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Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis

(M. tb), with approximately 10 million new cases reported worldwide annually.

Patients with immunocompromised states or those receiving immunosuppressive

therapy for autoimmune diseases are at higher risk of M. tb infection or

reactivation. The chronic autoimmune disease, systemic lupus erythematosus

(SLE), is associated with a higher risk of M. tb infection and TB disease during

conventional treatment with corticosteroids and immunosuppressants. However,

whether risk of TB is influenced by the immune disturbances associated with

active SLE when patients are not receiving immunosuppressant treatment remains

unclear. In this review, we describe the pathogenesis of TB and SLE and consider

how autoimmune responses in SLE could influence TB risk.
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1 Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (M.

tb), with an estimated 10.8 million new cases and 1.25 million associated deaths globally in

2023. TB is a major cause of morbidity and mortality (1, 2). It ranked among the top five

causes of death in low-income countries and was the 13th leading cause of death globally

between 2000 and 2019. Patients with autoimmune diseases, especially those receiving

immunosuppressive therapy or in an immunocompromised state, are at particularly high

risk (3, 4), and an estimated 161,000 deaths from TB were reported among HIV/AIDS

patients in 2023 (5, 6). From 1921 to date, the live-attenuated M. bovis Bacillus Calmette-

Guérin (BCG) vaccine has been the only TB vaccine licenced for use in humans. The BCG

vaccine is effective in preventing severe forms of TB in children. However, the efficacy of

BCG in treating pulmonary TB in adults (the most common and transmissible form) is

variable (7).

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that causes

inflammation and can damage multiple organs, resulting from loss of tolerance to self-

antigens (8). Patients diagnosed with SLE typically require treatment with corticosteroids

and immunosuppressive drugs, which places them at a heightened risk of infections (9).
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Notably, increased rates of M. tb infection and TB disease are

reported in patients with SLE (10, 11); however, the immunological

interplay between the two diseases remains poorly-characterised.

During M. tb infection, innate and adaptive immune responses

to the pathogen are induced, and cell-mediated immunity is vital in

host control. CD4+ T helper (Th) cells proliferate and differentiate

into Th1, Th2, and Th17 cells, secreting pro-inflammatory

cytokines (among others) that contribute to the ability of

mononuclear cells to control M. tb infection. In addition,

cytotoxic CD8+ T cells are activated to kill infected cells directly

through secretion of perforin and granzymes (12, 13) and releasing

cytokines such as IFN-g and TNF-a. This inflammation is crucial in

controlling M. tb infection, but can also lead to tissue damage and

disease progression (14).

Similarly, SLE is characterised by a generalised systemic

inflammation, which causes CD4+ T cells to damage self-tissue

when activated by self-antigens (15, 16). In particular, Th1 cells are

stimulated to produce pro-inflammatory cytokines such as IFN-g
(17). Patients with SLE reportedly have a higher risk of TB, although

this is generally thought to be associated with receiving

immunosuppressive treatments, with higher doses of the drugs

leading to an increased rate of M. tb infection and/or reactivation

of disease (18–21). Moreover, risk of infection in SLE patients has

been reported to associate with dose management (22, 23).

The risk of TB in patients with SLE not undergoing

immunosuppressive treatments remains unclear. Considering the

benefits of inflammation in controlling M. tb, one may hypothesise

that inflammatory responses in patients with SLE could confer

some degree of protection against M. tb infection or TB. For

example, mice treated with lipopolysaccharide (LPS) to induce a

transient inflammatory environment showed enhanced protection

against M. tb for up to 6 months post-infection (24). However, a

recent ex vivo study reported that SLE patients, after short-term

treatment, demonstrated better control of mycobacterial growth

compared to newly diagnosed patients (25). In other autoimmune

states, such as diabetes, additional factors perturbing the immune

response of the host may override any positive benefits of

inflammation, leading to increased susceptibility (26). Here, we

discuss the immunopathogenesis of M. tb infection and SLE and

consider how they may interact to influence the risk of TB in

patients with SLE.
2 Methodology

A literature review was conducted to identify studies reporting

the characteristics, risks, and incidence of M. tb infection and TB

disease in SLE patients, as well as BCG vaccination in the context of

SLE, using the following approach: PubMed and Web of Science

were searched for relevant articles using combinations of the terms

Tuberculosis, Systemic Lupus Erythematosus, Incidence,
Abbreviations: TB, Tuberculosis; SLE, systemic lupus erythematosus; M. tb,

