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Experimental models for
developing oncolytic virotherapy
for metastatic prostate cancer
Ying-Cheng Chen and Marxa Leão Figueiredo*

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West
Lafayette, IN, United States
Cancer has remained the second leading cause of death worldwide for over a

century. Despite significant advances, effectively targeting cancer cells and

overcoming therapeutic challenges remain critical goals. In this review, we

focus on advanced metastatic prostate tumors, where the patients’ five-year

survival rate is less than 35%. While standard androgen deprivation therapy (ADT)

has been effective for most prostate cancer patients, recurrence of aggressive

tumors is common, emphasizing an urgent need for new treatment strategies.

Immunotherapy has gained attention for its potential to harness the immune

system against cancer cells. Among these, oncolytic virotherapy stands out for its

tumor-specific tropism, its ability to transform or convert the immune-

suppressive tumor microenvironment by enhancing immune cell infiltration,

and its capacity for therapeutic gene delivery. This review explores the

background of commonly used viruses, evaluation models (including cell

culture, animal models, ex vivo platforms, and clinical trials), and the

anticipated outcomes and challenges of oncolytic virotherapy. By addressing

these aspects, we aim to provide a comprehensive overview of the current state

and future directions of oncolytic virotherapy models in the treatment of

advanced prostate cancer.
KEYWORDS

oncolytic virus, metastatic, prostate cancer, immunotherapy, virotherapy,
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Introduction

Prostate cancer has increased in incidence by 3% annually since 2014 (1). With

significant advances in disease detection and treatment, the five-year survival rate of

prostate cancer patients has now surpassed 97% (2). However, once patients develop

resistance to standard androgen-deprivation therapy (ADT) and progress to castration-

resistant prostate cancer (CRPC) or metastatic tumors, survival rates plummet to 33% (3).

This stark contrast highlights the urgent need for new, more effective treatments for

advanced prostate cancer patients. To address these challenges, innovative approaches for

developing models that better recapitulate tumor progression and reveal the underlying

mechanisms are required to evaluate and validate new therapeutic strategies.
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In preclinical studies, LNCaP, PC3, and DU145 are three

commonly used human metastatic prostate cancer cell lines, each

with unique characteristics influencing their behavior and

responsiveness to ADT. For example, LNCaP cells, derived from a

supraclavicular lymph node metastasis site, express both androgen

receptor (AR) and prostate-specific antigen (PSA), making them a

valuable model for studying ADT-sensitive prostate cancer. In

contrast, PC3 cells, originating from a vertebral metastasis, and

DU145, derived from a brain metastatic site, lack expression of AR

and PSA, rendering these cells resistant to ADT (4) and thus more

aggressive. The CWR22Rv1 (22Rv1) cell line, another human

prostate cancer cell line derived from xenografts of human

metastatic prostate tumors, exhibits an intermediate profile with a

mutated (overactive) AR and PSA expression (5), making it a

unique tool for studying partial androgen signaling.

Although these human-derived cell lines provide insights into

prostate cancer biology and response to therapy, their preclinical

use is limited owing to immune rejection arising from species

specificity. Therefore, various murine prostate cancers also have

been isolated to enable a more comprehensive evaluation of the

effects of therapeutics within the context of an intact immune

system (6). For instance, commonly used murine cell lines

include AR-expressing TRAMP-C1, TRAMP-C2, and TRAMP-

C3, derived from 32-week prostatic adenocarcinomas of the

probasin-SV40 T antigen-Transgenic Adenocarcinoma Mouse

Prostate model (TRAMP) (7–9). In addition, the murine cell lines

RM1, RM2, and RM9, developed by the Thompson group and

deposited with the American Type Culture Collection (ATCC) in

1995, are AR-expressing, mesenchymal-like mouse prostate cancer

cell lines. These cells were derived from 17-day-old mouse fetal

urogenital sinuses and were retrovirally-transformed with the

oncogenes ras and myc for studying androgen sensitivity (10, 11).

Both human and mouse prostate cancer cell lines, in addition to

their key roles in advancing our understanding of tumor biology,

typically also serve as platforms for testing novel therapeutic

modalities, including oncolytic virotherapy. The concept of using

viruses as a treatment for cancer was proposed over a hundred years

ago, building on the first reported cancer cell remission in a patient

with a natural viral infection (12, 13). Correspondingly, leukemia or

lymphoma patients with a later viral infection also showed a period

of tumor regression (14, 15). Thereafter, with the recent innovations

made possible with genetic engineering, modified oncolytic viruses

have been developed to reinforce their selective replication ability

within cancer cells, particularly when equipped with a variety of

therapeutic genes, as well as integrated strategies to disguise these

viruses from the immune system (16, 17). For example, the

oncolytic adenovirus H101, approved by Chinese regulatory

agencies for patients with head and neck cancer as early as 2005,

had deletions of the anti-apoptotic gene E1B and the immune

evasion gene E3 (18). Similarly, T-VEC (herpes simplex virus 1;

HSV-1), armed with human GM-CSF and deleted neurovirulence

factors (ICP34.5 and ICP47), was the first documented modified

oncolytic virus for glioma treatment and the first FDA-approved

oncolytic therapy for unresectable stage III advanced melanoma

patients in 2015 (19). At present, various viruses have been
Frontiers in Immunology 02
investigated in diverse cancer types, building on extensive studies

that initially utilized cancer cell lines, demonstrating the potential of

oncolytic virotherapy (including metastatic prostate cancer) for

de l iver ing di ff erent therapeut ic genes and enabl ing

combination therapies.

In this review, we explore the latest achievements in oncolytic

virotherapy, a promising therapeutic approach that leverages

viruses to selectively target and destroy cancer cells. We discuss

commonly used oncolytic viruses in advanced prostate cancer from

June 2019 to date, examining their mechanisms of action,

therapeutic potential, and the challenges they face moving

forward. Our focus is primarily on evaluation models for prostate

cancer oncolytic virotherapy, with insights that may extend to other

solid tumor types, aiming to showcase developments in the field

that are likely to be adapted for prostate cancer.
Key characteristics and mechanisms
of oncolytic virus therapy

Common types of viruses in prostate
cancer treatment

Fourteen viruses, including RNA and DNA viruses, have been

assessed in preclinical prostate cancer treatments over the past five

years (Table 1). Among these, adenovirus, herpes simplex virus

(HSV), and vesicular stomatitis virus (VSV) have been the most

studied due to their genetic flexibility and high infectivity. While

adenovirus, unlike HSV, lacks an envelope, both viruses consist of

double-stranded DNA (dsDNA) and serve as mainstays in

virotherapy because of their well-characterized genetic

backgrounds and large capacity for carrying transgenes (52, 53).

