a first-line vasopressor in

sepsis and septic shock during overwhelming immune responses to

bacterial infections (35). While both DA and norepinephrine (NE)

are commonly used as first-line vasopressors in the treatment of

septic shock (36–39), NE may demonstrate superior efficacy in

clinical settings (37, 40).

In vivo, pharmacological DA administration modulates the

secretion of hormones such as prolactin (41, 42), restores hepatic

blood flow (43), and improves hemodynamics by increasing blood

pressure/flow and causing vasodilatation (34). DA suppresses systemic

inflammation by blocking the TRAF6/NF-kB pathway via a DRD5

receptor-mediated signaling axis involving ARRB2 and PP2A (44).

Consistently, a dopamine D1-like receptor-specific agonist improves

survival of septic mice, partly by inhibiting TNF, IL-1b (45), IL-6, and

IFN-g (46). Similarly, electroacupuncture of the sciatic nerve increases

adrenal DA production in mice, which subsequently acts on DRD1

receptors to reduce systemic inflammation and protect against lethal

sepsis (47). Clinically, low-dose DAmay benefit splanchnic blood flow

and oxygen consumption in patients with septic shock (48), aligning

with the potential therapeutic benefits of dopaminergic agonists in

septic diabetic patients by controlling both hyperglycemia and

systemic inflammation (49). However, high-dose DA, compared to

norepinephrine, is associated with increased arrhythmic events and

mortality (50–52). Independent of norepinephrine (NE) use, DA

administration is associated with higher mortality (51, 53) and a

greater incidence of arrhythmic events compared to NE

administration (40).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1625368
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1625368
While the role of dopamine in modulating immune responses is

increasingly recognized, it is presently unclear whether systemic and

locally produced dopamine exert distinct effects on immune function

during sepsis. Addressing this important question is crucial for refining

our understanding of sepsis pathophysiology and developing targeted

therapeutic interventions. As aforementioned, systemic dopamine,

primarily derived from the nervous system, circulates throughout the

body and can interact with dopamine receptors expressed on various

immune cells. These interactions can modulate immune cell activity,

including cytokine production, phagocytosis, and lymphocyte

proliferation. In the context of sepsis, extensive evidence indicates

that DA might play a protective role by modulating inflammatory

responses (43, 46, 54). In contrast to systemic dopamine, locally

produced dopamine is synthesized and released by immune cells

themselves, acting within the immediate microenvironment. This

localized production allows for precise and targeted modulation of

immune responses within specific tissues or at the site of infection,

influencing the activity of neighboring immune cells.

The distinct effects of systemic versus local dopamine in sepsis

may stem from several factors. First, the concentration of dopamine

at the site of action may differ significantly. Locally produced

dopamine can achieve high concentrations within the immune

microenvironment, potentially exceeding those achieved by

circulating dopamine. Second, the specific dopamine receptor

subtypes expressed on different immune cell populations and

within different tissues may vary, leading to diverse downstream

effects. Finally, the interplay between dopamine and other signaling

molecules present in the local microenvironment, such as cytokines

and chemokines, could further influence the net effect of dopamine

on immune function. Therefore, disentangling the roles of systemic

and locally produced dopamine in sepsis requires sophisticated

experimental approaches. For instance, studies using conditional

knockout mice, where dopamine production is selectively ablated in

specific cell types or tissues, could help elucidate the distinct

contributions of systemic and local dopamine. Furthermore, in

vitro studies using co-culture systems of immune cells and other

relevant cell types, such as endothelial cells, can provide valuable

insights into the interplay between dopamine and other signaling

pathways within the immune microenvironment.

Therefore, understanding the differential effects of systemic versus

locally produced dopamine in sepsis has significant implications for

developing targeted therapeutic strategies. Manipulating dopamine

signaling pathways could offer novel approaches to modulating

immune function and improving outcomes in sepsis patients. For

instance, selectively enhancing local dopamine production by immune

cells at the site of infection could promote bacterial clearance and

dampen excessive inflammation. Conversely, modulating systemic

dopamine levels or targeting specific dopamine receptor subtypes

might be beneficial in mitigating the systemic inflammatory response

and preventing organ damage. Therefore, deciphering the distinct roles

of systemic and locally produced dopamine in sepsis is a critical area of

future research. This knowledge will not only enhance our

understanding of the complex immunopathology of sepsis but also

pave the way for developing innovative therapeutic strategies that

harness the immunomodulatory potential of dopamine signaling.
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Novel role of DA in the regulation of
ACOD1 expression
Aconitate decarboxylase 1 (ACOD1, also known as immune-

responsive gene 1, IRG1) is a critical regulator of immunometabolism

and inflammation, particularly in the context of infection and injury.

