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fractional laser induces efficacy
in a cutaneous squamous cell
carcinoma mouse model
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1Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark,
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Introduction: The Toll-like receptor (TLR) 7/8 agonist resiquimod has shown

promise for precancerous lesions of cutaneous squamous cell carcinoma (cSCC)

but remains unexplored as a treatment for cSCC. Additionally, ablative fractional

laser (AFL) has been shown to enhance the efficacy of TLR7 agonist in mouse

tumor models. This study investigates the efficacy of intratumoral resiquimod

formulated into a sustained-release gel (RSQ-gel) in a cSCC mouse model and

compares RSQ-gel with topical imiquimod (IMQ) cream, a clinically approved

TLR7 agonist. We further examine whether adjuvant AFL enhances the efficacy of

RSQ-gel.

Methods: A syngeneic transplanted cSCC mouse model was established using

cells from a UVR-induced cSCC mouse model. The immunostimulatory effects

of RSQ-gel were assessed by analyzing the expression of the activation marker

CD86 on plasmacytoid dendritic cells (pDC) and cross-presenting conventional

type I dendritic cells (XCR1+ cDC1) via flow cytometry. Tumor growth and survival

outcomes were evaluated for RSQ-gel as monotherapy and in combination

with AFL.

Results: RSQ-gel was associated with activation of pDCs and XCR1+ cDC1s in the

tumor-draining lymph node, as indicated by higher expression of CD86

compared to IMQ (P< 0.0001, P = 0.00175, respectively). RSQ-gel

monotherapy delayed tumor growth but did not prolong survival (P = 0.0651).

However, combining RSQ-gel with AFL resulted in prolonged survival compared

to AFL-treated and untreated mice (P = 0.0153, P = 0.0214, respectively). Weekly

RSQ-gel treatment induced comparable efficacy to daily topical IMQ treatment.

Discussion: RSQ-gel with AFL demonstrated significant antitumor efficacy in the

cSCC mouse model. Local RSQ-gel combined with adjuvant AFL may offer a

promising therapeutic approach for cSCC.
KEYWORDS
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1 Introduction

Cutaneous squamous cell carcinoma (cSCC) is the second most

prevalent type of epithelial cancer. Ultraviolet radiation (UVR)

exposure is the primary risk factor for the development of cSCC.

The standard of care is surgical excision, which results in high cure

rates. However, cSCC lesions may develop in anatomically

challenging locations or become locally invasive if not treated

early, potentially rendering them ineligible for surgical excision

(1). Locally applied drugs provide a feasible treatment alternative in

inoperable cases of cSCC. Additionally, cSCC is considered a

suitable candidate for immunotherapies due to its high

mutational burden attributed to UVR exposure (2). This was

highlighted with the approval of systemic treatment with the

immune checkpoint inhibitor, cemiplimab, an antagonizing

antibody targeting the programmed-death 1 protein, resulting in

antitumor responses (2–6). Toll-like receptor (TLR) 7 agonists are

another promising category of immunotherapeutic drugs for cSCC

(7). However, topical administration of the TLR7 agonist

imiquimod (IMQ) is currently only approved for the treatment of

actinic keratosis, a precancerous form of cSCC, and shows limited

efficacy in human cSCC (8–10).

TLR7 agonists trigger an innate immune response in

plasmacytoid dendritic cells (pDC) characterized by the secretion

of the pro-inflammatory cytokine, type I interferon-alpha (IFN-a)
(11, 12). IFN-a secreted by pDCs activates conventional type I

dendritic cells (cDC1), a subset of antigen cross-presenting cells

characterized by their expression of X-C motif chemokine receptor

1 (XCR1). cDC1s are involved in mediating immunotherapy

responses following TLR7 agonist treatment (13–17). TLR7

agonists enhance XCR1+ cDC1s’ ability to present antigens and

activate cytotoxic T cells (12, 16–18), thereby inducing antitumor

responses (19–22). Resiquimod, a derivative of IMQ, triggers both

TLR7 and TLR8 and has been reported to induce a more potent

immune response than IMQ (23–25). Topical resiquimod has

demonstrated promising response rates against actinic keratosis

in clinical trials but is yet be evaluated in the treatment of

cSCC (26).

In this study, we formulated resiquimod into a sustained drug

release matrix (RSQ-gel) that can be injected intratumorally,

allowing resiquimod to be released over time at high

concentrations while minimizing systemic drug spillover (27).