VSV is another frequently used oncolytic virus, composed of single-

stranded RNA (ssRNA), for its rapid replication and abundant viral

protein production that elicits robust immune responses (54). The

main difference between DNA and RNA viruses is their mechanism

of replication within host cells: DNA viruses require entry into the

host cell nucleus, whereas positive-stranded RNA viruses can

directly translate their proteins in the cytoplasm. In contrast,

negative-stranded RNA viruses require an additional reverse

transcription step in order to synthesize positive-stranded RNA

before its proteins can be translated (55). Despite these differences,

oncolytic viruses generally exert their cancer cell cytotoxicity

through two main mechanisms: direct cell lysis (oncolysis), and

indirect activation of anti-cancer immunity (immune-mediated)

(Figure 1), with efficacy verified in both in vitro and in vivo studies,

which have enabled these immune virotherapies to enter clinical

trials (56).
Cytotoxicity of oncolytic viruses

The cytotoxicity of oncolytic viruses has been found to affect

cancer cells through several mechanisms, including direct oncolysis,

immune-mediated toxicity, and the disruption of tumor-associated
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blood vessels, all of which are processes that can assist in cancer cell

elimination (Figure 2) (59). Upon viral infection, some key

differences between healthy cells and tumor cells rather facilitate

preferential virus replication. In normal cells, viral replication

usually slows down metabolism and triggers the recruitment of

leukocytes for viral clearance (60). Cancer cells, on the other hand,

have developed ways to evade the immune system and avoid

apoptosis, thereby supporting viral multiplication. These distinct

cellular responses form the concept of oncolytic virotherapy, where
Frontiers in Immunology 03
viruses exhibit a natural tropism for replicating in cancer cells.

Active multiplication drains the nutrients and energy of the host

cells (61), causing direct oncolysis, a cell lysis process for virion

release. Subsequently, tumor-associated antigens (TAAs), virus-

associated antigens, and danger-associated molecular pattern

molecules (DAMPs) are exposed, enhancing the recognition

probability for phagocytosis by macrophages and dendritic cells

(DCs), and facilitating antigen presentation to lymphocytes in

lymph nodes. This process activates immune responses, resulting
TABLE 1 Organized oncolytic virus publication on prostate cancer within 5 years.

Models and Hosts
Viruses

in vitro
(2D culture)

in vitro
(3D culture)

in vivo
Patients/
samples

Host reservoir

Measles PC3 (20) – – – Human

Vaccinia Virus PC3 (21) – PC3 (21) – Human and mammals

Alphavirus RM1 (22) – RM1 (22) –

Human, Mammals,
Marsupials, Birds,
and Mosquitos

Newcastle Disease Virus
DU145/PC3 (23)

RM9 (24)
-
-

DU145 (23)
RM9 (24)

-
-

Birds (Avians), can
infect Human

Epizootic Hemorrhagic Disease Virus LNCaP/PC3 (25) – – Patient samples (25) Ruminants (Reoviridae)

Orthoreovirus PC3 (26) – – Vertebrates

Zika Virus
PC3 (27)
PC3 (28)

-
-

-
-

-
-

Monkey, Aedes mosquitos,
and Human

Parainfluenza Virus 22Rv1 (29) 22Rv1 (29) – – Human

Chimpanzee Adenovirus 6 RM1 (30) – RM1 (30) – Chimpanzee

Sendai Virus – – – Patients (31)
Mice, Rats, Hamsters, and

Guinea pigs

Reovirus

TRAMP-C2/PC3/
DU145 (32)

22Rv1/DU145/
PC3 (33)

-
MSK-PCa1/PDX
from bone and

liver
metastasis (33)

TrampC2 (32)
PC3 (33)

-
Patient samples (33)

Vertebrates

Herpes Simplex Virus (HSV)

TRAMP-C2/
DU145 (34)
DU145 (35)
PC3/LNCaP/
22Rv1 (36)

Spheroid (34)
-
-

TrampC2/DU145
(34)
-
-

-
-
-

Human

Vesicular Stomatitis Virus (VSV)

LNCaP/PC3 (37)
PC3 (38)

DU145/LNCaP/
PC3 (39)

TRAMP-C2 (40)

-
-
-

LNCaP/PC3 (37)
PC3 (38)

-
TrampC2 (40)

-
-
-

Patient samples (40)

Indiana Vesicular Virus:
Horse, Cattle, Pig,

Sandflies, and Human

Adenovirus

DU145/PC3 (41)
LNCaP/C4-2 (42)

DU145 (43)
DU145/LNCaP/

PC3 (44)
DU145/PC3 (45)

PC3 (46)
-

DU145/LNCaP/
PC3 (47)

22Rv1/PC3 (48)
LNCaP/PC3 (49)

PC3 (50)

TRAMP-C2 (42)
-
-
-
-
-
-
-
-
-
-

PC3 (41)
224B1/Ki-ras (42)

DU145 (43)
PC3 (44)
PC3 (45)
PC3 (46)

-
PC3 (47)
PC3 (48)

LNCaP (49)
PC3 (50)

-
-

Patients (43)
-
-
-

Patients (51)
-
-
-
-

Human
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in immune-mediated indirect oncolysis (12). Additionally, to

further promote replication and spread within tumor cells, some

oncolytic viruses develop mechanisms to disrupt the host cells’

access to blood vessels, thus reducing nutrient supply and limiting

the migration of immune cells to the tumor. Consequently,

oncolytic viruses provide novel ways to robustly eliminate cancer

cells, regardless of whether the cells were infected, by disrupting

essential support systems such as the nutrient supply and migration

routes (62, 63).
Optimizing oncolytic viruses for
prostate cancer treatment

Viruses can exert cancer cell cytotoxicity
as a monotherapy

In most OV immunotherapies, cancer cell death is directly

caused by the susceptibility of cancer cells to OV (lytic viral

replication) and their failure to respond to anti-pathogen signals

(17, 64). In healthy cells, various defense mechanisms are present
Frontiers in Immunology 04
to fight against pathogens, including viruses (65). For instance, one

commonly observed pathogenic defense pathway is through type I

interferon (IFN), secreted after pathogen detection (66). Upon type

I IFN exposure, downstream signals are conveyed to the JAK-

STAT or PKR pathways, inducing the transcription of effector

genes such as interferon-stimulated genes (IRFs), including PKR,

which can lead to apoptosis to limit infection (67, 68) (Figure 3A).