While initially recognized for its role in generating the anti-

inflammatory metabolite itaconate, ACOD1’s functions have

proven to be multifaceted, encompassing both itaconate-dependent

and -independent mechanisms (Figure 1). Initially, the well-

characterized function of ACOD1 relates to its catalysis of cis-

aconitate to itaconate within the mitochondria. This activity is

markedly upregulated in macrophages and other immune cells

upon stimulation with inflammatory stimuli like lipopolysaccharide

(LPS) (55). Itaconate, in turn, exerts a range of anti-inflammatory

effects through multiple mechanisms such as: 1) competitive

inhibition of succinate dehydrogenase (SDH), leading to succinate

accumulation and stabilization of hypoxia-inducible factor-1a (HIF-

1a) which promotes anti-inflammatory gene expression (56); 2)

direct alkylation of proteins like Kelch-like ECH-associated protein

1 (KEAP1), resulting in activation of nuclear factor erythroid 2-

related factor 2 (Nrf2) and subsequent antioxidant and anti-

inflammatory responses (Figure 1) (57); and 3) inhibition of

glycolysis, contributing to the metabolic reprogramming of

activated immune cells (58). Collectively, through these

mechanisms enable itaconate to dampen inflammation and

promotes tissue repair.

Our recent research has uncovered itaconate-independent

functions of ACOD1 (59), adding complexity to i ts

immunoregulatory role in sepsis. Specifically, an LPS-stimulated,

JUN-regulated, pro-inflammatory function of ACOD1 has been

identified, involving an interplay between CDK2, RACK1, and

MAPK8 (59). Mechanistically, LPS triggers the formation of a

CDK2-RACK1-MAPK8 complex, leading to MAPK8 activation

and JUN phosphorylation (Figure 1). Phosphorylated JUN then

translocates to the nucleus and promotes ACOD1 expression

(Figure 1) (59, 60). In a mouse model of sepsis induced by cecal

ligation and puncture (CLP), global or myeloid-specific genetic

knockout of either CDK2 or ACOD1 significantly improved

survival (59), attenuating systemic inflammation, organ

dysfunction, and coagulopathy. These protective effects have been

observed even in the absence of itaconate production, supporting the

existence of itaconate-independent mechanisms. Pharmacological

inhibition of CDK2, a kinase upstream of ACOD1, with dinaciclib

has replicated these benefits in CLP and other clinically relevant

sepsis models (e.g., E. coli and S. pneumoniae) (59), suggesting

that targeting the CDK2-ACOD1 axis may be a promising

therapeutic strategy.

Recently, we have identified a key role for DA in regulating

ACOD1 expression through a comprehensive screening of

neurotransmitters for their ability to modulate LPS-induced

expression of ACOD1 (54). Dopamine’s inhibitory effect was

observed at both the mRNA and protein levels, suggesting a

mechanism of transcriptional regulation. Furthermore, we
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FIGURE 1

Dopamine (DA) counter-regulates bacterial endotoxins (LPS)-induced aconitate decarboxylase 1 (ACOD 1) expression in innate immune cells. LPS
engages Toll-like receptor 4 (TLR4), activating either the MYD88-MAPK3-CREB1 or CDK2-RACK1-MAPK8-JUN signaling pathway, ultimately
upregulating ACOD1 expression in innate immune cells. This ACOD1 upregulation increases itaconate production, which exerts anti-inflammatory
effects by promoting direct alkylating Kelch-like ECH-associated protein 1 (KEAP1), activating nuclear factor erythroid 2-related factor 2 (Nrf2) and
driving antioxidant and anti-inflammatory responses. Concurrently, ACOD1 upregulation also competitively inhibits succinate dehydrogenase (SDH),
resulting in succinate accumulation which stabilizes hypoxia-inducible factor-1a (HIF-1a) and promotes anti-inflammatory gene expression.
Furthermore, ACOD1 can promote the expression of the immune checkpoint inhibitor CD274 (PD-L1) via STAT1 activation. The engagement of
DRD2 by dopamine or agonists can disrupt TLR4-MYD88 interaction, inhibit ACOD1 expression, thereby conferring protection against lethal sepsis.
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pinpointed DRD2 as the specific receptor mediating dopamine’s

inhibitory effect on ACOD1 expression (Figure 1) (54). Consistently,

DRD2 knockdown and knockout reversed dopamine’s suppression on

ACOD1 expression, while the DRD2 agonist ropinirole mimicked

dopamine’s effect (54). These findings establish DRD2 as a crucial

receptor in mediating DA’s immunomodulatory function in sepsis,

opening avenues for targeted therapeutic interventions.