Mycobacterium tuberculosis; DCs, dendritic cells; IL, interleukin; IFN, interferon;

Th, T helper; TNF, tumour necrosis factor.
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Prevalence, Risk factors, Infection, Vaccination, BCG, Immune

response and Cytokines. Inclusion criteria were i) studies

reporting original data on TB incidence, prevalence, or risk

factors in SLE patients; ii) reports published in peer-reviewed

journals; and iii) studies providing sufficient methodological detail

for assessment. Exclusion criteria were i) articles written in

languages other than English; ii) conference abstracts; and iii)

studies lacking primary data on SLE and/or TB.
3 Mycobacterium tuberculosis

3.1 Characterisation of M. tb

Mycobacterium tuberculosis causes TB and is believed to have

originated 3 million years ago in East Africa. It is believed that

bacteria in the genus, Mycobacterium, were discovered in the soil,

and some species evolved the ability to colonise mammalian hosts

(27–29). Robert Koch, a German microbiologist, was the first to

isolate the causative agent of TB in 1882 from animal and patient

specimens. One year later, it was identified as M. tb (30). Over the

past 200 years, TB is thought to have claimed over 1 billion

lives (31).

The organisms appear as slightly curved rods, 2–4 mm long and

0.2–5 mm wide, and are non-motile and non-sporulating. Other

bacteria are commonly stained and identified using standard light

microscopy; however, the mycolic acid-rich cell wall of M. tb

prevents it from absorbing conventional stains, requiring acid-fast

staining techniques for visualization. Under ideal conditions, M. tb

is a slow-growing organism with a doubling period of 12–24 hours.

A fundamental feature is its peculiar cell wall structure, providing

robust protection against harmful chemicals and therapeutics, and

being essential in disease pathogenesis (27, 32).
3.2 Immunopathogenesis of M. tb infection

Following coughing or sneezing by an infected patient,

microscopic aerosol droplets containing M. tb can remain in the

air for several hours and may enter the airways of exposed

individuals. After inhaling M. tb, one of the following outcomes

ensues: [1] no infection, [2] infection with clearance, [3] host

control of infection but bacteria remain without symptoms (latent

TB infection), or [4] active TB disease (17, 33) (Figure 1). Most

individuals infected with M. tb do not develop active TB disease;

however, there is a 10% lifetime risk of reactivation (34).

After inhalingM. tb, resident lung alveolar macrophages are the

first cells to encounter and phagocytose mycobacteria (35).

Similarly, M. tb may invade and replicate in alveolar epithelial

type II cells (36). Additionally, dendritic cells (DCs) are critical in

early infection and can enhance innate and adaptive immune

responses. Macrophages and DCs, as professional antigen-

presenting cells (APCs), can present M. tb antigens to naïve

CD4+ and CD8+ T cells on surface MHC class II and MHC class

I, respectively (37).
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Alveolar macrophages and DCs are crucial in the innate immune

response against M. tb. Phagocytosis begins when macrophages

recognise pathogen-associated molecular patterns through specific

pathogen-recognition receptors including Toll-like receptors (TLRs),

particularly TLR2 and TLR4, which initiate signaling pathways that

activate innate immune responses. This interaction leads to

upregulating the transcription of pro-inflammatory cytokines, such

as tumour necrosis factor (TNF)-a, interleukin (IL)-1, and IL-12,

chemokines, and nitric oxide (38). There are three primary outcomes

following the uptake of M. tb into macrophages: [1] necrosis, [2]

apoptosis, or [3] survival of the infected macrophages, inside which

M. tb can replicate and potentially infect other cells after

macrophage death.

Neutrophils are a source of specific cytokines, which can aid

early recruitment and activation of other innate immune cells (39).

When DCs present antigens to naïve T-cells, an adaptive response is

initiated in the lungs and lymph nodes. The initial activation and

proliferation of CD4+ T cells is crucial for the production of IL-2,

TNF-a, and interferon (IFN)-g. IFN-g is essential for macrophage

activation resulting in intracellular killing (17). Pathogen-specific T

cells also contribute to granuloma formation (40), where activated

macrophages accumulate at the infection site. A crucial feature of

granuloma formation is the development of fibrosis within the

granuloma and the surrounding lung parenchyma, causing TB

lesions (41).
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3.3 Cell-mediated immune response to
M. tb infection

The nature of the cellular response is a crucial factor in the

development ofM. tb infection. Following antigen presentation, CD4

+ or CD8+ T cells can produce two or more cytokines

simultaneously, and such polyfunctional T cells may exert an effect

superior to that of single cytokine-producing cells (42). Th1 cells are

instrumental in controlling M. tb infection by producing IFN-g,
which activates macrophages. IFN-g induces the transcription of

more than 200 genes in the macrophages, including those that

encode antimicrobial molecules and induce nitric oxide synthesis,

enhancing ability to control bacterial growth (43–45).