However, cancer cells lose some of these abilities and evade

immune surveillance. In a study published by Owen et al. in

2020, the loss of intrinsic IFN expression in tumor cells enables

immune evasion and thus promotes prostate tumor progression to

a more advanced state. By further restoring the presence of IFN

through activation of HDAC, a greater number of tumor cells are

eliminated by immune cells (69). Altogether, the primary attack of

viruses, which results in the exposure of damage-associated

molecule patterns (DAMPs), pathogen-associated molecule

patterns (PAMPs), and tumor-associated antigens (TAAs)

released from nonviable or apoptotic cells, drastically increases

the number of targets/antigens for immune effectors (i.e. CD8+ T

cells and antibodies) to recognize. Thus, this reveals another

distinct trait of OV: alteration of the tumor microenvironment
FIGURE 1

Commonly used oncolytic viruses (adenovirus, HSV, and VSV) are used to depict their effects on cancer cells. (1) Selective replication of OVs in
cancer cells causes oncolysis (primary effect), and they further infect more cancer cells (secondary effect). (2) Endothelial cell death (anti-
angiogenesis; primary effect) is a strategy for OVs to evade the immune system, meanwhile, the reduced vasculature decreases immune cell
infiltration, and oxygen and nutrient supply (secondary effect), inhibiting tumor growth. (3) OVs alter the microenvironment by inducing both innate
(primary effect) and adaptive immunity (secondary effect) as they respond to PAMPs, TAAs, and DAMPs. HPSGs, Heparan Sulfate Proteoglycans;
LDLR, Low-Density Lipoprotein Receptor. Image created with BioRender.
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leading to elevated exposure of cancer cells to immunocytes (70–

72) (Figure 3B).

Viruses can serve as an independent monotherapy, exerting

cytotoxic effects on prostate cancer cells. For example, mammalian

orthoreovirus (MRV), one of the most promising oncolytic viruses,

has completed phase I to III clinical trials for various cancers (73,

74). In a 2021 study by Bussiere and Miller, MRV infection was

shown to reduce HIF-1a levels during the early-stage viral infection

in prostate cancer cells (26). As HIF-1a contributes substantially to

cancer cell aggressiveness (75, 76), this finding uncovered a

potential mechanism of cancer cell inhibition mediated by MRV

infection. Another notable oncolytic virus, the M protein mutated

vesicular stomatitis virus (M51R-VSV), has shown the ability to

infect several human cancer cell lines and exert cytotoxic effects

through elevated apoptosis, as reported in 2008 by Ahmed et al.

(77). However, this effect was absent in one human prostate cancer

cell line, PC3, due to the consistent expression of interferon-

stimulated genes (ISG) (78). To overcome this limitation of PC3

cells, Bayne et al. demonstrated that by silencing MAP3K and

CHD1, PC3 cells could become highly susceptible to M51R-VSV

infection. Similarly, in a mouse model, significant tumor growth

inhibition was observed in PC3 cells expressing short hairpin RNA

against mitogen-activated protein kinase 3 and chromodomain
Frontiers in Immunology 05
helicase DNA binding protein (shMAP3K/CHD1) after M51R-

VSV treatment (38). Therefore, although oncolytic viruses alone

can induce cancer cell death, there are still limitations to their

therapeutic potential. These most recent studies suggest that

combination therapies may be crucial in augmenting their efficacy.
Synergistic effects of modified oncolytic
viruses and combination therapies

To enhance targeting specificity and therapeutic effects, the

modification of oncolytic viruses with therapeutic genes or the use

of combination therapies has been extensively studied with

promising results. One example involves the oncolytic adenovirus

DD3-ZD55-SPAG9, which uses a strategy of silencing sperm-

associated antigen 9 (SPAG9), a protein involved in the MAPK

signaling pathway and highly expressed in prostate cancer (79, 80),

in the ZD55 backbone virus (an E1B55K-deleted adenovirus type

serotype 5). Additionally, differential display code 3 (DD3) (81, 82),

a promoter not expressed in normal prostate tissue, has been used

to increase specificity in prostate cancer cell targeting (41). The

results showed that DD3-ZD55-SPAG9 inhibited proliferation and

migration in two human prostate cancer cell lines, PC3 and DU145.
FIGURE 2

A compilation of oncolytic virus features for a brief comparison across OVs in (A), modified from Ungerechts et al. (57), 2016 (https://pmc.ncbi.nlm.
nih.gov/articles/PMC4822647/) and used under the Creative Commons Attribution (CC BY-NC-SA 4.0 International License). (B) A comparison of the
survival of pancreatic adenocarcinoma-bearing hamsters treated with different OVs, including Adenovirus, Vaccinia Virus, Herpes Simplex Virus, and
Reovirus148. The graph is derived from the original article by Cervera-Carrascon et al. (58).
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As combination therapies are widely used strategies in cancer

therapeutics, DD3-ZD55-SPAG9 was combined with the

chemotherapy drug docetaxel in both in vitro and in vivo

systems, with results showing an even greater apoptotic effect on

cancer cells. In this context, reovirus, another oncolytic virus

demonstrating promising treatment outcomes, has also been

investigated in combination with immune checkpoint blockade

(PD-1) and immunomodulators (CD74). A study by Annels et al.

demonstrated that unmodified reovirus, in combination with anti-

PD-1 and anti-CD74 antibodies, significantly prolonged tumor

growth inhibition (32). Immune profiling results showed an

increase in chemokine receptors on the tumor cell surface, which

could be recognized by T cells, NK cells, DCs, and B cells. This

indicates that the reovirus infection altered the tumor

microenvironment, facilitating greater immune cell infiltration.

