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Introduction: The four serotypes of dengue virus (DENV1-4) are the leading

cause of arboviral diseases in humans. Currently, developing a safe and effective

DENV vaccine remains a challenge. Previously we reported potently neutralizing

human monoclonal antibodies (mAbs) preferentially recognize mature DENV

particles, on which there is limited access to the fusion loop (FL) epitope and no

premembrane (prM) protein. As FL and prM antibodies are weakly- or non-

neutralizing and contribute to antibody-dependent enhancement, mature DENV

particles represent an ideal DENV vaccine candidate. Several inactivated flavivirus

vaccines, generated using formalin, ultraviolet or other inactivation methods,

have progressed through preclinical and clinical studies. Little is known about

how different inactivation methods affect viral epitopes and the quality of

antibodies induced.

Methods: We investigated epitopes on Tween 20-inactivated mature DENV1

particles by testing a panel of well-characterized human mAbs and membrane

integrity by sucrose-gradient ultracentrifugation and protein K digestion. We

examined the mechanisms of Tween 20 inactivation by measuring RNA copy

numbers, virus binding to cells and acid exposure, and antibody responses

induced by Tween 20-inactivated mature DENV1 particles in mice.

Results: Tween 20 inactivation better preserved the epitopes recognized by

potently neutralizing mAbs compared with other methods. Sucrose-gradient

ultracentrifugation and protein K digestion revealed no disruption of membrane

integrity by Tween 20. Mechanistically, Tween 20 treatment caused reduced

virus binding to cells and RNA degradation, which was reverted by pre-treatment
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with RNAseOUT, suggesting the involvement of extracellular RNase, and

prevented the envelope protein conformational changes induced by acid

exposure. Moreover, Tween 20-inactivated mature DENV1 particles induced a

neutralizing antibody response to all four DENV serotypes characterized by

competition with several potently neutralizing mAbs and limited recognition

of FL.

Conclusion: Our results suggest that Tween 20-inactivated mature particles are

a promising strategy for DENV vaccine development.
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1 Introduction

During the past few decades, dengue has become the most

important mosquito-borne viral disease in humans due to the co-

circulation of four serotypes of dengue virus (DENV1−DENV4) in

the tropical and subtropical areas along with the geographic

expansion of mosquito vectors, Aedes aegypti and Aedes

albopictus (1–3). It has been estimated that approximately 390

million infections, including 96 million apparent infections and 2

million severe cases, occur annually (1). Three tetravalent live-

attenuated DENV vaccines have been tested in phase 3 clinical

trials. Dengvaxia® (CYD-TDV), developed by Sanofi Pasteur, was

the first approved dengue vaccine with an overall efficacy of 59.2%,

and was recommended for baseline DENV-immune individuals due

to increased risk of severe disease among baseline DENV-naïve

individuals (4–6). Dengvaxia was licensed in the US, EU, and some

Asian and Latin American countries but will be discontinued in

2025 due to low global market demand (7). Qdenga® (TAK-003),

developed by Takeda, was the second approved dengue vaccine with

an overall efficacy of 73.3%, albeit no efficacy against DENV3 and

no data for DENV4 in baseline DENV-naive individuals (8–10).

Qdenga has been licensed in the EU, UK, Brazil and other countries,

but was withdrawn from the US license application (10). The

Butantan-Dengue Vaccine had an overall efficacy of 79.6% in a

phase 3 clinical trial, although efficacy data is not available for

DENV3 or DENV4 (11), and this vaccine candidate has not yet

been licensed. These findings together underscore the need of

continued exploration of other platforms for DENV vaccines.

The RNA genome of DENV encodes a polyprotein, which is

cleaved into three structural proteins, capsid (C), premembrane

(prM), envelope (E), and seven non-structural proteins (12). The

ectodomain of E protein, present on the surface of virion, contains

three domains. Domain I (DI) is in the center, domain II (DII),

which contains the fusion loop (FL) at its tip, is involved in

dimerization and membrane fusion, and domain III (DIII),

together with carbohydrates and lipids, is believed to be involved

in receptor binding and stabilization of trimers during fusion (12–
02
14). Several potently neutralizing human monoclonal antibodies

(mAbs) have been reported, including those recognizing DIII

residues and quaternary epitopes, such as the DI/DII hinge (DI/

IIh) and E dimer epitope (EDE1 or EDE2) (15–21). Another type of

human mAbs recognizes the highly conserved residues in the FL

and/or bc loop of DII, known as FL antibodies (22, 23).

Cryo-EM studies revealed that populations of DENV virions

consist of a mixture of mature, immature and partially immature

particles (24–28). The maturation status of flavivirus particles has

been shown to affect the epitope accessibility and thus the potency

of neutralizing mAbs (29, 30). As inducing potently neutralizing

antibodies against all four DENV serotypes, while reducing the risk

of antibody-dependent enhancement (ADE), is an essential

component of an ideal DENV vaccine, modulation of maturation

status of DENV particles may have the potential to improve the

development of safe and effective vaccines. A recent study reported

that DENV circulating in humans had characteristics of mature

DENV particles (mDENV); they were highly infectious and poorly

neutralized by FL or bc loop mAbs compared with potently

neutralizing mAbs including quaternary epitope and EDE2 mAbs

(28). These findings underscore the importance of inducing

potently neutralizing antibodies that can better neutralize DENV

in vivo and provide protection. We reported previously that

potently neutralizing human mAbs preferentially recognize

mDENV particles, which lack prM protein and contain E protein

dimers that limit the accessibility to the FL epitope (21, 26, 31, 32).

Since FL and prM antibodies are weakly or non-neutralizing and

have been shown to contribute to ADE in vitro and in vivo (33–38),

mDENV particles may represent an ideal vaccine candidate to

induce potently neutralizing antibodies and reduce the risk of ADE.

In addition to live-attenuated vaccines, other platforms that

have been used for DENV vaccines in preclinical and clinical studies

include the recombinant vaccine antigens such as protein subunit

vaccine or virus-like particles (VLPs), viral vector-based vaccines,

DNA or mRNA vaccines, and inactivated virus vaccines (39–47).