Th1 cytokine-producing cells are central to cell-mediated

immunity against viral pathogens and intracellular bacteria (46).

TNF-a production generally precedes IFN-g synthesis. During

control of mycobacterial infection, TNF-a is likely critical in

attracting migrating immune cells to the infection site,

contributing to granuloma formation, apoptosis, and controlling

disease progression (47). The Th2 response promotes antibody-

mediated immunity through the production of cytokines such as IL-

4. Th17 cells are critical for immunity against extracellular bacterial

and fungal pathogens and participate in the inflammatory response

at an early stage of mycobacterial infection. In addition, IL-17

produced by Th17 cells activates polymorphonuclear granulocytes
FIGURE 1

Transmission of Mycobacterium tuberculosis (M. tb) infection (Created with BioRender.com).
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and contributes to lung protective immunity early after vaccination

(43, 48).

During infection, CD8+ or cytolytic T cells are essential in

secreting perforin and granulysin, which destroy infected host cells

and directly attackM. tb (44). Antigen-dependent T cells proliferate

rapidly, generating differentiated effector T cells and long-lived

memory T cells that spread throughout the body. Memory T cells

can mount a fast and robust response to antigens upon re-exposure

(49, 50). When the memory response is directed toward the site of

pathogen infection, it may work more effectively than the primary

response owing to a subpopulation of memory cells known as tissue

resident memory cells, which can remain in tissues for lengthy

periods without recirculating in the blood and are ready to respond

rapidly to a new infection (51) (Figure 2).
4 Autoimmune disease

4.1 Characterisation of autoimmune
disease

The human immune system has specific mechanisms for

recognising and eliminating foreign antigens to protect against

infections. During immune system maturation, central and

peripheral tolerance eliminate self-reactive T and B cells (52). The

aetiology of self-tolerance loss in autoimmune diseases is complex,

involving genetic and environmental factors that lead to ongoing

immune activation and tissue damage (53).

In many cases, a family history of autoimmune disease associates

with increased risk of disease development compared with the general

population. Genetic variations contributing to systemic autoimmune
Frontiers in Immunology 04
disease comprise three main categories: [1] rare (<1%) genetic

polymorphisms and copy-number variants, [2] common (>1%)

single-nucleotide polymorphisms and copy-number variants, and

[3] epigenetic modifications (54). However, genetic variables

account for only one-third of the risk of developing autoimmune

diseases, and non-heritable environmental factors account for the

remaining ~70% (Figure 3). Chemicals, hormones, diets, drugs, and

infections may be crucial in determining autoimmune outcomes.

Notably, environmental factors can contribute to the development

of autoimmune disease in genetically susceptible individuals, and self-

tolerance may be overcome in those who are not genetically

predisposed (53, 54).

Autoimmune diseases are broadly divided into two types: [1]

organ-specific autoimmune diseases, which affect discrete targets, and

[2] systemic diseases that involve multiple tissues and organs,

including SLE, rheumatoid arthritis (RA), and systemic sclerosis (55).
4.2 Immunopathogenesis of SLE

SLE is a chronic autoimmune disease with several immunological

abnormalities and clinical manifestations. Although SLE has a

significant hereditary component, environmental factors contribute

to and catalyse the onset of the disease (56). SLE can affect almost

every organ, particularly the kidneys and the central nervous system,

with symptoms ranging from mild skin irritation to severe organ

damage, primarily driven by abnormal immune function (57, 58).

Autoantibodies against self-nuclear antigens, particularly

double-stranded DNA, form immune complexes that trigger

inflammation and activate the classical complement pathway to

clear apoptotic debris, often causing tissue damage (16, 59). While
FIGURE 2

Summary of the cell-mediated immune response of M. tb infection (Created with BioRender.com).
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the complement system generally protects against infection and

maintains tissue homeostasis, genetic deficiencies in key

components such as C1, C2, and C4 increase susceptibility to SLE

and systemic infections (60, 61). For instance, a reported case of an

11-year-old with SLE showed severely reduced complement activity

and concurrent Staphylococcus aureus bacteraemia (62). The

pathogenesis of SLE involves mechanisms like impaired clearance

of immune complexes and defective handling of apoptotic

debris (63).