This change may further sensitize cancer cells to PD-1 and CD74

immuno-blockade therapies, leading to a significant reduction in

tumor growth.
Prolonging the sustainability of oncolytic
viruses

Despite promising results, oncolytic viruses still face the challenge

of maintaining their stability within biological systems (83). Immunity,

as the body’s primary defense against foreign pathogens, creates a

barrier to viral therapy regimens. Therefore, several novel carriers have

been proposed to help protect and deliver the virus as part of combined

therapeutic strategies. For example, mesenchymal stromal/stem cells
Frontiers in Immunology 06
(MSCs) have been reported to express limited MHC class I and lack

expression of MHC class II, allowing them to evade immune

surveillance during their transit in circulation (84, 85). This

characteristic makes MSCs promising candidates for delivering

viruses into the system, which enables more viral particles to reach

the target site to exert their cytolytic effects. In a 2019 study by

Muhammad et al., MSCs were used as carriers for oncolytic

adenoviruses and demonstrated a significant reduction in tumor

growth in vivo, along with increased apoptosis of cancer cells within

tumor tissues (42). Besides MSCs, nanoparticles have emerged as a

popular field of investigation in recent years, as they can enhance the

bioavailability of drugs and facilitate targeted delivery to tumor sites

(86). For example, Anjum et al. demonstrated that a nano-formulated

measles virus, combined with the chemotherapy drug vincristine,

induced cancer cell death and G2/M cell cycle arrest (20). The

results showed that the encapsulated virus and vincristine were

released in a sustained manner for over 72 hours, offering benefits

such as potentially less frequent treatments for patients and prolonged

cytotoxic effects against cancer cells.
Platforms to determine oncolytic virus
cytotoxicity in prostate cancer

In vitro models

Two-dimensional (2D) cell culture is one of the most accessible

and commonly used tools to verify the direct cytotoxicity of OV in

cancer cells. Multiple cancer cell lines allow researchers to test
FIGURE 3

Immune modulation by oncolytic virus. (A) Upon viral infection, natural protective mechanisms in healthy cells can be activated once viral genetic
material is recognized by Toll-like receptors (TLRs) on the endoplasmic reticulum (ER). This recognition triggers downstream signaling pathways,
including MyD88/NFĸB and TRIF/IRF, which further lead to the active transcription of type I interferons (IFNs) (Left Panel). Under normal conditions,
type I IFNs can initiate a cascade of immune responses through the JAK-STAT pathway to clear pathogens. However, in cancer cells, this response is
impaired due to various mutations that allow them to evade detection by the immune system, such as becoming insensitive to IFN stimulation to
avoid apoptosis (Right Panel). (B) Evasion of apoptosis facilitates viral replication within cancer cells and ultimately leads to oncolytic cell death. This
process releases damage-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), and tumor-associated antigens
(TAAs), which enhance immune recognition. Images created with Biorender.
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various genetically modified viruses for specific cell-type targeting,

further revealing mechanisms of OV action. For example,

Catharino’s team reported metabolic changes in the PC3 human

prostate cancer cell line following Zika virus infection, which

induced cancer cell death and attenuated proliferative ability (27).

Infected PC3 cells showed an increase in eicosatetraenoic acid (FA

20:5), an omega-3 polyunsaturated fatty acid, and its derivatives,

oxylipins, which inhibited the phosphorylation of PYK2 and ERK,

key proteins involved in cell signaling. This inhibition led to the

accumulation of reactive oxygen species (ROS) after a 5-day

infection, ultimately reducing the number of viable cancer cells.

In another study, evidence suggested that the Newcastle virus

(NDV), usually found in avians, was able to infect and replicate

in multiple human cancer cells, including prostate cancer cells (23,

87, 88). Wang et al. revealed that NDV infection in human prostate

cancer cell lines PC3 and DU145 led to the release of DAMPs,

which promoted apoptosis and enhanced immunogenic cell death

(ICD). Further, combining this infection with STAT3 inhibition

increased the cancer cell-killing effects, with a notable increase in

ICD markers, including calreticulin, HSP70/90, and HMGB1 (23).

Considering the complexity of the in vivo environment, more

advanced cell culture models, such as spheroids, organoids, and

patient-derived tissues, can also be used to complement 2D studies

and to better assess OV cytotoxicity.

Along these lines, a three-dimensional (3D) cell culture system

provides a more complex tumor microenvironment that closely

resembles the in vivo environment (89), offering a better model for

assessing OV treatment efficacy. Spheroids, which are suspended

clusters of cancer cells in layers, increase the difficulty of oncolytic

viral infection, mimicking a more in vivo-like topology. P/V/F, a

modified parainfluenza virus with a mutation in the P/V viral gene

(encoding P: phosphoprotein and V: accessory protein) and an

additional viral fusion protein (F), can selectively target prostate

cancer cells (22Rv1) depending on the levels of type I interferon

(IFN-I) present in culture. Kedarinath and Parks showed that as low

as a multiplicity of infection (MOI) of 0.05 of P/V/F was able to infect

22Rv1 cells in 2D cell culture, and while viral infection efficiency

decreased in the spheroid model, the modified virus still induced

cancer cell death after an 18-hour infection (29). Additionally, two

modified HSV strains, G47D and MG18L, have shown strong

therapeutic effects on prostate cancer stem cell spheres. G47D
includes deletions in the virulence gene g34.5, a lacZ insertion to

inactivate UL39, and deletion within the a47 gene to enable ICP47

production for T cell recruitment, while MG18L has deletion of US3

to activate NF-kB signaling and inactivation of UL39; both achieved

IC50 values as low as MOI 0.09 and 0.021, respectively (34). Greater

reductions in cancer cell growth were observed when G47D was

combined with BKM120, a pan-class I PI3K inhibitor, in both in vitro

and in vivo models, suggesting a synergistic therapeutic effect. While

3D cultures provide valuable structural complexity for further

evaluating OV treatments, they cannot replicate the systemic

interactions and immune dynamics of living organisms. As such,

pre-clinical animal models are essential for ultimately advancing the

therapeutic evolution of OV toward clinical relevance.
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Preclinical evaluation using animal models:
insights and limitations

Pre-clinical animal models play a crucial role in providing a

more comprehensive evaluation of therapeutics relative to the in

vitromodels discussed above. Among all species, rodent models are

most frequently used in OV research, as they offer a broader

perspective on treatment efficacy. This is particularly important

since oncolytic virotherapies are highly dependent on stimulating

the immune system to recruit effector cells.