For DENV and other flaviviruses, formalin-inactivated tick-borne

encephalitis virus (TBEV) and Japanese encephalitis virus (JEV)
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vaccines have been demonstrated to exhibit their safety,

immunogenicity and efficacy (48–51); formalin-inactivated Zika

virus (ZIKV) and DENV vaccines are under development (40, 52,

53). One concern about formalin inactivation is that the cross-

linking reaction can potentially damage or alter the antigenic

structure of viral E protein, as supported by a report showing that

a neutralizing epitope in the E protein DIII of JEV was altered by

formalin (54). Another concern about formalin inactivation is that

the process requires days to weeks to completely abolish virus

infectivity. Other inactivation methods such as UV irradiation,

H2O2 treatment, and psoralen-inactivation can efficiently

inactivate viruses within minutes to hours (55–58). However, little

is known about the extent to which different inactivation methods

affect the neutralizing epitopes and the quality of antibodies

induced by such inactivated antigens. Polysorbate 20, also known

as Tween 20, is a nonionic detergent approved by the Food and

Drug Administration for various applications in the food, biotech

and pharmaceutical industries (59). For most immunoassays,

Tween 20 can be added to washing buffers to reduce background

signals and has been shown to inactivate infectious agents including

viruses in human serum/plasma samples (60–62); however, it has

never been exploited for vaccine development.

The objective of this study was to explore a new DENV vaccine

strategy by inactivating mDENV particles with Tween 20. We

investigated the epitope preservation of Tween 20 inactivated

mDENV particles, mechanisms of action and immunogenicity

in mice.
2 Materials and methods

2.1 Cells, mature virus particles

Vero cells stably expressing furin protease (Vero-furin) were

used for production of mature virus particles (63, 64). The cells were

maintained in DMEM (Gibco) supplied with 10% FBS, 2 mM

HEPES, 1% penicillin-streptomycin and 50 µg/mL blasticidin

(Invitrogen). After infection, the medium was replaced with

DMEM supplied with 2 mM HEPES, 1% penicillin-streptomycin

and 25 µg/mL blasticidin. The medium was collected every three

days for three times. DENV1 Hawaii strain, DENV2 New Guinea C

(NGC) strain, and ZIKV PRVABC-59 strain were used to generate

mature particles. The relative prM content of mDENV particles

generated, as determined by a previously reported virion ELISA

(31), was very low compared with that of mixed and immature

DENV particles (Supplementary Figure 1).
2.2 Human mAbs

The category, binding specificity, epitope and neutralizing

potency of human mAbs used in this study were summarized in

Table 1 (17–22, 31, 65, 66).
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2.3 Virus inactivation

For formalin inactivation, 0.05% formaldehyde was used for

crude virus culture supernatant at 37 °C for 24 h (67) and 0.02%

formaldehyde purified virus at 22 °C for 10 days (68, 69). After

inactivation, the remaining formalin was neutralized with 0.05%

sodium bisulfite at room temperature for 15 min. For UV

inactivation, the virus was exposed to 254 nm UV light (using a

Stratagene Crosslinker) for 5 min and cooled down on ice for 1 min,

followed by another exposure and cooling down. For Tween 20

inactivation, the crude virus supernatant was treated with 1%

Tween 20 (Promega) at 37 °C for 1 h and shaken every 15 min.

Excessive Tween 20 was removed in downstream purification steps.
2.4 Focus assay

Vero cells were seeding on flat-bottom 96-well plates at 3.5 x 104

cells per well one day prior to infection. Fifty µL of 10-fold serial

diluted untreated or post-inactivation virus supernatants were

inoculated to each well, followed by 1.5 h incubation with gently

shaking every 15 min (22). After adding 150 µL of 1%

methylcellulose prepared in DMEM (Gibco) supplied with 2%

FBS, 2 mM HEPES and 1% penicillin-streptomycin, the plates

were incubated at 37 °C, 5% CO2 incubator for 48–70 h. After

washing with PBS and fixation with ice-cold 70% acetone and 30%

methanol at -20 °C for 20 min, the plates were air-dried, blocked

with 5% non-fat milk in PBS for 30 min, and stained with murine

anti-E mAb 4G2 or anti-DENV prM mAb 2H2, followed by HRP-

conjugated secondary antibody (22). After adding KPL TrueBlue™

peroxidase substrates (SeraCare), virus foci were read by CTL

ImmunoSpot Analyzer.
2.5 Virus purification

Crude virus culture supernatant was pre-cleared by low-speed

centrifugation at 1,200 × g for 20 min and passed through a 0.22 µm

syringe filter. Virus was concentrated by 20% sucrose cushion at

110,000 × g for 5 h at 4 °C. After resuspension in PBS, concentrated

virus was diluted in starting buffer (20 mM Tris, 150 mM NaCl, pH

7.5) and further purified via HiTrap Capto Core 400 column (GE

Life Sciences) in fast protein liquid chromatography (FPLC) using

an ÄKTA pure™ chromatography system (Cytiva). Flowthrough

fractions containing purified viruses were pooled and further

concentrated with an Amicon Ultra centrifugal filter 100 kDa cut-

off with PBS. Purified virus was further passed through 0.22 µm

syringe filter and stored at 4 °C. The concentration of E protein in

purified particles was determined by SDS 12% polyacrylamide gel

electrophoresis (PAGE) including serial dilutions of BSA (from 2 µg

to 0.0625 µg) as standards, followed by Coomassie blue staining.

Protein intensity in stained gel was quantified in Odyssey scanner

(Li-Cor).
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2.6 Virion-capture ELISA

Virion-capture ELISA was performed as described previously

with minor modifications (31). Briefly, mixed mouse mAbs 4G2

and FL0251 (700 ng/well) were coated on 96-well ELISA plates

overnight. Crude virus culture supernatants with or without

inactivation were 1:4 diluted in StartingBlock blocking buffer

(Thermo Fisher Scientific) and added into each well. The plates

were incubated at 37 °C for 2 h. After wash with ELISA washing

buffer (0.5% Tween 20 in PBS), the plates were added with human

mAb at 0.5−2 µg/mL at 37 °C for 2 h, followed by secondary (anti-

human) antibody conjugated with HRP (Jackson Immunoresearch)

at 37 °C for 1 h. After final wash, the plates were added with TMB
Frontiers in Immunology 04
substrate, followed by stop solution; the optical density at 450 nm

was read with a reference wavelength of 650 nm.
2.7 Centrifugation and proteinase K
digestion-protection assay