Many environmental and genetic factors can influence the loss of

tolerance in B and T cells, including different Th cell subsets such as

Th1, Th2, Th17, T follicular helper, and regulatory T (Treg) cells (15).

The innate immune system also plays a role by activating the adaptive

immune response and sustaining inflammation (64). Impaired

clearance of apoptotic cells, a process dependent on the complement

system, is a key factor in SLE development, as it leads to the release of

autoantigens that trigger immune detection. Macrophages, which are

critical in clearing apoptotic debris (65), exhibit altered function in

SLE, with an increase in pro-inflammatory classically-activated

macrophages (M1) and a decrease in tissue-repair by alternatively-

activated macrophage (M2), contributing to disease pathogenesis (66,

67). Dendritic cells (DCs) play a central role in SLE pathogenesis by

presenting apoptotic cell debris as self-antigens, leading to

hyperactivation of B and T cells (68). Plasmacytoid DCs, activated

by immune complexes through TLR7 and TLR9, produce type I

interferons like IFN-a, which stimulate myeloid DCs to migrate to

inflammatory sites and promote adaptive immune responses by

activating effector T and B cells while suppressing regulatory T cells

(69, 70) (Figure 4).

Assessment of disease activity in patients with SLE is crucial to

direct treatment. Several validated activity indices are used to

measure disease activity or provide organ-based indices. These

include the British Isles Lupus Assessment Group, Systemic

Lupus Activity Measure, European Community Lupus Activity

Measure, Systemic Lupus Erythematosus Disease Activity Index

(SLEDAI), and Systemic Lupus Erythematosus Disease Activity
Frontiers in Immunology 05
Index 2000 (SLEDAI-2K). SLEDAI-2K is amended to allow for

the documentation of continued disease activities, such as an

inflammatory rash, alopecia, mucosal ulcers, and proteinuria,

which is new, recurring, or persistent (71, 72). In addition, the

levels of Th1, Th2, and Th17 cytokines are usually increased in SLE

and are elevated in patients with active SLE compared with those

with inactive SLE (73).

Patients with SLE exhibit significant immunological

dysfunction, rendering them highly susceptible to a wide range of

opportunistic infections, including viral, bacterial, fungal, and

parasitic pathogens (74, 75). Among viral infections, varicella-

zoster virus is the most prevalent, particularly in patients receiving

intensive immunosuppressive therapy, often resulting in reactivation

of herpes zoster (shingles) (76, 77). Cytomegalovirus (CMV) is also

frequently observed and is notable for its ability to mimic lupus flares

and further suppress cell-mediated immunity (78, 79); it has been

detected in approximately 40% of active SLE patients (76). Elevated

antibody levels against CMV and Epstein-Barr virus have also been

reported in patients with SLE (80). Additionally, patients are at

increased risk of severe herpes simplex virus infections associated

with daily oral doses of steroids (81). However, bacterial infections

remain the most common, present in approximately 40% of all cases,

with Streptococcus pneumoniae being the highest incidence (75).

Staphylococcus aureus and Escherichia coli are also commonly

implicated with an infection of 14-30% and 5-20% respectively

(82–86). The heightened vulnerability to infection in SLE is

attributed to both the immunosuppressive effects of treatment and

the underlying immune dysregulation inherent to the disease (87).

5 Mycobacterium tuberculosis
infection and TB disease in patients
with SLE

Chronic autoimmune diseases and long-term administration of

immunosuppressants have been suggested to increase the risk of
3FIGURE

Summary of the factors influencing the development of autoimmune disease (Created with BioRender.com).
frontiersin.org

https://www.biorender.com/
https://doi.org/10.3389/fimmu.2025.1625748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ongarj et al. 10.3389/fimmu.2025.1625748
infectious complications. SLE is associated with a higher risk of TB

disease (88), and therefore, active detection of latent infection and

treatment of TB in individuals with SLE is essential (89). In India, a

retrospective analysis of 146 SLE cases was conducted over 5 years.

17 of these patients had TB disease (prevalence rate, 11.6%). This

prevalence was consistent with that of a cohort in Hong Kong

comprising 526 patients with SLE. In Taiwan, 21 of 3,179 patients

with SLE were infected with M. tb (20, 90, 91).