To elucidate the molecular mechanism underlying dopamine-

mediated suppression of ACOD1 expression, we assessed the

potential involvement of the TLR4-MYD88-MAPK3-CREB1

signaling pathway. A transcription factor, CREB1, was identified

as a critical regulator of ACOD1 expression (54). Dopamine, acting

through DRD2, inhibits CREB1 phosphorylation at Ser133, thereby

suppressing ACOD1 transcription (Figure 1). Upstream of CREB1,

the canonical TLR4-MYD88-MAPK3 pathway also plays a central

role, with dopamine disrupting the interaction between TLR4-

MYD88 interaction, leading to decreased MAPK3 activation and

subsequent reduction in CREB1 phosphorylation (Figure 1) (54).

While ACOD1 is known for its role in producing the anti-

inflammatory metabolite itaconate (61), our study also revealed an

itaconate-independent function of ACOD1 in regulating the expression

of CD274 (PD-L1), a crucial immune checkpoint inhibitor (Figure 1).

ACOD1 promotes CD274 expression via STAT1 activation (54).

Consequently, dopamine, by inhibiting ACOD1 upregulation,

indirectly suppresses CD274 expression. This finding has significant

implications for understanding the immunosuppressive phase of sepsis,

as CD274 contributes to T-cell exhaustion and dysfunction. This

itaconate-independent role of ACOD1 highlights its multifaceted

involvement in immune regulation. At present, it is entirely unknow

whether DA inhibits CD274 expression partly by inhibiting itaconate-

independent activity of ACOD1.

We also explored the therapeutic potential of modulating DA

signaling in sepsis. Pramipexole, a DRD2 agonist, conferred a

significant protection in mouse models of endotoxemia and

polymicrobial sepsis (54). Even when administered after the onset

of sepsis, pramipexole significantly improved survival rates, reduced

pro-inflammatory cytokine levels, attenuated organ damage, and

downregulated ACOD1 and CD274 expression (54). These results

suggest that enhancing dopamine signaling through DRD2

agonism, specifically using pramipexole, could represent a

promising therapeutic strategy for sepsis.

These preclinical findings were corroborated by clinical data

from sepsis patients. Non-survivors exhibited lower circulating

dopamine levels and higher ACOD1 expression in peripheral

blood mononuclear cells compared to survivors (54). This inverse

correlation between dopamine and ACOD1 expression in human

sepsis underscores the clinical relevance of our animal studies. The

observed association of ACOD1 and CD274 with inflammatory

markers in patients further reinforces the potential role of this axis

in sepsis pathogenesis (54). However, larger and well-controlled

clinical trials are needed to evaluate the efficacy and safety of DRD2

agonists, like pramipexole, in diverse sepsis patient populations,

considering factors like sepsis stage, infection source,

and comorbidities.
Frontiers in Immunology 05
Conclusions

Our recent studies have confirmed a crucial immunoregulatory

role for dopamine in sepsis via the DRD2-TLR4-ACOD1-CD274

axis. Dopamine, acting through DRD2, inhibits the TLR4-MYD88-

MAPK3 pathway, suppressing CREB1 phosphorylation and

downregulating ACOD1 (Figure 1). This, in turn, impacts both

the inflammatory and immunosuppressive phases of sepsis,

influencing cytokine production, and ultimately animal survival.

While these new findings offer promising new avenues for sepsis

treatment, further investigation is crucial to translate these findings

into clinical practice. It will be important to fully elucidate the

complex interplay of dopamine and innate immunity in sepsis,

including the roles of specific dopamine receptor subtypes,

dopamine production by immune cells, and its impact on distinct

immune cell subsets. A more comprehensive understanding

of dopamine’s multifaceted effects on the innate immune

response during sepsis is essential for developing effective

therapeutic strategies.
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