The RSQ-gel is stored in a liquid phase, enabling administration

with a conventional hypodermic needle, after which forms a semi-

solid depot in the tumor.

Resiquimod is released over seven days from the RSQ-gel (27),

thus requiring fewer treatments than topical creams. Additionally,

the RSQ-gel consists of components that are biodegradable. A more

comprehensive description of the RSQ-gel technology and its

formulation is available in Jensen et al. (27). RSQ-gel has shown

antitumor efficacy in the CT26 colon carcinoma cancer mouse

model but has not been evaluated for the treatment of cSCC (27).

To evaluate the treatment potential of RSQ-gel, we generated a

syngeneic transplanted cSCC mouse model based on the well-

established spontaneous UVR-induced cSCC model (28). The
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transplanted cSCC model enables consistent and synchronized

tumor growth, providing a robust model for evaluating

therapeutic efficacy and biological responses under controlled

conditions. In contrast, the parental spontaneous UVR-induced

tumor model is highly resource-intensive as it requires larger group

sizes to account for the unsynchronized development and growth of

multiple tumors, making it more suitable for later-stage validation

(29). The therapeutic potential of RSQ-gel is evaluated by

examining its potential to activate pDCs and cDC1s within the

tumor-draining lymph node (LN) and measuring tumor growth

following weekly administrations. To enhance the potential

antitumor efficacy of RSQ-gel, we combine RSQ-gel with adjuvant

ablative fractional laser (AFL) treatment as preclinical studies of

AFL have shown antitumor efficacy when combined with topical

IMQ or immune checkpoint inhibitor treatment (29–34). The aim

of this study is to investigate the therapeutic efficacy of

intratumorally administered RSQ-gel in the transplanted cSCC

model with and without AFL and compare the efficacy to daily

administration of the clinically approved topical IMQ cream.
2 Materials and methods

2.1 Mice

Female C3.Cg-Hrhr/TifBomTac (Taconic, Ry, Denmark)

immunocompetent mice were housed at Bispebjerg Hospital

under a twelve-hour light/dark cycle at 24 °C with ad libitum

feeding. Mice were acclimatized for at least one week prior to

experiments. Mice included in studies were tattooed with

identification numbers on their abdomen under sedation with 0.5

mL fentanyl citrate (0.158 mg/mL), fluanisone (5 mg/mL), and

midazolam (2.5 mg/mL) since earmarking is not feasible in this

mouse strain. All protocols and procedures were ethically reviewed

and approved by the Danish Animal Experiments Inspectorate

(permit number: 2019-15-0201-01666) and conducted in

accordance with Directive 2010/63/EU.
2.2 Study design

The study was conducted in three parts: First, ex vivo flow

cytometry analysis, measuring activation and recruitment of

dendritic cells in tumor-draining LN following treatment,

secondly, evaluation of efficacy of weekly RSQ-gel or daily IMQ

monotherapy in a syngeneic transplanted cSCC tumor model, and

lastly, assessment of the efficacy of weekly RSQ-gel or daily IMQ

treatment with adjuvant AFL treatment in a syngeneic transplanted

cSCC tumor model (Figure 1).

For flow cytometry, cSCC tumor-bearing mice were

randomized and divided into three intervention groups with

equal mean tumor volume of 140 mm3 (n = 5 per group):

Untreated, IMQ or RSQ-gel. Treatment groups received a single

treatment of either topical IMQ or intratumoral RSQ-gel. Mice were

euthanized one day after treatment for ex vivo flow cytometry
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analysis of dendritic cells in the tumor-draining LN. Outcome

measures were geometric mean fluorescent intensity (gMFI) of

the activation marker CD86 on pDCs and XCR1+cDC1s as well

as percentage of XCR1+cDC1s of all CD45+ immune cells in the

tumor-draining LN.