Despite its relatively low prevalence compared with other

infectious disease, TB remains responsible for significant morbidity

and mortality in patients with SLE. In a tertiary hospital setting, a

retrospective cohort study between 2004 and 2011 showed that 2% of

SLE patients had TB (17/841) as an underlying disease (88). When

SLE patients with M. tb infection were compared with those without

infection, the infected group received higher doses of glucocorticoids

(GC). The cumulative dose of GC was an associated risk factor (92).

In the context of high-activity SLE disease, M. tb infection was

observed in 23 (10%) of 230 patients with SLE, and those with a

SLEDAI score > 12 and total intake of prednisolone > 1000 mg had an

even higher risk of infection (22, 93). Consistently, a study conducted

in a British cohort found that using corticosteroids at doses ≥10 mg/

day was associated with a higher risk of M. tb infection (23). A study

in Colombia identified several factors significantly associated with the

development of active TB in SLE patients, including lymphopenia, a

cumulative glucocorticoid steroid dose ≥1830 mg over 12 months and
Frontiers in Immunology 06
treatment with two or more immunosuppressants. These findings

underscore the impact of immunosuppressive therapy on TB

susceptibility in SLE patients (94).

Accurate diagnosis of TB in patients with SLE is essential, as TB

symptoms can mimic SLE flares. There are similarities but also

differences in cytokine profiles between the conditions: SLE is

marked by elevated type I interferon responses and multiple pro-

inflammatory cytokines, whereas TB is dominated by a Th1 cytokine

pattern, especially increased IFN-g and TNF-a (Table 1). Patients with

SLE have excessive inflammation and cytokine secretion and may be

on immunosuppressant therapies, which can affect the results of

routine TB diagnostic tests. The tuberculin skin test (TST) remains

the standard method for detecting latent TB infection (LTBI) in many

endemic settings. However, it has some limitations, including a higher

likelihood of false negatives in patients with immunocompromised

states and those taking immunosuppressants (95). The IFN-g release
assay (IGRA) is an alternative, in-vitro immunodiagnostic method

based on detecting IFN-g produced by T cells following specificM. tb

antigen stimulation, improving the diagnostic accuracy for LTBI.

IGRA specificity is superior to that of conventional TSTs (96).

One study using IGRAs found no indeterminate results in

patients with SLE (97). However, another study reported a

significantly higher number of undetermined IGRA results in

patients with SLE, including those taking immunosuppressants and

those not on therapy (32.4%), than in patients with other
FIGURE 4

Summary of the immune responses involved in SLE (Created with BioRender.com).
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autoimmune diseases (5.7%) or healthy controls (0%). An

inconclusive IGRA result was found in 16.9% of patients with SLE

in another cohort and was associated with a higher SLE disease

activity index score and an increased dose of GCs (98, 99). Although

there are several studies in patients with SLE treated with

immunosuppressants, the effect of active SLE disease itself on the

accuracy of TB diagnosis remains unclear. This makes it difficult

to interpret the rates of M. tb infection in patients with SLE

compared with those in the healthy population, as they may be

underestimated, hindering the determination of relative susceptibility.

Immunocompetent and immunosuppressed SLE patients may exhibit

different outcomes, illustrating the influence of immunosuppressive

drugs on test performance (Table 2). A combination of both TST and

IGRA may be considered in the context of high TB exposure risk,

regardless of immunosuppression status.

Despite ongoing debate regarding the utility of IGRA in non–

anti-TNF settings, international guidelines consistently recommend

screening for LTBI before initiating biological or targeted synthetic

DMARDs (bDMARDs or tsDMARDs) (100). Notably, anti-TNF

agents are not part of the standard therapeutic strategy for SLE, and

currently, there is no universally accepted guideline or robust

evidence supporting TB prophylaxis specifically in SLE.

Nevertheless, to facilitate early detection of LTBI, we emphasise

the importance of TB screening with chest radiography or

computed tomography (CT) scans for active TB exclusion. In low

TB prevalence areas, the use of IGRA is particularly favoured,

aligning with expert opinion that supports LTBI screening prior to

initiating glucocorticoids and immunosuppressive agents. These

recommendations encourage adherence to national and/or

international guidelines and generally favour IGRA over the

traditional TST.
5.1 Risk of M. tb infection in patients with
new-onset SLE

As discussed, the autoimmune state of SLE is associated with

generalised systemic inflammation, particularly elevated Th1
Frontiers in Immunology 07
cytokine profiles in patients with active SLE compared to those