Immune-competent mice can be especially useful, as they allow

for detailed immune profiling and the assessment of synergistic

effects with OVs, thereby shedding light on systemic responses. For

example, Bai et al. demonstrated enhanced cytotoxicity using an

oncolytic alphavirus combined with PD-L1-modulated Albendazole

(ABZ) in immune-competent mice bearing RM-1 murine prostate

tumors (22). Immune profiling and CD8+ T cell-deletion

experiments showed that the increased cancer cell apoptosis was

likely due to the greater CD8+ T cell infiltration detected in the

tumor microenvironment. Additionally, the authors proposed that

this combination therapy could sensitize tumors to immune

checkpoint inhibitors such as anti-CTLA-4, thus promoting even

more profound therapeutic outcomes. Similarly, McAusland et al.

used RM-9 allograft C57BL/6 mice to evaluate the combination of

oncolytic NDV and vanadyl sulfate, both of which possess anti-

neoplastic properties, against melanoma (24). In these immune-

competent mice, increased activation of NK cells and macrophages

was detected. Interestingly, the combination treatment eliminated

cancer cells through innate immunity, as no tumor-specific T cells

were detected and the mice failed to respond when rechallenged

with the same cancer cells. These mouse models are thus very

valuable because they possess intact immune systems, enabling a

more inclusive assessment of OV-based therapies. However, there

are still notable genetic differences between mouse and human

prostate cancer cells, which limit one’s ability to fully recapitulate

human disease. Additionally, mice might not be permissive hosts

for some oncolytic viruses, potential ly leading to an

underestimation of their therapeutic effects. To address these

limitations, immune-compromised mice are frequently used in

OV studies involving human cancer cell line implantation (90).

Immune-compromised mice are commonly used in studies that

aim to mimic the human tumor microenvironment through

xenografting of human prostate cancer cells. NCG mice, which

lack T cells, B cells, and NK cells, are frequently used in OV studies

as they greatly minimize graft-versus-host rejection. These mice are

named for their genetic modifications: NOD (non-obese diabetic),

CB17 background, and targeted deletion of the Gamma chain

(common cytokine receptor g-chain). In a study by Fang et al.

(2023), NCG mice were implanted subcutaneously (s.c.) with

DU145 human prostate cancer cells and treated with a

combination therapy of Ad5Ki67-C3, an adenovirus serotype 5

(Ad5) driven by the Ki67 promoter to express CCL5, interleukin 12,

and interferon-g (43). This treatment, combined with radiation,

synergized towards a prolonged survival rate and significant tumor
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size reduction over 60 days. Moreover, long-term immunity against

the same cancer cells was observed when the mice were re-

challenged. Nu/nu mice (nude mice or athymic mice), while

deficient in T cells due to a homozygous mutation in Foxn1

causing thymic underdevelopment, are also frequently used in

OV studies. One example is a study examining the efficacy of

RCAd11pADP, an oncolytic adenovirus serotype 11b vector

equipped with an adenovirus death protein (ADP). This virus

demonstrated cytotoxic effects in both cell culture and PC3

xenograft mouse models (44). In BALB/c nude mice, increased

apoptotic cancer cells were observed four weeks after two virus

injections. In addition, elevated mRNA expression of viral E1A and

hexon proteins indicated active viral replication within the tumor

and its potential to suppress tumor growth. Similarly, Mao et al.

(45) validated the apoptotic potential of ZD55-IL-24, an oncolytic

adenovirus expressing the antitumor gene mda-7/interleukin-24,

through both in vitro and in vivo studies. Elevated expression of

Caspase-3 and Caspase-8 was detected 18 days post-ZD55-IL-24

treatment in prostate cancer cells and in PC3 tumor-bearing BALB/

c nude mice, specially when combined with radiation. Although

some immune-compromised mice retain partial immune function,

such as innate immunity and innate-like T cells, the majority are

athymic and lack diverse T cell populations (91). Given that T cells

are crucial for the cytotoxic elimination of cancer cells, particularly

in oncolytic virotherapy, results from these models might not fully

capture the therapeutic potential observed in immune-

competent systems.

With the continuous advancement of mouse models,

humanized mice have emerged as some of the most relevant

systems for mimicking key aspects of human biology. Humanized

mice can be established using immune-deficient NSG mice

transplanted with human hematopoietic stem cells (HSCs),

human fetal thymic and liver tissue (BLT model), or through the

injection of human peripheral blood mononuclear cells (PBMCs).

These approaches temporarily allow researchers to analyze disease

models and obtain human-relevant immunological responses (92).

For example, Zafar et al. (2021) (46), used PBMC-humanized mice

to evaluate a novel oncolytic adenovirus (Ad3-hTERT-CMV-

hCD40L), equipped with human CD40L to stimulate dendritic

cells (DCs). Mice treated with the hCD40L-expressing adenovirus

showed significant tumor reduction and prolonged survival, with

even greater effects observed in the presence of DCs. However, a key

limitation of humanized mice is that they typically develop graft-

versus-host disease (GvHD) around 40 days post-transplantation

(93). This short experimental window poses challenges, especially in

distinguishing immune responses induced by OV therapies from

those caused by immune rejection.