To evaluate the treatment efficacy, mice in the monotherapy study

were randomized into three groups with an average tumor size of 105

mm3: Untreated (n = 8), IMQ (n = 9), RSQ-gel (n = 7) and four

groups in the combination study with an average tumor size of 129

mm3: Untreated (n = 9), AFL (n = 9), AFL+IMQ (n = 10), AFL+RSQ-

gel (n = 9). Tumor dimensions were measured three times weekly with

a digital caliper and tumor volume was calculated as Tumor volume =
Length�Width2

2 . Humane endpoints were defined as a tumor volume

>800 mm3 or weight loss >15% between measurements, failure to

thrive or tumor ulceration. Mice with significant weight loss, failure to

thrive or tumor ulceration were censored in survival analysis. Animal

well-being was monitored daily throughout the studies. Outcomes

measurements in survival studies were tumor volume and days until

reaching humane endpoint. Investigators were not blinded during the

described studies.
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2.3 Tumor model establishment

A syngeneic transplanted cSCC tumor model was established

using tumor cells from the autochthonous UVR-induced cSCC tumor

model (Figure 2A). The parental UVR-induced cSCC tumors were

generated as previously described in Lerche et al (28). Briefly, mice

were exposed to an erythema-inducing UVR-protocol thrice weekly.

Mice developed superficial epidermally and dermally located cSCC

tumors (Figure 2B) approximately 20 weeks after UVR initiation.

UVR-induced tumors were aseptically excised and subsequently

mechanically minced. Tumor matrix was further enzymatically

dissociated in tubes containing Mouse Tumor Dissociation kit

(Milteney Biotec, Bergisch Gladbach, Nordrhein-Westfalen, cat#130-

096-730) for 1 hour at 37 °C in a Mini LabRoller™ tube rotator

(LabNet International, Edison, NJ, USA). Enzyme digested tumor

tissue was passed through 70 µm cell strainer (pluriSelect Life Science,

Leipzig, Sachsen, Germany, cat# 43-10070) twice and washed with

sterile 4 °C phosphate-buffered saline to obtain a single-cell solution of

tumor cells. The tumor cells were counted using a Countess I™

(Thermo Fisher Scientific, Waltham, MA, USA) and diluted in Hank’s
FIGURE 1

Experimental design. Schematic overview of study design. Tumors were established by subcutaneous injection of in vivo passaged UVR-induced
cSCC cells into the right flank of hairless C3.Cg-Hrhr/TifBomTac mice. Mice were randomized into intervention groups with the same average tumor
volumes. The study consists three experimental arms: (1) Flow cytometry of tumor-draining lymph nodes (tdLN), assessing CD86 activation marker
on pDCs and XCR1+ cDC1s in untreated, IMQ, and RSQ-gel-treated groups,; (2) Efficacy of RSQ-gel, comparing untreated, IMQ, and RSQ-gel
groups; (3) Efficacy of RSQ-gel with AFL, evaluating untreated, AFL, IMQ + AFL, and RSQ-gel + AFL groups. Abbreviations: AFL, ablative fractional
laser; cDC1, conventional type I dendritic cells; cSCC, cutaneous squamous cell carcinoma; gMFI, geometric mean fluorescence intensity; IMQ,
topical imiquimod cream; RSQ-gel, intratumoral injected sustained release formulated resiquimod gel; pDC, plasmacytoid dendritic cells; tdLN,
tumor-draining lymph node; UVR, ultraviolet radiation; XCR1, X-C motif chemokine receptor 1.
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Balanced Salt Solution to a concentration of 20 x 106 viable cells/mL.

2 x 106 viable tumor cells were injected subcutaneously into the right

flank of the mice. A single tumor established at the point of injection

and no metastasis were observed throughout the study.
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The tumor was excised once the length of the first generation of

syngeneic transplanted cSCC tumor measured 12 mm in length.

Tumor cell isolation and inoculation procedures were repeated as

described above. Tumor cells were in vivo passaged for a total of
FIGURE 2

Establishment of syngeneic transplanted cutaneous squamous cell carcinoma (cSCC) mouse model. (A) Conceptual illustration of the establishment
of the syngeneic transplanted cSCC tumor model based on tumor cells originating from the UVR-induced autochthonous cSCC tumor model. The
model is established in the hairless and immunocompetent C3.Cg-Hrhr/TifBomTac mouse strain. (B) Representative histological image of UVR-
induced cSCC tumor stained with hematoxylin and eosin-stained. (C) Representative histological image of a transplanted cSCC tumor used
throughout this study stained with hematoxylin and eosin. The images show that transplanted cSCC tumors are located in the subcutaneous layer
below Panniculus carnosus. Abbreviations: cSCC, cutaneous squamous cell carcinoma; UVR, ultraviolet radiation.
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four generations before use in flow cytometry and monotherapy