Virus culture supernatants were pretreated with or without 1%

Tween 20 or 1% Triton X-100 at 37 °C for 1 h. Two mL

supernatants were directly pelleted down in centrifuge at 22,500 ×

g for 2 h at 4 °C. Pellets were resuspended in PBS for Western blot

analysis. For proteinase K digestion-protection assay (70), untreated

or 1% Tween 20 inactivated virus pellets were further treated with
TABLE 1 The category, binding specificity, epitope and neutralizing potency of human monoclonal antibodies in this study.

mAb Category
Binding

specificitya
Domainb Epitopesb

NT50
c to D1

(D2, ZIKV)
Reference

82.11 FL GR I/II W101 0.043 (17)

DV291.3 FL GR I/II W101, F108 0.55 (17, 31)

DV143.6 FL GR I/II L107, D290 0.50 (17, 31)

DVG1.3 FL GR I/II L107 0.52 (22)

DVG12.2 FL GR I/II L107, F108, T76 >2 (22)

DVC23.13 FL GR I/II W101, F108 1.0 (22)

DV470.12 III TS D1 III G383, E384, K385, 79E 0.01 (17, 31)

DV87.1 III CR D1-3 III K307, E311, L389, W391 0.007 (17, 31)

DVG17.12 III TS D1 III G383, E384, K385 0.005 (22)

1F4 I/II hinged TS D1 I/II K47, N52, K136, E157, T160, T161, T163, G274 0.11 (18)

747C4 EDE2d CR I/II E49, Q77, W101, N153, T155, I161, P169, T200, W391, F392 0.030 (21)

747D8 EDE2d CR I/II
E49, Q77, W101, N134, N153, T155, I161, A162, P169, T200,
K202, E203, L308, K310, Q323, W391, F392

0.021 (21)

752-2C8 EDE1d CR I/II E49, Q77, W101, I161, A162, T200, Q323, W391, F392 0.131 (21)

752-2B2 EDE1d CR I/II E49, Q77, W101, I161, A162, P169, T200, Q323, W391, F392 0.061 (21)

33.3A06 EDE1d CR I/II W101, W391
(65,

unpublished)

DVC3.7 III TS D2 III V382 <0.07 (D2) (20)

DVC10.16 III TS D2 III E311 <0.08 (D2) (20)

DVC25.5 III TS D2 III NA 0.3 (D2) (20)

2D22 III qd TS D2 III R323 0.08 (D2) (19)

ZIKV116 III [B] e ZIKV,D1,D4 III T309, E393, K394 0.016 (ZIKV) (66)

ZIKV19 II [C]e NT II W217, F218, D220, P222 >0.42 (ZIKV) (66)

ZIKV195 (II) [D]e NT (II) (D67, Q89, K118) 0.347 (ZIKV) (66)

ZIKV117 II q [D]e TS ZIKV II D67, Q89, K118 0.005 (ZIKV) (66)

ZIKV88 (FL) [A]e NT I/II (W101, F108) >0.42 (ZIKV) (66)
aGR: group-reactive to flaviviruses, CR: complex-reactive to DENV serocomplex, TS, type-specific; NT, not tested.
bDomain and epitopes were based on the location of the epitope residues determined by binding or escape mutants, or binding to different domains (DI/II or DIII) reported previously. NA,
not applicable.
cNT50 values (mg/mL) to DENV1 (D1), DENV2 (D2) or ZIKV.
dI/II hinge, III q, EDE1 and EDE2, and II q mAbs are quaternary epitope mAbs.
eFor ZIKV mAbs, competition groups [A, B, C, D] were determined (66). Data in parentheses were referred from competition group.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1626823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tsai et al. 10.3389/fimmu.2025.1626823
or without 2% Triton X-100 for 10 min, followed by digestion with

proteinase K (50 µg/mL) for 15 min on ice. The reaction was

stopped by adding protease inhibitor cocktail (Roche), followed by

adding 2× Laemmli sample buffer (Bio-Rad) for Western

blot analysis.
2.8 Sucrose gradient sedimentation
analysis

Virus culture supernatants pretreated with 1% Tween 20 or not

were concentrated by 20% sucrose cushion ultracentrifugation at

110,000 × g for 5 h at 4 °C. The pellets were resuspended in PBS and

loaded onto 15%−60% sucrose gradient, fol lowed by

ultracentrifugation at 38,000 × g for 18 h at 4 °C (71). After

ultracentrifugation, each fraction was collected from top to

bottom and analyzed by SDS 12% PAGE and Western blot

analysis (31).
2.9 Quantitative real-time RT-PCR

This method was described previously (71). Briefly, extracted

viral RNA and serial dilutions of a control plasmid consisting of

DENV1 3′-nontranslated region with known copy numbers (as a

standard) were quantified by a real-time RT-PCR assay using

primers targeting the DENV1 3′-nontranslated region (5′-
ACACCAGGGGAAGCTGTACCCTGG - 3 ′ a n d 5 ′ -
CATTCCATTTTCTGGCGTTCT-3′) (72). The reaction was

performed by using iSript™ one-step RT-PCR kit with SYBR

Green (Bio-Rad) in Applied Biosystems™ 7500 Real-Time PCR

Systems. The amount of viral RNA was expressed as genome

equivalent (GE) copy number.
2.10 Cell-based virion binding ELISA

Vero cells were seeded onto 96-well plates at 3.5 x 104 cells per

well overnight. One µg E-protein-equivalent of purified DENV

particles, DMEM medium with 10% FBS or BSA (20 µg/mL) were

added to cells and incubated on ice for 2 h. After washing with PBS

twice, the cells were fixed with ice-cold 4% paraformaldehyde on ice

for 20 min. After PBS wash, the plates were blocked with ELISA

blocking buffer and incubated with anti-E DIII human mAb 470.12

(0.5 µg/mL) at 37 °C for 2 h, followed by secondary antibody. The

addition of TMB substrate and stop solution and the reading of OD

was performed as regular ELISA described above.
2.11 Mouse immunization

Groups of 6–10 week-old BALB/c mice (n=9, 5 females, 4

males) were intraperitoneally injected with three doses of 1 µg E-

protein-equivalent purified Tween 20-inactivated mDENV1 with

0.1% Alhydrogel (Invitrogen) at 0, 4 and 8 weeks. Blood was drawn
Frontiers in Immunology 05
from the submandibular vein at -1, 3, 7 and 11 weeks. Mice were

sacrificed at 12 weeks. Blood was collected after euthanasia by

cardiac puncture for the analysis of antibody response.
2.12 Virion ELISA and endpoint titers