In rodent systems, OV experiments often require multiple

models to piece together a complete picture of how the virus

interacts with both the tumor and the whole organism. This is

largely due to species specific differences in viral susceptibility and

compatibility with implanted cancer cells. While multiple mouse

models may be needed to assess different aspects of OV function, a

single hamster model can sometimes provide more comprehensive

insights, especially for OVs that do not replicate efficiently in
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rodents, such as adenovirus species C (94). For instance, Li et al.

observed glioma growth inhibition in hamsters following infection

with Ad-TD-nsIL-12 (an Ad5 with three deleted genes and

producing non-secreting interleukin 12). Viral E1A expression

was detectable 12 days post-infection, indicating successful viral

propagation in the hamster model, consistent with in vitro results

(95). However, in the context of prostate cancer research, some

limitations arise. For example, in a study by Koodie et al. (2019), a

modified adenovirus with a chimeric fiber (Ad5/3) was used to

improve viral entry into advanced prostate cancer cells, which often

exhibit reduced expression of the coxsackie-adenovirus receptor

(CAR), the primary receptor for adenovirus subgroup C (96). The

results showed a decrease in Ad5/3 permissibility in hamsters (97),

suggesting that this model may not be ideal for evaluating such

vectors. Therefore, while the hamster model provides an immune-

competent environment and supports viral propagation, making it

advantageous over some mouse models, it might not fully apply to

human prostate cancer studies. These limitations stem from

phenotypic differences between human and hamster prostate

cancer cell lines (98), as well as a lack of established hamster

allograft disease models. To gain further insight into immune

responses following OV infection, patient-derived samples might

offer the most accurate and clinically relevant representation prior

to human trials.
Ex vivo models using patient-derived
tissues for OV research

Currently, no single model can fully recapitulate the complexity

of prostate cancer tumors in patients, as preclinical systems have

limited capacity to include all components of the tumor

microenvironment. To overcome this limitation, patient-derived

tumor tissues have become a valuable tool for more closely

mirroring the biological characteristics of human cancers prior to

clinical trials (99). In the same study mentioned earlier involving

humanized mice, the authors further investigated the mechanisms

underlying tumor reduction following synergistic OV and DC

treatment using patient-derived prostate cancer tissues. Three

days after viral infection, these tissue samples showed a notable

elevation in DC maturation markers, including CD80, CD83, and

CD86, along with a higher number of mature DCs in culture. In

addition, significant upregulation of pro-inflammatory markers,

such as IL-2, IL-12, TNF-a, and granzyme B, was detected in the

culture media (46). A 2021 study by van de Merbel et al. further

demonstrated the utility of patient-derived tissue slices and a

xenograft mouse model to evaluate the therapeutic potential of

jin-3, a reovirus variant with a spontaneous mutation in the Sigma-

1 spike protein, allowing JAM-A (junction adhesion molecule A)

independent infection of tumor cells (33). In tissue slices, time-

course analysis confirmed viral replication, while in the patient-

derived xenograft (PDX) mouse model, jin-3 treatment led to tumor

shrinkage and widespread detection of the viral protein Sigma-3.

Moreover, increases in apoptotic cell counts and decreases in

proliferative markers were reported, supporting the virus’s
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cytotoxic activity. While human-derived samples might be the ideal

testing platform for evaluating OV therapies before clinical trials,

one key limitation remains, which is the scarcity and limited

availability of these samples (100).
Focus on five-year clinical trials of OVs in
prostate cancer

Various viruses have been designed and evaluated for prostate

cancer treatment; however, due to the gaps in human-relevant research

models mentioned above, few have progressed to clinical trials. Based

on the latest updates from ClinicalTrials.gov, there have been only nine

OV clinical trials in prostate cancer worldwide within the last five years.

Four types of viruses have been included in these trials: coxsackievirus,

vaccinia virus, reovirus, and adenovirus, which together comprise the

majority of viruses utilized (Table 2).While not every clinical trial result

is publicly available, only those with accessible data are discussed here,

including clinical trials publications of oncolytic coxsackie virus,

oncolytic adenovirus, and oncolytic vaccinia virus.

The phase I clinical trial of unmodified oncolytic coxsackie

virus, CVA21 (V937), completed in 2019, evaluated its effect on

various solid tumors, including prostate cancer (110). Four patients

with metastatic castration-resistant prostate cancer received CVA21
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on days 1, 3, and 5 during the first 21-day cycle, followed by a single

dose on day 1 of each of the next eight cycles. No dose-limiting

toxicities (DLTs) were reported during monotherapy, and although

no specific patient outcomes were indicated, an increase in V937

antibodies in serum was observed during the treatment cycles. This

phase I clinical trial established the safety profile of CVA21 across

several cancer types and provided data on the tolerance of repeated

intravenous injections. However, as it was a pilot study assessing

dosage tolerance, a larger cohort of prostate cancer patients would

be needed to solidify the results and fully evaluate its therapeutic

potential (109).

The modified oncolytic adenovirus Ad5-yCD/mutTKSR39rep-

hIL-12 was evaluated for its dosage tolerance and safety in a phase I

clinical trial involving 15 patients with localized recurrent prostate

cancer. A single intraprostatic dose of the virus, ranging from 1 ×

1010 to 1 × 1012 viral particles, was administered on the first day of

the trial, then followed by seven days of 5-fluorocytosine (5-FC) and

valganciclovir (vGCV) chemotherapy (51). The Ad was designed to

express cytosine deaminase (CD) and HSV thymidine kinase (TK),

which convert the pro-drugs 5-FC and GCV into toxic agents that

eliminate the cancer cells by interfering with DNA synthesis. The

safety of this treatment was confirmed, with no reported DLTs,

and 92% of side effects were classified as either grade 1 (mild) or

grade 2 (moderate). Also, elevated levels of CD3-CD56+ NK cells,
TABLE 2 5-year clinical trials on prostate cancer.

Virus Clinical
trial

number

Phase Modification Prostate
cancer stages

Status Location

ETBX-071 (101)
(Adenovirus)

NCT06765954 Phase II • Deleted E1, E2b, and E3 region
• Encoded prostate-specific antigen (PSA)

Nonsurgical high-risk
prostate cancer patients

Not
yet recruiting

Not
provided

ORCA-010 (102)
(Adenovirus)

NCT04097002 Phase
I/IIa

• E1AD24 deletion
• Infectivity-enhancing fiber RGD modification

Treatment-naïve patients
with localized tumor

Active;
not recruiting

Canada/
Netherlands

ONCOS-102
(103)

(Adenovirus)

NCT03514836 Phase
I/II

• Immunostimulatory cytokine - GM-CSF Castration-resistant advanced
metastatic prostate cancer

Terminated;
insufficient
accrual

Finland/
Czechia

Ad5-yCD/
mutTKSR39rep-
hIL12 (104)
(Adenovirus)