studies presented in Figures 3, 4 and five generations for the

combination therapy study presented in Figure 5. Both

inoculations were conducted with tumor cells were derived from

the same original UVR-induced cSCC tumor. The histology of the

parental UVR-induced cSCC tumor and transplanted cSCC tumor

are presented in Figures 2B, C.
2.4 Histology

Excised parental UVR-induced cSCC and transplanted cSCC

tumors were fixed in 4% formalin and embedded in paraffin with a

Shandon™ Excelsior ES® (Thermo Fisher Scientific, Waltham,

MA, USA) and sectioned at 4 µm with a Shandon Finesse Series

Microtome (Thermo Fisher Scientific, Waltham, MA, USA) before

transferred to a water bath at 42 °C and dried over night at 37 °C in

a heating oven. Sections were deparaffinized, gradually hydrated.

Sections were stained with Mayers hematoxylin for 5 minutes and

washed in tap water followed by eosin-staining for 5 minutes. Slides

were washed before dehydrated in graded ethanols. Airdried

sections were mounted with Pertex. Slides were digitalized at 20x

magnitude with a MoticEasyScan Pro (Motic, Xiamen,

Fujian, China).
2.5 RSQ-gel formulation

Resiquimod (Ark Pharm. Inc., Wuhan, Hubei, China) was

formulated in a gel as previously described in Jensen et al. (27).

In short, sucrose benzoate, glyceryl trioctanoate and ethanol

(60:25:15, w/w) were mixed by ultrasonication at 75 °C for 1.5–2

hours and vortexed until the gel matrix was transparent, and a

homogenous solution was obtained. The gel matrix was mixed with

resiquimod under magnetic stirring at 40-50 °C until resiquimod

was fully dissolved. The final resiquimod concentration was 3 mg/

mL. Formulated RSQ-gel was stored at 4 °C prior to administration.

All chemicals for the gel matrix were purchased from

Sigma Aldrich.
2.6 Treatment interventions

Each tumor in the RSQ-gel group was injected with 50 µL RSQ-

gel corresponding to a dose of 7.5 mg/kg per mouse. RSQ-gel was

injected in the center of the tumor with a 23G needle. Mice were

anesthetized with isoflurane during RSQ-gel injections. RSQ-gel was

administered once weekly for three weeks in the efficacy studies. IMQ

treatment groups had IMQ 5% cream, topically applied on an area

covering the tumor once daily throughout the study period. One

sachet IMQ cream containing 12.5 mg of IMQ was used for treating

10 mice which corresponds to a dose of 62.5 mg/kg in mice. AFL

treatment was given using a fractional CO2 laser Ultrapulse®

instrument equipped with DeepFX Handpiece (Lumenis Inc., San

Jose, CA, USA). In combination studies, AFL treatment was given
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one day prior to IMQ or RSQ-gel treatment with the application

settings: 10,600 nmwavelength, spot size 0.12 mm, treatment area 6 x

6 mm, 100 mJ/microbeam, pulse duration<1 ms), 5% density. Based

on a previous study, this laser setting has been reported to achieve a

penetration depth of approximately 1000 µm in murine skin (35).
2.7 Flow cytometry

The inguinal LN, draining the tumor, was isolated and passed

through a 70 µm cell strainer to obtain a single-cell suspension.

Each sample was transferred to a 96-well plate and washed with

FACS buffer (0.5% bovine serum albumin and 0.1% sodium azide in

phosphate‐buffered saline). Samples were incubated with 50 mg/ml

purified anti‐mouse CD16/CD32 (BD Biosciences, San Jose, CA,

USA cat#553142) for 5 minutes on ice to block Fc receptors prior to

staining. Samples were stained for 30 minutes on ice protected from

light with the antibody staining panel provided in Supplementary

Table S1 and subsequently washed three times in FACS buffer.