Concentrated mDENV1 virion (Hawaii strain) were coated

onto 96-well ELISA plates at 4 °C overnight, followed by blocking

and incubation with serial diluted mouse sera (starting at a 1:400

dilution) and secondary antibodies (31). After a final wash and

incubation with TMB substrate and stop solution, the OD at 450

nm was read with a reference wavelength of 650 nm. The cutoff was

determined by the mean OD value obtained from pooled pre-

immune mouse sera at a 1:100 dilution plus three standard

deviations. The endpoint titer was determined as the reciprocal of

the highest serum dilution reaching cutoff value calculated by using

four parameters nonlinear regression analysis in Prism version

6 (GraphPad).
2.13 Microneutralization test

Microneutralization test was performed as described previously

(21, 31). Briefly, flat-bottom 96-well plates were seeded with Vero

cells (3 x 104 cells per well) 24 h prior to infection. Fourfold serial

dilutions of sera were mixed with 50–100 focus-forming units

(FFU) of DENV1 (Hawaii strain), DENV2 (NGC strain), DENV3

(CH53489), or DENV4 (H241 strain) at 37 °C for 1 h. The mixtures

were added to each well, followed by incubation for 48 to 70 h. After

washing with PBS, the plates were fixed with ice-cold 30% methanol

and 70% acetone, air-dried and blocked with 5% milk in PBS. After

adding murine mAb 4G2 and a secondary antibody mixture (IRDye

800CW-conjugated goat anti-mouse IgG at 1:10,000 and the

DRAQ5 fluorescent probe at 1:10,000) and washing with PBS, the

plates were air-dried overnight. The intensity (800 nm/700 nm

fluorescence) was detected by the LiCor Odyssey classic imaging

system (LiCor Biosciences) and analyzed by Image Studio software

to determine the intensity of each well. % of infection at different

serum concentrations was calculated by the value of 800/700 ratio

interpolated to the linear curve generated from virus-only controls

with six dilutions (100%, 75%, 50%, 25%, 10% and 0%). %

neutralization was calculated as 100% - % of infection. NT50 titer

was the serum titer for 50% of neutralization determined by using

four-parameter nonlinear regression analysis in Prism version

6 (GraphPad).
2.14 Blockade of binding ELISA

The method was performed as described previously (73).

Fourfold serial dilutions of pooled mouse sera (starting at 1:400)

were incubated with DENV1-capture ELISA plate. After washing,

0.25 µg/mL of human mAb was added followed by an anti-human

secondary antibody conjugated with HRP. The ELISA plate was
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read as described above. The percentage of human mAb binding

was calculated as OD of mAb with immune mouse sera/OD of mAb

with pre-immune mouse sera. The reciprocal of a serum dilution

that inhibits 50% binding of a human mAb was determined as

IC50 titer.
2.15 Proportion of FL antibody

The proportion of FL antibody was determined by a capture

ELISA using DENV1 wild-type (WT) and FL-mutant (W101A

+F108A) VLPs as described previously (74). Briefly, 96-well plates

were coated with rabbit anti-serum against DENV1 at 4 °C

overnight, followed by blocking with 1% BSA in 1X PBS for 1

hour. VLPs (at ~0.01 mg/mL) were added, followed by two-fold

serial dilutions of mouse immune sera, anti-mouse IgG conjugated

to HRP, TMB substrate and stop solution (74). The absorbance was

read as described above. The endpoint titers were the reciprocal of

the highest titers that yielded a signal greater than 3 standard

deviations of the mean signal from pre-immune sera. The

proportion of FL antibody was determined by the formula: [1 -

endpoint titer to mutant VLPs/endpoint titer to WT VLPs] X

100% (74).
2.16 Statistical analysis

The two-tailed Fisher’s exact test was used to compare

qualitative variables between two groups. The two-tailed Mann-

Whitney test and Wilcoxon rank signed test were used to compare

quantitative variables between two groups and within a group,

respectively (Prim version 6.0). The two-tailed Spearman

correlation test was used to determine the relationship between

NT50 and ELISA titers (Prism version 6.0).
3 Results

3.1 Tween 20 effectively inactivates DENV
and ZIKV

To evaluate the effectiveness of Tween 20 inactivation, we first

treated mature preparations of ZIKV (mZIKV) virions with 1%

Tween 20 at 37 °C for 1 h. Formaldehyde inactivation of mZIKV

was performed in parallel as reported previously (0.05% at 37 °C for

24 h) (67–69). After inactivation, the focus assay did not detect any

FFU at 48 h in either method, suggesting complete abolishment of

virus infectivity (Figure 1A). To determine the lowest concentration

of Tween 20 capable of inactivating infection, mDENV1 virions

were treated with different concentrations; foci were not detectable

following inactivation with Tween 20 at concentrations ≥0.5%,

suggesting 0.5% is the lowest effective concentration (Figure 1B).

A similar result was observed in mZIKV particles treated with
Frontiers in Immunology 06
differing concentrations of Tween 20 (Supplementary Figure 2).