with inactive SLE or before reaching an immunocompromised state

and before treatment with immunosuppressants (73). New diagnosis

ofM. tb infection has been reported with a median of two years after

diagnosis with SLE (10, 73). The potential relationship between SLE

and altered susceptibility to M. tb infection or TB disease may be

related to the types of cytokines involved. IFN-g and TNF-a are

secreted at high levels in response to self-antigen in SLE disease and

are central to immunity against M. tb (73, 105, 106). TNF-a plays a

significant role in immune cell recruitment, activation, apoptosis,

and differentiation and is a critical pro-inflammatory cytokine

governing TB pathogenesis (107, 108). In patients with SLE, TNF-

a levels are increased and correlate with disease activity that

contributes to the immunopathogenesis of SLE (109, 110).

In addition, Th17 cells are crucial in protecting against

extracellular pathogens and mediating inflammatory responses,

particularly in autoimmune and chronic inflammatory diseases

(13). IL-17 may have evolved to protect the host mucosa from

primary infections by intracellular bacteria such asM. tb (111). The

upregulated secretion of these cytokines and, particularly, the

overexpression of systemic inflammatory factors in patients with

SLE may be associated with improved protection against M. tb

infection. In murine models, low-dose LPS was used to generate an

increased acute systemic and pulmonary inflammatory response,

conferring protection against M. tb infection with a reduced M. tb

burden for the duration of the study (up to 6 months post-infection)

compared to non-LPS treated mice. The transient inflammatory

environment was associated with a neutrophil and CD11b+ cell

influx and increased inflammatory cytokines, including TNF-a, IL-
1b, and IL-6 (24).

It may be relevant to consider the effects of increased basal

inflammation observed with aging, which is characterized by

elevated levels of circulating pro-inflammatory cytokines such as

TNF and IL-1b (112). Although older adults are known to be more

susceptible to TB, the chronic inflammatory status of old mice has

been associated with early control ofM. tb infection compared with

younger mice, which may be CD8+ T cell-mediated, facilitated by

Th1 cytokines, and associated with the pre-activation of innate cells
TABLE 1 Overview of the cytokine profile in patients with SLE and TB.

Cytokine SLE TB Protective/Pathogenic role

IFN-g Elevated Strongly elevated
following infection

Essential role in defence against TB; amplifies immune responses and correlates with disease activity in SLE
(73, 101)

IFN-a Elevated Elevated Complex and sometimes detrimental role in TB, essential for controlling M. tb infection but excessive or
dysregulated production associated with worsened disease outcome. Contributes to immune dysregulation,
inflammation and autoimmunity in SLE (47, 102)

IL-10 Elevated Mostly associated with
active TB disease

Anti-inflammatory with paradoxical roles; helps to prevent excessive inflammation and tissue damage in TB, but
also impairs bacterial clearance by suppressing Th1 functions. Can exhibit pro-autoimmune and
immunostimulatory effects in SLE, contributing to both immune regulation and autoantibody production
(102, 103)

IL-17 Elevated Elevated in active
TB disease

Important in early response to M. tb infection and granuloma formation, but can also contribute to lung
inflammation and pathology. A key proinflammatory cytokine in SLE contributing to disease pathogenesis
(43, 73)

IL-2 Decreased Elevated in active
TB disease

Elevated in TB patients contributing to T cell proliferation, differentiation and effector function; decreased in SLE
due to impaired T cell function (73, 103)
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in the lungs (113–118). However, unlike in LPS-stimulated mice,

old mice cannot sustain M. tb control, likely owing to reduced

adaptive immune function (119), highlighting the potentially

contrasting influences of acute compared with chronic

inflammation. At the other end of the age spectrum,

inflammation and immune activation in South African infants are

associated with an increased risk ofM. tb infection (120) and T-cell

activation (likely driven by persistent infections such as CMV) with

a risk of TB disease (121, 122).

Our recent study in Southern Thailand compared ability to

control mycobacterial growth ex vivo using peripheral blood

mononuclear cells (PBMC) collected from active SLE patients, SLE

patients treated for 3 months or 6 months, patients with inactive

SLE, and healthy control groups. Newly-diagnosed active SLE

patients prior to treatment showed poor control of mycobacterial

growth, and growth control was inversely correlated with SLE

disease activity (25). This is consistent with aforementioned

epidemiological data supporting a higher risk of TB in SLE

patients. It was also noted that SLE patients who had been treated

for 6 months had enhanced control of mycobacterial growth

compared to healthy controls and those with active SLE (25).