Samples were analyzed on the LSRFortessa X‐20 Fortessa Flow

Cytometer (BD Biosciences). To compensate for spectral spillover

Ultra-Comp eBeads™ Plus Compensation Beads (Thermo Fisher

Scientific, cat# 01‐3333) were single-stained with every antibody

and ArC™ Amine Reactive Compensation Beads (Thermo-Fisher

Scientific, cat# A10346) with viability dye and compensation matrix

were calculated in FlowJo Software v10.10 (BD Biosciences). Data

were analyzed with FlowJo Software v10.10. Gating strategies and

fluorescence minus one-samples are shown in Supplementary

Figure S2.
2.8 Visualization and statistics

Visualization of data and statistical analysis of experiments was

performed with Prism v10 (GraphPad Software, https://

www.graphpad.com/, San Diego, CA, USA). For statistical testing,

one-way ANOVA with follow-up Tukey’s multiple comparison test

was used for all flow experiments and log-rank test (Mantel-Cox)

for survival analysis of Kaplan-Meier curves. A significance level of

a = 0.05 was used throughout the studies. Prospective power

calculations were performed to estimate group sizes in survival

studies with 80% power, a = 0.05 and an effect size estimated based

on previous experiments with RSQ-gel (27). Graphical illustrations

were created using Biorender.com (BioRender, Toronto,

ON, Canada).
3 Results

3.1 Intratumoral RSQ-gel recruits and
activates cross-presenting dendritic cells in
tumor-draining lymph node

It has been proposed that TLR7 agonists induce antitumor

immune responses through activation of pDCs, facilitating
frontiersin.org
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activation of XCR1+ cDC1s that prime CD8+ T cells (16, 17, 19–

22). The activation of pDCs was evaluated by measuring the

expression of the activation marker CD86 24 hours post-

treatment (Figure 3A). RSQ-gel treatment induced a

substantial activation of pDCs compared with both IMQ

treatment group (P< 0.0001) and untreated group (P<

0.0001), whereas the IMQ group showed no increased

activation in comparison with the untreated group (P =

0.4619, Figure 3B).
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The proportion of XCR1+ cDC1s among all immune cells in the

tumor-draining LN was increased following RSQ-gel (P = 0.0077)

and IMQ treatment (P = 0.0368), suggesting enhanced dendritic cell

recruitment. There were no significant differences in the percentage

of XCR1+ cDC1s between the treatments (P = 0.6653, Figure 3C).

Further examination of the activation of XCR1+ cDC1s showed that

RSQ-gel treatment led to a superior upregulation of CD86 on

XCR1+ cDC1s compared to both IMQ treatment (P = 0.0175)

and no treatment (P< 0.0001, Figure 3D).
FIGURE 3

Intratumoral RSQ-gel treatment is associated with increased activation of plasmacytoid dendritic cells (pDC) and XCR1+ conventional type I dendritic
cells (XCR1+ cDC1) in the tumor-draining lymph node. (A) Experimental timeline of ex vivo flow study in which tumor-draining lymph node were
analyzed one day after treatment. (B) Geometric mean fluorescent intensity (gMFI) of CD86 on pDCs following treatment of either topical imiquimod
(IMQ) or Intratumoral resiquimod in a sustained release gel (RSQ-gel). (C) Percentage XCR1+ cDC1s of all immune cells following treatment in the
tumor-draining lymph node. (D) gMFI of CD86 on XCR1+ cDC1s following treatment. Sample size of n = 5 per group. One-way ANOVA with Tukey’s
post hoc multiple comparison test was used for statistical testing. Abbreviations: cDC1, conventional type I dendritic cells; D, day; gMFI, geometric
mean fluorescence intensity; IMQ, topical imiquimod cream; pDC, plasmacytoid dendritic cells; RSQ-gel, intratumoral injected sustained release
formulated resiquimod gel; XCR1, X-C motif chemokine receptor 1.
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3.2 RSQ-gel alone induces minimal delayed
tumor growth in cSCC model

The activation of pDCs and XCR1+cDC1s encouraged further

investigation of the antitumor efficacy of RSQ-gel. The RSQ-gel

group received weekly intratumoral injection for three weeks, while

IMQ group received daily topical IMQ throughout the

study (Figure 4A).

Weekly RSQ-gel treatment did not result in a significant

prolonged survival time compared to untreated controls in the

cSCC model (P = 0.0651, Figure 4B). However, multiple cSCC

tumors in RSQ-gel group showed delayed tumor growth compared

to the untreated tumors (Figure 4C). RSQ-gel showed no significant

differences in efficacy compared to daily topical IMQ treatment. No

local or systemic toxicities were observed following RSQ-gel

treatment. A transient weight loss was observed one day after the

initial RSQ-gel treatment, but animals returned to body weights

comparable to the control group within three days. Subsequent

RSQ-gel treatment did not result in significant weight loss relative

to control group (Supplementary File; Supplementary Figure S1A).
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3.3 Adjuvant ablative fractional laser
augments antitumor efficacy of RSQ-gel

Results from the monotherapy experiment demonstrated that

RSQ-gel is inadequate in inducing significantly prolonged survival

time in the cSCC model when administered as monotherapy.