Furthermore, incubation with Tween 20 at 37 °C was more efficient

at inactivation than what was observed at 22 °C (Supplementary

Figure 2). To ensure complete inactivation for our vaccine

candidate, we chose to proceed with 1% Tween 20 and 1 h

incubation at 37 °C.
3.2 Tween 20 inactivation preserves
neutralizing epitopes on mDENV and
mZIKV particles

To evaluate epitope preservation on mDENV particles after

inactivation by different methods, we used virion-capture ELISA to

assess the recognition of inactivated mDENV1 particles by a panel

of 14 well-characterized human mAbs that bind diverse epitopes,

including three DIII-specific mAbs, six mAbs that bind quaternary

epitope (three EDE1, two EDE2, and one DI/DII hinge mAbs), and

five FL-reactive mAbs (17–22, 31, 65, 66) (Table 1). DIII mAbs were

the most potently neutralizing, followed by the quaternary epitope

mAbs and the FL mAbs (Figure 2A). Compared with the

recognition of untreated virions, Tween 20-inactivated mDENV1

particles maintained a relative binding of 67-96% to DIII mAbs, 89-

100% to quaternary epitope mAbs, and 50-64% to FL mAbs

(Figures 2B, C). In contrast, formaldehyde-inactivated/UV-

inactivated mDENV1 particles had a relative binding of 56-85%/

85-90% to DIII mAbs, 50-84%/16-62% to quaternary epitope mAbs

and 37-43%/44-62% to FL mAbs (Figures 2D, E). These findings

suggest that Tween 20 inactivation better preserved the binding of

mDENV1 particles to all 14 mAbs tested compared with

formaldehyde or UV inactivation (relative binding to all mAbs: P

= 0.04 or P = 0.0001, respectively, the two-tailed Wilcoxon signed

rank test, Figure 2F). Subgroup analysis revealed that after Tween

20 inactivation the relative binding to quaternary epitope mAbs was

higher than that after formaldehyde or UV inactivation (P = 0.03,

both comparisons, the two-tailed Wilcoxon signed rank test,

Figure 2F). To further confirm the epitope preservation after

Tween 20 inactivation of other flaviviruses, we examined Tween

20-inactivated mDENV2 and mZIKV particles using additional

mAbs. Tween 20 inactivation maintained the binding of mZIKV

particles to all 8 mAbs tested including one DIII, two FL, two EDE1,

two DII mAbs and one DII quaternary mAb (ZIKV-117) (Table 1,

Supplementary Figure 3A) (66, 75). Similarly, Tween 20-inactivated

mDENV2 particles did not disrupt the binding to all 13 mAbs tested

(Supplementary Figure 3B); they actually increased the binding of

several mAbs. This could be due to the irreversible formation of

bumpy particles at 37 °C, as reported in previous cryo-EM studies of

mDENV2 particles (76, 77), during the Tween 20 inactivation step;

bumpy particles likely have more epitopes exposed and increased

binding by different mAbs compared with untreated particles.

Taken together, these results indicated that Tween 20 inactivation

preserve neutralizing epitopes on mDENV1, mDENV2 and

mZIKV particles.
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3.3 Purification of Tween 20-inactivated
mDENV particles preserves the neutralizing
epitopes

To purify mDENV particles after Tween 20 inactivation, we

performed 20% sucrose cushion ultracentrifugation, followed by

FPLC using an ÄKTA system (Figure 3A). Coomassie blue

staining of a protein gel electrophoresis revealed higher purity

of the flow-through mDENV1 particles compared with input

particles (Figure 3B). Western blot analysis revealed comparable

E protein bands in untreated and Tween 20-inactivated mDENV1

particles (Figure 3C). After purification, Tween 20-inactivated

mDENV1 particles were not infectious, whereas untreated

mDENV1 particles remained infectious (Figure 3D). Virion

capture ELISA probing with a panel of human mAbs revealed

that purified Tween 20-inactivated mDENV1 particles

maintained the binding to all 12 human mAbs tested
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comparable to the findings with purified untreated mDENV1

particles, suggesting the purification process did not affect the

epitope recognition of mDENV1 particles (Figure 3E). After

storage at 4 °C for 7 months, the purified Tween 20-inactivated

mDENV1 particles retained the capacity to bind all 4 of the

representative human mAbs tested (470.12, 33.3A06, 747D8 and

DVG1.3), suggesting high stability of the particles when stored at

4 °C for 7 months (Figure 3F).
3.4 Tween 20 inactivation does not affect
the membrane integrity of mDENV
particles

We next focused on mDENV1 particles in the following mode

of action and immunogenicity studies, except for the sucrose

cushion ultracentrifugation and proteinase K-protection
FIGURE 1

Evaluation of virus inactivation methods by the focus assay (22). (A) mZIKV (8.5x105 FFU, PRVABC-59 strain) was inactivated by Tween 20 or
formaldehyde compared to untreated control. Inactivated mZIKV particles were 10-fold serially diluted and inoculated into Vero cells in duplicates
for 48 h, followed by fixation and staining with mouse anti-E mouse mAb (4G2), secondary antibody and TrueBlue as described in the Methods. FFU
per well were shown at the right. (B) mDENV1 (1.6x105 FFU, Hawaii strain) was inactivated by different concentrations of Tween 20, followed by the
focus assay as above. FFU per well were shown at the right.
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FIGURE 2

Epitope preservation of inactivated mDENV1 particles. (A) Neutralizing potency of three groups of human mAbs tested: DIII, quaternary epitope (EDE, DI/II
hinge), and FL mAbs. The two-tailed Mann-Whitney test was used to compare two groups. (B−E) Virion-capture ELISA was used to assess the epitopes on
mDENV1 particles inactivated by Tween 20 (C), formaldehyde (D), or UV (E), using a panel of 14 human mAbs including three groups: DIII (blue), EDE and
DI/II hinge quaternary epitope (yellow), and FL (green) mAbs. (F) The two-tailed Wilcoxon signed rank test was used to compare the relative binding of all
and each group of mAbs to Tween 20-inactivated mDENV1 particles and to formaldehyde- or UV-inactivated particles. Significant P values were also
shown in (D, E). The relative binding was the OD of a mAb bound to inactivated mDENV1 particles relative to that of binding to untreated particles
(relative binding=1). Data were means and standard deviations of triplicates from one representative experiment of two.
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experiments, which involved the detection of C protein by an

available anti-DENV2 C mAb, we examined mDENV2 particles.

As traditional detergents emulsify lipid in the biological

membranes, the membrane integrity of virus particles is usually

disrupted after detergent treatment. To assess if Tween 20

inactivation affects viral membrane integrity, we examined

mDENV2 particles. After treatment of virions with 1% Tween 20,

the E and C proteins in partially purified virions were detectable by

Western blot analysis at levels comparable to untreated controls

(Figure 4A). In contrast, after treatment with a 1% solution of the

commonly used non-ionic detergent Triton™ X-100, the E and C

proteins were barely detectable. These findings suggest that Tween

20 inactivation, unlike Triton X-100 inactivation, does not fully

disrupt viral membrane integrity. To further examine Tween 20-
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inactivated mature particles, we performed 15-60% sucrose gradient

ultracentrifugation analysis (71). The peak of E protein from the

Tween 20-inactivated mDENV1 particles was found in fractions 5

and 6 comparable to those of untreated particles (Figure 4B),

suggesting Tween 20-inactivated mDENV1 particles maintained a

similar density as untreated particles. In addition, proteinase K

digestion-protection assay of Tween 20-inactivated mDENV2

particles revealed a pattern of complete digestion of E protein and

protection of C protein, similar to that of untreated particles, further

supporting the preservation of viral membrane integrity (70)

(Figures 4C, D). As a control, prior treatment with 2% Triton X-

100 led to complete digestion of E and C proteins (Figure 4C).