Improved ability to control mycobacteria after immunosuppressive

treatment may be associated with restoration of the Th1/Th2 balance

or may simply reflect a reduced effect of SLE drugs ex vivo.

Interestingly, this group also had the highest frequencies of CD8+

T cells, NK cells and NKT cells producing IFN-g and/or TNF-a, and
proinflammatory cytokine-producing NK and NKT cells correlated

with mycobacterial growth inhibition at the individual patient level.

A role for these cell types in controlling mycobacterial growth may

inform the development of effective immunotherapeutic strategies to

reduce the risk of TB in SLE patients (25).

Infective mycobacteria share antigen homology with the human

host, increasing the possibility of a beneficial cross-reactive adaptive

immune response. Mycobacterial infections and autoimmune diseases

share certain immunopathological features, including molecular

mimicry between microbial glycolipids and host DNA. In patients

with active TB, autoantibodies such as anti-nuclear antibodies (ANA),

rheumatoid factors, and anti-DNA antibodies have been detected.

These anti-DNA antibodies may cross-react with glycolipids that are

conserved across all strains of mycobacteria (123). This suggests a
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potential mechanism of cross-reactivity between M.tb antigens and

self-antigens. A study reported that 60% of 57 patients with active

pulmonary TB exhibited elevated levels of the 16/6 anti-DNA

idiotype, which is associated with anti-DNA autoantibodies,

whereas only 4% of healthy control sera tested positive (124).

Monoclonal autoantibodies derived from patients with SLE

reportedly recognise mycobacterial antigens, including cell wall-

derived glycolipids. In contrast, there is evidence from animal

models and arthritis patients that M. tb-reactive T cells can

recognise self-antigens, and mycobacteria could drive some of the

clinical manifestations of SLE (125). In general, autoantibodies appear

to be detrimental in terms of TB risk, with significantly-raised ds-

DNA antibodies in patients with concurrent SLE and TB compared

with SLE-only controls (126), and the prevalence of anti-IFN-a
autoantibodies (found in up to 40% of patients with SLE) associated

with a higher frequency of M. tb infection (127). Although immune

dysregulation during chronic SLE and treatment with high doses of

corticosteroids/immunosuppressants are associated with increased

susceptibility to TB, whether the inflammation observed during

active SLE disease before this state is sufficient to confer benefits in

enhancing protection against M. tb or these are outweighed by other

immune perturbations remains unclear.

High-dose corticosteroid therapy further amplifies the risk of

TB in SLE by broadly suppressing immune function. It impairs

macrophage activation, reduces TNF-a and IFN-g production, and
weakens Th1 responses—key mechanisms needed to contain M. tb

(128, 129). The prescription pattern of immunosuppressive therapy

in SLE typically begins with high-dose corticosteroids for severe

disease manifestations or pulse (“megadose”) corticosteroids in

cases of organ- or life-threatening involvement. The initiation of

other immunosuppressive agents or biologic therapies often follows

this. Prolonged exposure to corticosteroids is a well-established

independent risk factor for increased susceptibility to infections,

including TB. Corticosteroids exert broad immunosuppressive

effects by impairing both innate and adaptive immune responses.

They inhibit lymphokine production, reduce monocyte chemotaxis,

suppress IL-1 and TNF secretion, and impair T-cell activation

(130). The magnitude of these immunosuppressive effects

correlates with both glucocorticoid dose and treatment duration;

however, even a sustained prednisone dose of 7.5 mg/day carries a
TABLE 2 IGRA and TST performance in immunocompetent and immunocompromised SLE patients.

Patient groups TST IGRA

Immunocompetent
SLE

Useful for LTBI screening; often employed before initiating
immunosuppressive therapy.
False negative risk: Even in the absence of
immunosuppression, SLE-related immune dysregulation
can reduce response.
False positive risk: Prior BCG vaccination or exposure to
NTM cause false positives.

Preferred if individual is BCG vaccinated or about to start immunosuppression.
False negative risk: Less affected by mild immune dysfunction.
False positive risk: Not affected by BCG vaccination or NTM exposure.

Immunocompromised
SLE

Sensitivity reduced by steroid and immunosuppressive
treatment, which may result in false-negative results.
Minimal direct effect of B-cell targeted therapies such as
rituximab. Less reliable than IGRA.