NCT02555397 Phase I • Human interleukin-12
• Two suicide fusion genes:
Yeast cytosine deaminase (yCD) and a mutant form
of herpes simplex virus type 1 thymidine kinase
(HSV-1 TKSR39)

Locally recurrent prostate
cancer after
definitive radiotherapy

Completed
(results)

United
States

AdNRGM (105)
(Adenovirus)

NCT04374240 Phase I • E1-E3 deleted, replication deficient
• Human GMCSF gene

Local recurrence of prostate
cancer following
radical radiotherapy

Completed United
Kingdom

Ad5-SGE-REIC/
Dkk-3 (106)
(Adenovirus)

NCT01931046 Phase
I/IIa

• Super gene expression (SGE) system
• Tumor suppressor gene dickkopf-3

Localized prostate cancer Completed United
States

Reolysin (107)
(Reovirus)

NCT01619813 Phase II • N/A Metastatic or locally
recurrent prostate cancer

Completed Canada

MVA-
brachyury-

TRICOM (108)
(Vaccinia virus)

NCT02179515 Phase I • Replication-deficient, attenuated
• Brachyury
• Triad of human costimulatory molecules
(B7.1, LFA-3, and ICAM-1)

Metastatic or unresectable
locally advanced malignant
solid tumor

Completed
(results)

United
States

CVA21 (109)
(Coxsackie virus)

NCT00636558 Phase I • N/A Stage IV solid tumor Completed Australia
f
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CD3+CD4+ T helper cells, and CD3+CD8+ cytotoxic T cells were

observed in patients, suggesting immune modulation in peripheral

blood due to IL-12 expression from the Ad (104).

The modified oncolytic vaccinia Ankara (MVA) virus encoding

TAA (brachyury) and a triad of T-cell co-stimulatory molecules

(TRICOM), MVA-Brachyury-TRICOM, also completed a phase I

clinical trial involving various cancers, including prostate cancer, to

evaluate the safety of three different virus dosages (111).

Preliminary results indicated changes in immune cell profiles,

especially an increase in CD8+ T cells. Nonetheless, serious side

effects were observed in patients receiving higher dosages. While

only three prostate cancer patients were enrolled out of 38 total

participants, no specific outcome data for these patients has been

reported yet (108). Further studies focusing specifically on prostate

cancer could benefit from larger patient enrollment and more

detailed analyses, particularly regarding prognosis and response

to treatment.
Trends of oncolytic viral therapy in
cancer

Recent studies highlight the promising future of oncolytic

viruses, with significant research focusing on adenovirus, herpes

simplex virus, vaccinia virus, vesicular stomatitis virus, and

reovirus. Here, a brief discussion covers the distinct traits of these

oncolytic viruses and addresses several challenges that require

attention: short therapeutic windows in vivo, insufficient

accumulation in tumors, restricted delivery routes, and the need

to better characterize their overall safety profiles. Regardless,

advancements in oncolytic viral therapy research hold great

promise for a wide variety of cancer types. By leveraging the

unique properties of these viruses, the field can develop more

effective immunotherapies, leading to improved treatment

outcomes for patients, especially those whose tumors are resistant

to immune checkpoint inhibitors.
Why adenovirus, herpes simplex virus, and
more

Our literature review reveals that certain viruses are used more

frequently than others due to their natural characteristics. For

instance, reovirus, a dsRNA virus, naturally infects transformed

cells, which synthesize viral proteins more efficiently (112, 113).

Similarly, VSV, a negative-sense RNA virus, preferentially infects

cancer cells with defective IFN pathways, which reduce their

antiviral response and make them more permissive to infection

(114). HSV also has a preference for cancer cells with mutated Ras

pathways (115) and has the added advantage of a large genome

capacity for further modification (19, 116). Likewise, adenovirus

(117, 118) and vaccinia virus (VV) (119, 120) have relatively large

genome capacities, allowing modifications to enhance their

cytotoxicity against tumor cells.
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However, therapeutic evaluation models can be challenging for

these viruses. As previously mentioned, human adenovirus

predominantly infects humans, making in vitro tests

straightforward. However, when it comes to pre-clinical animal

studies, limitations arise: there is no single model that can offer

comprehensive validation of these treatments. Rodents, even across

diverse strains, are generally non-permissive to infection or

replication of these viruses, making it difficult to accurately assess

therapeutic efficacy and safety in vivo. It has been reported that IFNs

induced mouse Mx1 expression, which suppresses HSV replication

in mice (121). In this context, immunity can act as a double-edged

sword in oncolytic virotherapy. While a full immune response,

including antiviral mechanisms, can recapitulate the human

immune system, the inhibition of HSV replication also can

reduce therapeutic effects. Therefore, careful consideration is

needed when examining and choosing different models (122).
Neutralization and clearance of OV within
the system

Throughout history, humans have co-evolved with viruses, and

it may come as a surprise that over 50% of the human genome

originates from viruses and transposable elements. These genetic

materials, acquired through horizontal gene transfer, crossover and

recombination, and transformation, have significantly shaped who

we are today (123), including our immunity. Over time, the

diversity of the major histocompatibility complex (MHC) has

further impacted T cell and B cell specificity, as well as antibody

production, thus strengthening our immune response to pathogens

(124, 125). In a study by Alemany et al. in 2000 (10), it was reported

that 1010 transducing units (t.u.) of adenovirus serotype 5 particles

have a half-life of less than 2 minutes following vena cava injection,

with viral sequences being cleared by Kupffer cells in the liver within

24 hours (126). To prolong circulation time, scientists have

genetically engineered viruses, equipping them with inhibitors of

CD8+ T cells (127) or NK cell activation (128). Similarly, disguising

the virus using polyethylene glycol (PEG) (for Ad and VSV) or

using mesenchymal stromal/stem cells (MSCs) as viral carriers has

been shown also to prevent rapid clearance, thereby extending

circulation time (126, 129–131). Protected virus not only extend

their effective duration in the system but also enhance their

migration toward target sites by reducing accumulation in the

liver (129, 131). While rapid neutralization of oncolytic viruses

might seem counter-intuitive as a therapeutic strategy, it could act

to enhance immune cell infiltration into tumors, thereby improving

therapeutic outcomes (132, 133).