Together these findings suggest that the membrane integrity of

mDENV particles was not affected by 1% Tween 20 treatment.
FIGURE 3

Purification of untreated and Tween 20-inactivated mDENV1 particles. (A) mDENV1 particles were concentrated by 20% sucrose cushion
ultracentrifugation and purified by HiTrap Capto Core 400 column in AKTA pure system. (B) Input and purified (flow-through) particles were
examined by SDS 12% PAGE and Coomassie blue staining (31). (C) Purified untreated and Tween 20-inactivated mDENV1 were detected by Western
blot analysis using anti-E mouse mAb (4G2). (D) Focus assay was performed for purified untreated and Tween 20-inactivated mDENV1 (22). 1x
represents 100 ng E-protein-equivalent of mDENV1. (E) Purified Tween 20-inactivated mDENV1 particles were examined by virion-capture ELISA
using a panel of human mAbs including DIII (blue), EDE and DI/II hinge quaternary epitope (yellow) and FL (green) mAbs. The relative binding was the
OD of a mAb bound to inactivated mDENV1 particles relative to that to untreated particles. (F) The stability of purified Tween 20-inactivated
mDENV1 was examined by virion-capture ELISA using four representative human mAbs before and after storage at 4°C for 7 months. Data were
means and standard deviations of quadruplicates from one experiment and presented as fold changes of OD over 7 months.
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3.5 Mechanisms of Tween 20 inactivation

To investigate the mechanisms by which Tween 20 inactivates

virus infectivity, we first used real-time quantitative reverse

transcription polymerase chain reaction (qRT-PCR) to measure

viral RNA in untreated or Tween 20-inactivated mDENV1 particles

(72); Tween 20 treatment greatly (~3 log10 difference) reduced the

amount of viral RNA (P<0.05) (Figure 5A). To examine whether

Tween 20 can degrade RNA directly, purified viral RNA was treated

with 1% Tween 20 at 37 °C for 1 h and quantified by qRT-PCR.

Similar amounts of RNA were detected after Tween 20 treatment

compared with the untreated control, confirming that Tween 20

does not directly degrade viral RNA (Figure 5B). To investigate if

extracellular RNase is involved in viral RNA degradation, culture

supernatants from DENV1-infected Vero cells were pre-treated

with a potent noncompetitive inhibitor of pancreatic-type

ribonucleases such as RNase A (RNaseOUT™ Recombinant

Ribonuclease Inhibitor; Thermo Fisher Scientific) before Tween

20 inactivation. Compared with untreated control, Tween 20
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inactivation resulted in 94.3% reduction (~2 log10 difference) of

viral RNA, whereas pre-treatment with RNaseOut prevented such

RNA degradation, suggesting extracellular RNase is involved in

viral RNA degradation of Tween 20-inactivated DENV particles

(Figure 5C). We further examined the infectivity of Tween 20-

inactivated mDENV1 that was pre-treated with RNaseOut to

preserve viral RNA and found no foci detectable (Supplementary

Figure 4), suggesting Tween 20-dependent inactivation does not

require degradation of the viral genome.

To examine if Tween 20-inactivated mDENV1 particles have

reduced binding to target cells, we performed a Vero cells-based

virion binding ELISA, and found a significant reduction in binding

compared with untreated control particles (Figure 5D). As a

comparison, a significant reduction in binding to Vero cells was

also found in formaldehyde-inactivated mDENV1. During DENV

entry, the acidic environment in the endosome triggers

conformational changes of E protein during the transition from

dimer to trimer which is required for membrane fusion. To

investigate if Tween 20 affects such conformational changes of E
FIGURE 4

Membrane integrity of Tween 20-inactivated mDENV particles. (A) Culture supernatants of Vero-furin cells containing mDENV2 particles were
untreated, treated with 1% Tween 20, or 1% Triton X-100 at 37 °C for 1 h, followed by 20% sucrose cushion ultracentrifugation. The pellets were
subjected to Western blot analysis using anti-E (4G2) and anti-C (DB-32-40-30) mAbs. (B) Pellets containing Tween 20-inactivated or untreated
mDENV1 particles were subjected to 15-60% sucrose gradient ultracentrifugation analysis; Each fraction was examined by Western blot analysis
using DENV-immune human serum. (C, D) Proteinase K digestion-protection assay. Culture supernatants containing mDENV2 particles were
untreated or treated with 1% Tween 20, followed by 20% sucrose cushion ultracentrifugation. The pellets were untreated or treated with 2% Triton
X-100 before proteinase K digestion and subjected to Western blot analysis as in panel A (C); the ratio of the intensity of C protein band to that of E
protein band was quantified by Li-Cor Odyssey classic imager (LiCor Biosciences) with Image Studio software (D). Data were means and standard
deviations of 3 experiments. Representative Western blot analysis from 3 experiments was shown.
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protein, purified untreated, Tween 20- or formaldehyde-inactivated

mDENV1 particles were exposed to pH 5.5 followed by

neutralization back to pH 7.2, and examined by virion capture

ELISA using a DIII mAb (470.12) and an EDE2 mAb (747C4)

which has been shown to be sensitive to binding of acid-exposed

DENV particles (21). Compared to PBS-exposed controls,

untreated mDENV1 had a significant reduction in binding

to 747C4 (14.7% remained) after acid exposure, whereas Tween
Frontiers in Immunology 11
20- and formaldehyde-inactivated mDENV1 maintained 63%