Consequently, we investigated whether combining RSQ-gel

treatment with adjuvant AFL could improve the treatment

efficacy in the cSCC model. Mice received a single AFL treatment

one day prior to start of weekly RSQ-gel treatment or daily topical

IMQ treatment (Figure 5A).

Adjuvant AFL with RSQ-gel treatment led to significant

increased survival time compared to AFL alone (P = 0.0153) and

untreated controls (P = 0.0214). AFL monotherapy did not improve

survival time compared with untreated group (P = 0.6102). The

efficacy of weekly RSQ-gel induced a similar antitumor efficacy as

IMQ treatment with no significant differences in survival time

between the groups (P = 0.9436). However, AFL prior to IMQ

treatment only showed significant efficacy compared with AFL

monotherapy (P = 0.0068) but not compared with untreated (P =
FIGURE 4

RSQ-gel and IMQ treatment delay tumor growth of some cSCC tumors. (A) Experimental timeline of daily imiquimod (IMQ) and weekly resiquimod-
gel (RSQ-gel) treatments following tumor inoculation in cutaneous squamous cell carcinoma (cSCC) model. (B) Kaplan-Meier plot displaying
percentage survival of cSCC mice over time after tumor cell inoculation. (C) Growth curves of each individual cSCC tumor within each group
showing tumor volume (mm3) over days after tumor cell inoculation. Group sizes: Untreated (n = 8), IMQ (n = 9), RSQ-gel (n = 7). Log-rank test
(Mantel-Cox) was used for statistical testing of survival. Abbreviations: D, day; IMQ, topical imiquimod cream; RSQ-gel, intratumoral injected
sustained release formulated resiquimod gel.
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0.0631). Figure 5B). RSQ-gel treated cSCC tumors showed a delayed

tumor growth compared to untreated (Figure 5C).
4 Discussion

This study demonstrates that intratumoral treatment with RSQ-

gel combined with adjuvant AFL induces antitumor efficacy in a

syngeneic transplanted cSCC model. RSQ-gel showed superior

activation of pDCs and XCR1+cDC1s in the tumor-draining LN

compared to topical IMQ treatment, highlighting the potent

immunomodulatory properties of resiquimod. RSQ-gel with

adjuvant AFL treatment resulted in delayed cSCC tumor growth

and prolonged survival, whereas RSQ-gel as monotherapy only

delayed growth of certain tumors. Weekly RSQ-gel achieved

comparable efficacy to daily topical IMQ but requires fewer

administrations and a lower administered dose.

TLR7 agonists are known to activate pDCs, triggering IFN-a
secretion (36, 37). IFN-a secreted by activated pDCs promotes the

recruitment and activation of cross-presenting dendritic cells,

facilitating antitumor immunity through priming of CD8+ T-cells

in the tumor-draining LN (16–18). In our study, RSQ-gel treatment
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increased the presence of cross-presenting XCR1+ cDC1s to the

tumor-draining LN and showed superior activation of both pDCs

and XCR1+ cDC1s compared to IMQ treatment. However, using

CD86 alone as activation marker does not conclusively demonstrate

functional activation. Further studies evaluating additional

activation markers and cytokines are necessary to confirm

the activation.