To avoid virus loss during migration and inefficient OV

accumulation at target sites (134), studies have focused on enhancing

targeting toward cancer cells. For example, tumor-specific proteins

have been expressed on the surface of tumor cells, and “tagging” the

tumor surface or other aspects of its unique microenvironment can

help direct the OV to target sites (135, 136). However, the majority of

OVs are still lost during routing towards tumors, leading to an

underestimated treatment effectiveness and a shift from clinically
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favorable intravenous injection to the more locally-limited

intratumorally injection (24, 137–140). As a result, various delivery

tools, including nanoparticles, vesicles, and cells (141), are being

explored by several groups to attempt to overcome these challenges.
Safety of OV therapy and authorized OV
therapy status

Another way to address delivery challenges is through

administering a concentrated dosage of the virus. However, this

approach could trigger an acute immune response (cytokine storm),

resulting in immune reactivity, organ damage (142), and increased

risk of infection depending on the type of virus (143). Hence,

combination therapy provides a promising solution to enhance

treatment efficacy (144) without increasing the virus dose injected.

Encouraging results from preclinical studies using combination

therapies have already positively influenced the number of clinical

trials. For example, as of January 2025, there were 52 actively

recruiting OV-related clinical trials across various phases worldwide.

These trials include engineered OVs as monotherapies and as

adjuvants in combination therapies for different types of cancer.

Moreover, several oncolytic viruses have been approved by

regulatory authorities, including T-VEC (HSV1 armed with human

GM-CSF and deleted neurovirulence factors ICP34.5 and ICP47;

Australia, Europe, Israel, and the USA), ECHO-7 (echovirus;

Armenia, Georgia, and Latvia), Teserpaturev (D47, g34.5, and ICP6

triple gene-mutated HSV1; Japan), and H101 (E1B- and E3- deleted

adenovirus serotype 5; China) (145). However, due to partially

unelucidated mechanisms of act ion against tumors ,

pharmacovigilance continues to be closely monitored for these

clinically approved regimens. According to the latest publication

utilizing the U.S. FDA Adverse Event Reporting System (FAERS)

database to retrospectively analyze 1138 patients receiving T-VEC, the

most commonly seen side effects matched prescribing information or

previously reported cases. However, four unexpected adverse events

(sepsis, encephalitis, syncope, and lymphadenopathy) were identified.

Additionally, 10% of patients receiving T-VEC discontinued

treatment, and 2% had life-threatening conditions (146),

emphasizing the need for further comprehensive clinical studies to

minimize potential harm to patients.
What types of cancer can benefit most
from OV therapy?

The concept of “hot” and “cold” tumors was first introduced in

2006, whereby tumors can be classified based on the distribution of

immune cells in the tumor microenvironment (147). With

immunoscoring of tumor-infiltrating lymphocytes (TILs), “hot”

tumors have been defined by the presence of TILs and a high

incidence of tumor mutations, while “cold” tumors have been

considered to be the opposite (148). Cold tumors develop

mechanisms to evade immune surveillance, including the

expression of PD-L1 to inhibit CD8+ T cell activation, expression
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of CD47 to escape from dendritic cell recognition (149), and

decreased expression of MHC-I (150). While CAR-T (chimeric

antigen receptor T cell) therapy, targeting CD19 and expressing co-

stimulatory 4-1BB with CD3z signaling domain (151), has achieved

great success in enhancing immune responses and tumor regression

in hematologic cancers (lymphomas and leukemia), challenges

remain in treating CD19-negative tumors, T cell malignancies, and

solid tumors (152). Thus, various inflammatory cytokine-expressing

CAR T cells have been studied in recent years to target solid tumors,

with positive preclinical results (153). Yet, the immunosuppressive

tumor microenvironment of cold tumors and the lack of distinct

tumor-specific targets have remained as significant barriers (152).

Oncolytic viruses, with their unique ability to remodel the

immunosuppressive tumor microenvironment (154, 155), have

become promising candidates for treating challenging tumor types.

Examples include increased IFNg infiltration observed in head and neck
squamous cell carcinoma (HNSCC) preclinical models treated with a

TGFb inhibitor-expressing VV, making the tumor more responsive to

treatment (156). The oncolytic adenovirus Delta-24-RGDOX, also

induced increased IDO in human and murine glioma cells (157).

Additionally, Hirigoyen et al. reported enhanced extracellular vesicle

(EV) secretion by VSV-infected human melanoma cells, which

amplified CD8 T cell cytotoxicity when incubated with EVs (158).

Thus, the potential and plasticity of oncolytic viruses are under

investigation in various cancers, particularly in difficult-to-treat

cancers where delivery of therapeutic agents is hindered by the blood-

brain barrier (BBB), such as immune-cold glioblastomas (159). In these

contexts, OVs have been considered revolutionary.

While some cancer types are identified as immune ‘hot’ or highly

responsive to immune checkpoint inhibitors (ICIs), such as melanoma,

it remains difficult to predict patient prognosis, as only about one-third

of patients respond to ICIs (160). Vareki et al. have unveiled that tumor

mutation profiles can further explain clinical responses, as tumors with

high mutational loads may express more tumor-associated antigens,

enhancing immunocyte recognition and recruiting more immune

effectors (161). In contrast, immune “cold” malignancies, such as

prostate cancer, pancreatic cancer, and neuroblastoma, typically have

low mutational loads and poor responses to immunotherapy,

prompting ongoing research seeking breakthroughs. The use of OVs

to transform the tumormicroenvironment (162–164) can enable better

control of these cancers, with promising results reported from both

pre-clinical (165, 166) and clinical studies (167, 168).

In summary, OVs excel as therapeutics across multiple

dimensions, including selective targeting and replication in cancer

cells, primary oncolytic activity, secondary immune-mediated lysis,

and a high genomic capacity for delivering multiple therapeutic

genes. Promising outcomes have been demonstrated in vitro, in

vivo, ex vivo, and in clinical studies. However, several limitations

remain to be addressed, including marginal virus accumulation at

tumor sites (169), restricted administration routes, and

incompletely elucidated cytotoxic mechanisms. We envision that

continued research into optimizing delivery strategies, enhancing

tumor specific accumulation, and clarifying mechanisms of action

will be critical to fully harness the therapeutic potential of OVs in

prostate cancer clinical oncology.
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