and 93.3% of binding to 747C4 (Figure 5E). As a control for

mAb binding, untreated, Tween 20- or formaldehyde-inactivated

mDENV1 had no significant reduction in binding to 470.12

after acid exposure (Figure 5F). These findings suggest

that Tween 20 inactivation, like formaldehyde inactivation,

prevents the conformational changes of E protein induced by

acid exposure.
FIGURE 5

Mechanisms of Tween 20 inactivation. (A) Viral RNA extracted from 1 µg E-protein-equivalent of untreated and Tween 20-inactivated purified
mDENV1 particles was subjected to real-time qRT-PCR to determine RNA GE copy numbers. (B) Viral RNA extracted from mDENV1 particles was
treated with or without 1% Tween 20 at 37 °C for 1 h and subjected to qRT-PCR. (C) Culture supernatants containing mDENV1 particles were kept
for 1 h at 4°C, 37°C, 37°C and treated with 1% Tween 20, or 37°C and treated with RNaseOUT and then 1% Tween 20, and subjected to viral RNA
extraction, followed by qRT-PCR. (D) Vero cell-based virion binding ELISA. One µg E-protein-equivalent of purified untreated, Tween20- or
formaldehyde-inactivated mDENV1 particles were added to Vero cells on ice for 2 h After washing and fixation with 4% paraformaldehyde, the
bound particles were detected by ELISA using a DIII mAb (470.12). (E, F) Conformational changes of E protein on mDENV particles after low pH
exposure. Purified untreated, Tween 20- or formaldehyde-inactivated mDENV1 particles were treated with MES buffer (pH 5.5) or PBS at 37°C for
1 h and then neutralized back to pH 7.2 by Tris buffer (pH 8.8). The PBS- or acid-exposed particles were examined by virion capture ELISA using an
EDE2 (747C4) and DIII (470.12) human mAbs. Data were means and standard deviations of quadruplicates from one experiment. The two-tailed
Mann-Whitney test was used to compare 2 groups. *P<0.05.
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3.6 Tween 20-inactivated mDENV1
particles induce potently neutralizing
antibodies

To evaluate the immunogenicity of Tween 20-inactivated

mDENV1 particles, 6-10-week-old BALB/c mice (n=9) were

immunized with 3 doses of 1 µg E-protein-equivalent of purified

Tween 20-inactivated mDENV1 particles with a four-week interval

between doses (Figure 6A). Binding and neutralizing antibody titers

to DENV1 increased significantly after each dose, and a positive

correlation was found between binding and neutralizing antibodies

(Figures 6B–D). To examine the quality of antibodies induced,
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pooled immune sera at 11 weeks were analyzed by a blockade of

binding ELISA using different human mAbs (Figure 6E). While a

dose-dependent inhibition of binding was observed for all four

mAbs tested, a significant inhibition (>50%) was only observed for

three potently neutralizing mAbs (DI/DII-hinge, DIII and EDE1)

but not the weakly neutralizing FL mAb, with high 50% inhibition

concentration (IC50) titers to potently neutralizing mAbs, in

particular the EDE1 mAb 752.2B2 (IC50 titer: 1666). We further

examined the binding of pooled immune sera to DENV1WT or FL-

mutant VLPs and determined the proportion of FL antibody, which

was 6.8% and much lower than that reported in human sera after

DENV infection (74) (Figure 6F). Taken together, these findings
FIGURE 6

Immunogenicity of Tween 20-inactivated mDENV1 particles in BALB/c mice. (A) Immunization and blood sampling protocol: 6-10-week-old BALB/c
mice (n=9, 5 females and 4 males) received 3 doses of 1 µg E-protein-equivalent of purified Tween 20-inactivated mDENV1 particles with 0.1%
Alhydrogel (Alum) by intraperitoneal (IP) route at 0, 4 and 8 weeks; blood were drawn at 1 week pre-immunization and 3, 7 and 11 weeks post-
immunization, and mice were sacrificed at 12 weeks. (B) Serum antibody endpoint titers were determined by ELISA coated with purified mDENV1
virions. (C) Serum NT50 titers to DENV1 at 7 and 11 weeks were determined by microneutralization test. (D) The relationship between NT50 titers and
ELISA endpoint titers (two tailed Spearman correlation test). (E) Serial dilutions of pooled immune sera at 11 weeks were tested for blockade of
binding ELISA using human mAbs including 1F4 (DI/DII-hinge), 470.12 (DIII), 752-2B2 (EDE1) and 82.11 (FL). (F) Pooled immune sera at 11 weeks were
examined for binding to DENV1 WT and FL mutant (W101A+F108A) VLPs by ELISA. Endpoint titers and % FL antibody were determined (74). (G) NT50
titers to DENV1–4 of pooled immune sera at 11 weeks. Data were means and standard deviations of quadruplicates from one experiment. The two-
tailed Mann-Whitney test was used to compare 2 groups.
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suggest that Tween 20-inactivated mDENV1 predominantly

induced antibodies that can block potently neutralizing human

mAbs and minimally induced FL antibodies, which are weakly

neutralizing and can potentially cause ADE. Notably, pooled

immune sera at 11 weeks neutralized viruses of all four DENV

serotypes (NT50 titers to DENV1, DENV2, DENV3 or DENV4:

35353, 3191, 4449, or 678, respectively) (Figure 6G), which is

consistent with the presence of EDE1-like antibodies with the

highest IC50 titer and suggests that Tween 20-inactivated

mDENV1 particles could induce broadly neutralizing antibody

responses against four DENV serotypes.
4 Discussion

In this study, we explored the feasibility of employing Tween 20

inactivation of mDENV particles to develop a new vaccine

candidate antigen. Based on binding assays with different panels

of well-characterized human anti-DENV mAbs, we found that

Tween 20 inactivation preserved the epitopes recognized by

potently neutralizing mAbs better, as compared to formaldehyde

and UV inactivation. Moreover, mice immunized with Tween 20-

inactivated mDENV1 particles generated antibody responses that

could block most potently neutralizing mAbs and neutralize all four

DENV serotypes. At the same time, there was minimal FL

recognition. To our knowledge, this is the first report showing

Tween 20-inactivated mDENV particles represented a potential

DENV vaccine immunogen.