Both IMQ and RSQ-gel did not prolong survival in the cSCC

model when given as monotherapies, although the tumor growth

curves suggest delayed growth of several tumors. Resiquimod has

previously shown significant antitumor efficacy in the CT26 colon

carcinoma tumor model (27, 38). CT26 is considered a highly

immunogenic tumor model due to its high mutational burden, high

number of CD8+ cytotoxic T cells relative to regulatory T cells, and

low infiltration of myeloid-derived suppressor cells (39, 40). CT26

demonstrates the highest reactivity to immune checkpoint inhibitor

treatment across six common syngeneic cell-line derived tumor

models (40). While the transplanted cSCC tumor in this study likely

has a high mutational burden similar to the UVR-induced cSCC

model (41), the transplanted cSCC may have a tumor immune

microenvironment that is less sensitive to TLR7 agonists

than CT26.
FIGURE 5

Antitumor efficacy of adjuvant ablative fractional laser (AFL) with RSQ-gel. (A) Experimental timeline describing time of treatment and dosing
schedules following tumor inoculation. (B) Kaplan-Meier plot displaying percentage survival of cSCC mice over time after cutaneous squamous cell
carcinoma (cSCC) tumor cell inoculation. (C) Growth curves of each individual cSCC tumor within each group showing tumor volume (mm3) over
days after tumor cell inoculation. Number of complete responders (CR) of all subjects is indicated on each tumor growth plot. Group sizes:
Untreated (n = 9), AFL (n = 9), AFL+IMQ (n = 10), AFL+RSQ-gel (n = 9). Log-rank test (Mantel-Cox) was used for statistical testing and p-values are
indicated in the table located next to the graph. Abbreviations: AFL, ablative fractional laser; CR, complete responders; D, day; IMQ, topical
imiquimod cream; RSQ-gel, intratumoral injected sustained release formulated resiquimod gel.
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AFL is proposed to promote antitumor effects both by ablating

tumor cells and indirectly by causing tissue injury, resulting in local

infiltration of neutrophils, macrophages, and lymphocytes (30–33,

35, 42–45). Preclinical studies have shown that AFL can induce

infiltration of tumor-specific CD8+ T cells in the CT26 tumor

model, suggesting AFL treatment releases tumor-specific antigens

(31, 32). In the current study, AFL treatment augmented improved

survival time when combined with either RSQ-gel or IMQ

treatment but did not induce delayed tumor growth or improved

survival time as monotherapy, contrary to previous studies in the

CT26 tumor model (31, 32). We hypothesize that while AFL alone

is not sufficient to cause antitumor efficacy alone, it may synergize

with TLR7 agonists in the cSCC model by promoting the release of

tumor-specific antigens. These antigens may then be cross-

presented to CD8+ T cells in the tumor-draining LN by TLR7

agonist-matured XCR1+ cDC1s, potentially resulting in the

observed antitumor response. Functional assays evaluating

antigen-specific T cells responses will be necessary to confirm

whether AFL enhances cross-priming in the cSCC model.

A potential caveat of the used transplanted cSCC model is the

subdermal localization of the tumor. AFL and IMQ, as

monotherapies, has previously been described to significantly

reduce tumor size in the parental UVR-induced cSCC model

which is in contrast with the findings in the syngeneic

transplanted cSCC model (34). The difference in antitumor

efficacy of topical IMQ between the two studies may be explained

by the dermal location of the UVR-induced cSCC tumor. Both AFL

and topical IMQ likely penetrate deeper into epidermally located

tumors in the UVR-induced cSCC model than a subcutaneously

located tumor such as the syngeneic transplanted cSCC model.

Intratumoral administration of TLR7 agonists may be beneficial

in human tumors due to improved bioavailability. The therapeutic

potential of topical IMQ might be overestimated in mouse tumor

models as it has been shown that while topical IMQ greatly

penetrates mouse skin, it only has a limited penetration of pig

skin which resembles human skin (46–48). By administering RSQ-

gel intratumorally, this approach overcomes the challenges

associated with skin penetration and thereby allows for broader

drug distribution within tumors. In future studies, it is relevant to

compare the drug concentration and distribution of RSQ-gel with

topical IMQ in the cSCC tumor to identify whether RSQ-gel results

in improved drug distribution in deeper tumor tissue. Despite these

considerations, our findings demonstrate that RSQ-gel results in

comparable antitumor efficacy to topical IMQ in the transplanted

cSCC model but with a lower drug dose and fewer administrations,

potentially leading to higher treatment compliance compared to

daily IMQ application. A limitation of mouse models is that, while

resiquimod activates both TLR7 and TLR8 in humans, only TLR7 is

activated in mice by RSQ (11, 49, 50).

In summary, we demonstrate that weekly intratumoral

treatment with resiquimod in a sustained release gel, RSQ-gel,

with adjuvant AFL generates a significant antitumor efficacy in a

syngeneic transplanted cSCC model. The RSQ-gel efficacy was
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comparable to daily topical IMQ cream. Together, RSQ-gel with

adjuvant AFL may offer a novel approach to cSCC lesions.
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