Sensitivity reduced by steroid and immunosuppressive treatment, and
indeterminate results may be more frequent in patients with high disease activity
(95, 104), but more robust than TST. Preferred in those starting
immunosuppressants or on current immunosuppressants.
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substantially elevated infection risk. Indeed, it has been shown that

for every 10 mg/day increase in prednisone dosage, the risk of

experiencing a serious infection increases elevenfold (85).
5.2 TB vaccines and SLE

The BCG vaccine against TB is a live-replicating vaccine that is

primarily administered at birth in countries with a high TB burden

and is generally not recommended for patients with SLE (131). If

administration of live attenuated vaccines such as BCG is being

considered in individuals with potential immunosuppression, it

should be given prior to the initiation of immunosuppressive

therapy; for example live-attenuated varicella zoster virus (VZV)

vaccine should be administrated at least four weeks prior to

immunosuppressive treatment (132). Once immunosuppression

begins, BCG is contraindicated due to risk of disseminated BCG

infection (BCGosis). Hence, the potential benefits of protection

against TB should be carefully weighed against the risk of vaccine-

related adverse events.

BCG may be a double-edged sword in autoimmune diseases, with

evidence of inducing autoimmune conditions and potential protective

effects (133). As previously described, there is some cross-reactivity

between mycobacterial and human antigens, and autoantibodies are

identified in patients infected by mycobacteria. IgG responses at 8

weeks post-BCG vaccination exhibit increased reactivity to host ion

transporters, cytokine receptors, other cell surface receptors,

ribonucleoproteins, and enzymes (134). This modification of the

host immunological and non-immunological landscapes may

influence responses to TB and autoimmune diseases.

In non-obese diabetic mice, heat-killed BCG prevented diabetes

but precipitated an SLE-like syndrome (135). Although rare, BCG

administration, particularly intravesically for treating bladder cancer,

can trigger autoimmune phenomena or full-blown autoimmune

diseases including lupus vulgaris (136). However, evidence of the

therapeutic effects of BCG is observed in at least two human

autoimmune diseases, multiple sclerosis and type 1 diabetes, likely

associated with increased Treg function in controlling inflammation

(137–139). Preliminary evidence suggests there could have been a

similar beneficial role of BCG in improving SLE in the MRL/LPR

mouse model and a limited number of patients with SLE (140, 141);

however, further studies are required.

Due to the insufficiency of BCG in protecting against

pulmonary disease in TB endemic regions, a robust pipeline of

new vaccines for TB are under development. M72/AS01E vaccine is

a protein subunit vaccine that has been shown to provide 49.7%

efficacy against progression to TB disease in adults with latent TB

infection in phase IIb trials (142). Moreover, in early-phase trials,

the live-attenuated vaccine candidate MTBVAC induced similar or

superior immune responses compared to BCG (143). TB vaccine

trials to date have largely focused on healthy adults or those with

latent TB infection and excluded participants with autoimmune

conditions or those using immunosuppressive drugs. However,
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M72/AS01 and VPM1002 (a recombinant BCG vaccine) have

been shown to be safe in HIV-positive individuals and HIV-

exposed infants respectively (144). Early phase studies could

eventually be considered in stable autoimmune patients, as TB

vaccines must be proven safe for use in vulnerable populations

including autoimmune cohorts in high-TB burden settings and

those on biologics. Inactivated or subunit vaccines may be more

suitable in this context, and precedent includes a study conducted in

female SLE patients receiving the quadrivalent human

papillomavirus (HPV) vaccine which demonstrated that the

vaccine was safe, well tolerated, and not associated with any

exacerbation of disease activity (145). Until robust studies

confirm the safety of vaccine administration in individuals with

autoimmune disorders, a cautious approach is advised, and

vaccination in SLE patients should be carefully evaluated on a

case-by-case basis, taking into account disease stability and time

relative to immunosuppressive therapy.
6 Conclusion

Patients with SLE have a higher risk of M. tb infection

and TB disease and higher associated mortality rates

than healthy individuals. A primary contributing factor is

immunosuppressive therapy, particularly conventional treatment

with high doses of corticosteroids administered to patients with

SLE during periods of high disease activity. The systemic

inflammation observed in patients with SLE comprises an

increased immune response against their tissues, with a

particular increase in Th1-secreted pro-inflammatory cytokines,

which are critical in controlling M. tb. Thus, better understanding

how immune responses affect the risk of TB in SLE remains

essential. These findings could have implications for managing

patients with SLE and identifying correlates of protective

immunity against TB, which may direct the rational design of

improved vaccines and therapeutics.
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