It is worth noting that the relative binding of mDENV1 to all 14

mAbs tested was higher after Tween 20 inactivation (50-100%)

compared with binding after formaldehyde (37-85%) or UV (16-

90%) inactivation (P = 0.04 or P = 0.0001, respectively, the two-

tailed Wilcoxon signed rank test, Figure 2F). This finding was

mainly due to higher relative binding to quaternary epitope mAbs

after Tween 20 inactivation than formaldehyde or UV inactivation

(P = 0.03, both comparisons, the two-tailed Wilcoxon signed rank

test, Figure 2F). In contrast, there was no difference in the relative

binding to DIII mAbs between Tween 20 and formaldehyde or UV

inactivation (P = 0.25 or P = 0.50, respectively, the two-tailed

Wilcoxon signed rank test, Figure 2F). DIII neutralizing mAbs are

mainly TS and have been shown to contribute to protection against

a single flavivirus, such as WNV, JEV or TBEV (78–80); these may

explain the protective effects of formalin-inactivated TBEV, JEV

and WNV vaccines in humans and animals.

The mode of action studies suggested that multiple mechanisms

are involved in Tween 20 inactivation. Based on sucrose-gradient

ultracentrifugation and protein K digestion-protection experiments,

we showed that Tween 20 does not significantly disrupt viral

membrane integrity, which may contribute to the preservation of

epitopes, especially quaternary epitopes. Moreover, Tween 20

treatment led to reduced virus binding to target cells and

prevented acid-induced conformational changes in the E protein,

suggesting both attachment and post-attachment steps of virus
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entry are involved. Unexpectedly, Tween 20 treatment of virions

resulted in a 2 to 3 log10 reduction of RNA copy number, which did

not occur when virions were pre-treated with an RNAse inhibitor

(RNaseOut), suggesting the involvement of extracellular RNase.

This finding not only explains the effectiveness of Tween 20

inactivation on virions but also provides new insight into its

mode of action. We hypothesize that Tween 20 penetrates the

lipid bilayer membrane, allowing extracellular RNase to degrade

viral RNA inside the particles, while maintaining substantial

membrane integrity with rigidity of the lipid bilayer, thus

preventing conformational changes of E protein in acidic

environments. Future studies involving high-resolution cryo-EM

reconstruction in combination with other methods, or conventional

transmission electron microscopy (TEM) imaging on Tween 20-

inactivated particles may help to delineate these possibilities and

could provide important insights in the physical characterization of

the particles.

The immunogenicity study in mice revealed Tween 20-

inactivated mDENV1 particles induced high titers of binding and

neutralizing antibodies. Assessing the quality of antibodies revealed

that they contain minimal FL antibodies and primarily antibodies

that can block three potently neutralizing mAbs (DI/DII-hinge,

DIII and EDE1) with the highest IC50 titer (1666) against 752.2B2, a

EDE1 mAb. Consistent with this finding, the induced antibodies

can broadly neutralize representative viruses from all four DENV

serotypes. Taken together, these findings support the notion that

mDENV particles represent a new vaccine candidate immunogen to

induce potently neutralizing antibodies with reduced risk of ADE.

Following this proof-of-concept study, challenge experiments are

needed to show the protective effect of Tween 20-inactivated

mDENV particles in vivo.

It should be noted that the neutralizing antibodies induced by

Tween 20-inactivated mDENV1 particles were not equally balanced

against all four DENV serotypes (NT50 titers: highest to DENV1

and lowest to DENV4) (Figure 6G). As the neutralizing antibodies

wane over time especially those against DENV4, a potential ADE

may occur upon infection with non-DENV1 viruses, such as

DENV4. Therefore, tetravalent Tween 20-inactivated mDENV

particles rather than monovalent Tween 20-inactivated mDENV1

particles are likely to be the final vaccine candidate. Previous studies

have shown the maturation status of DENV varies with cell types

(24, 36); for example, DENV derived from dendritic cells, one of the

target cells of DENV in vivo, contained more mature particles,

whereas DENV grown in C6/36 cells, a mosquito cell line, were

predominantly (more than 50%) immature particles. Studies of

mechanisms of flavivirus neutralization revealed that the potency of

neutralizing mAbs is affected by the maturation status of particles

(29, 30). It is possible that the potently neutralizing antibodies

induced by mDENV particle vaccine neutralize mature particles

efficiently, but neutralize immature particles, such as DENV coming

from mosquito vector, less efficiently. However, a recent study

showed that potently neutralizing mAbs, which recognize

quaternary epitopes, can neutralize both mature particles and C3/
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36-derived DENV particles (predominantly immature particles)

well, compared with FL or bc loop mAbs (28). Moreover, after a

few rounds of replication in vivo, including dendritic cells and

mononuclear cells, newly produced DENV particles become

predominantly mature particles (28), which will be susceptible to

efficient neutralization by potently neutralizing antibodies induced

by mDENV particle vaccine.

There are several limitations of this study. First, due to the

availability of well-characterized human mAbs, our epitope study

only included a limited number of mAbs and focused mainly on

Tween 20-inactivated mDENV1 and mDENV2 particles. Future

studies including a larger number of human mAbs and those

recognizing other DENV serotypes are needed to better

understand the epitope preservation of mDENV3 and mDENV4

particles after Tween 20 inactivation. Second, our study only

compared the epitope preservation between Tween 20 and

formaldehyde or UV inactivation. Future studies including other

inactivation methods such as H2O2 and psoralen inactivations

would provide a comprehensive understanding of epitope

preservation by different inactivation methods. Third, as Tween

20-inactivated mDENV1 particles, which keep the same maturation

status to induce the favorable immune profile, are promising for

future vaccine study in non-human primates or humans, we did not

test non-inactivated mDENV1 control as a protein-based

immunogen in our immunocompetent mice to address whether

Tween 20 inactivation is necessary to elicit the favorable

immune profile.

In conclusion, this proof-of-principle study shows that Tween 20-

inactivated mDENV1 particles better preserved the epitopes recognized

by potently neutralizing mAbs as compared with other methods. The

antibodies induced in mice by immunization with these particles not

only showed high titers of binding and neutralizing activities but also the

desirable qualities of recognizing the FL antigenic site only minimally,

competing for binding with several potently neutralizing and protective

mAbs, and neutralizing viruses of all four DENV serotypes. The studies

support the conclusion that inactivation of mature DENV particles with

Tween 20 is a promising strategy for generating new immunogens that

could be incorporated into new inactivated DENV vaccine

candidate formulations.
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