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Thymic stromal lymphopoietin (TSLP) is an alarmin cytokine possessing a

plethora of pleiotropic properties. Human and mouse TSLP exerts their activity

via a heterodimeric complex composed of TSLP receptor (TSLPR) chain and IL-

7Ra. TSLP is predominantly expressed by epithelial cells and keratinocytes but

can also be produced by several immune cells and some cancers. TSLP activates

a plethora of immune cells implicated in inflammation, angiogenesis and

tumorigenesis. In addition to its role in barrier immunity, recent studies have a

role for TSLP in cancer development. This includes both human hematologic

cancers and several solid tumors (largely carcinomas). The role of TSLP in human

and experimental cancers has been the focus of several studies, with somewhat

contradictory findings. In this Review, we will highlight recent advances in TSLP

immunobiology in the context of human and experimental cancers. We will also

discuss recent findings demonstrating that an anti-TSLP monoclonal antibody

(mAb) can exert a protective effect in a mouse model of colorectal cancer. The

recent approval of an anti-TSLP mAb for asthma treatment also emphasizes the

urgent need for additional research on the role of TSLP, a Janus cytokine,

in tumorigenesis.
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Introduction

Thymic stromal lymphopoietin (TSLP) is a member of the 4-helix bundle cytokine

family, and a distant paralog of IL-7 (1). As the name suggests, TSLP was first identified in

the supernatant of a mouse thymic stromal cell line for its activity in supporting immature

B cell proliferation and development (2–4). A human TSLP homolog was subsequently

identified in humans using in silicomethods (5, 6). Several groups isolated a TSLP-binding

protein in both humans and mice [referred to as TSLP receptor (TSLPR) in mice and

cytokine receptor-like factor 2 (CRLF2) in humans] (7–10). Sequence analysis found that

TSLPR was most closely related to the common gamma chain (gc) (7). It is now known that

the functional, high affinity, TSLPR complex is a heterodimer of TSLPR and interleukin 7

receptor alpha (IL-7Ra; Figure 1) (7, 8). Cross-species homology for both the cytokine and
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its receptor is relatively low (~40% for each), although functionally

they appear to be quite similar. Thus, the role of this cytokine axis is

conserved between human and mouse despite of a loss of

sequence identity.

A primary cellular target for TSLP are dendritic cells (DCs),

which upregulate OX40L, CD80, and CD86 in response to TSLP,

and TSLP-treated DCs can drive IL-4, IL-5, and IL-13 production

from naïve CD4+ T cells upon co-culture (12–15). In addition to its

effects on Th2 cell polarization through antigen-presenting cells,

TSLP can also act directly on CD4+ and CD8+ T cells, and Treg cells

(16–18). TSLP can also promote Th2 cytokine responses through its

actions on mast cells, innate lymphoid cells (ILCs), epithelial cells,

macrophages, and basophils (19–23). Finally, TSLP was found to

play an important role in mouse basophil biology, where in vitro,

TSLP could induce basophil maturation from bone marrow

precursors in an IL-3 independent manner. Furthermore, TSLP-

elicited basophils in vivo were phenotypically distinct from IL-3-

elicited basophils (24).

TSLP is expressed at basal levels at mucosal surfaces (e.g., gut

and lung), as well as in the skin (5, 25–27). Its expression can be

further enhanced through exposure to viral, bacterial, or parasitic

pathogens as well as Toll-like receptor (TLR) agonists (22, 28, 29). A

link between TSLP expression and atopic disease was first

established by Soumelis et al. who showed elevated expression in

the lesional skin of individuals with atopic dermatitis (AD) (30).

Following that finding, TSLP expression was found in the airways of

patients with asthma and in the nasal lavages of individuals with

allergic rhinitis (31–33). TSLP levels in asthmatic airways correlated

with Th2-attracting chemokine expression and disease severity (33).

In eosinophilic esophagitis (EoE), a gain-of-function polymorphism

in TSLP is associated with disease in pediatric subjects (34, 35), and
Abbreviations: ALL, acute lymphoblastic leukemia; ANGPT2, angiopoietin 2;

APC, antigen-presenting cell; ASM, airway smooth muscle; CAF, cancer-

associated fibroblasts; CHR, cytokine binding homology region; COPD,

chronic obstructive pulmonary disease; CRC, colorectal cancer; CRLF2,

cytokine receptor-like factor 2; CRSwNP, severe chronic rhinosinusitis with

nasal polyps; CTCL, cutaneous T-cell lymphoma; DC, dendritic cell; EMA,

European-Medicine Agency; EOC, epithelial ovarian carcinoma; FDA, Food

and Drug Administration; FGF, fibroblast growth factor; GC, germinal center;

HLM, human lung macrophage; HUVEC, human umbilical vein endothelial cell;

ICOSL, inducible T cell costimulatory ligand; ILC2, innate lymphoid cells type 2;

IL-7Ra, interleukin 7 receptor-a; IM, interstitial macrophage; IPF, idiopathic

pulmonary fibrosis; JAK, Janus kinase; lfTSLP, long form TSLP; LCMV,

lymphocytic choriomeningitis; LPS, lipopolysaccharide; MRGPRX2, Mas-

related G-protein coupled receptor member X2; NK cell, natural killer cell;

NSLC, non-small cell lung cancer; OS, overall survival; OX40L, OX40 ligand;

PBMC, peripheral blood mononuclear cell; PDAC, pancreatic cancer; pDC,

plasmacytoid DC; sfTSLP, short form TSLP; STAT, signal transducers and

activators of transcription; TAM, tumor associated macrophage; TCR, T cell

receptor; TDLN, tumor-draining lymph nodes; Tfh cell, T follicular helper cell;

TL1A, Tumor Necrosis Factor-like Ligand 1A; TLR3, toll-like receptor 3; TME,

tumor microenvironment; Treg cell, regulatory T cell; TSLP, Thymic stromal

lymphopoietin; TSLPR, TSLP receptor; VEGF-A, vascular endothelial growth

factor-A; WT, wild-type.
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TSLP expression was higher in esophageal biopsy samples from

children with active EoE compared to subjects with inactive

EoE (36).

Historically, physicians have noted that Type(T)-2

inflammatory disorders often develop in an individual patient in

a typical sequential order, with AD occurring first, followed by food

allergy and then upper and lower airway disease (37). This

sequence, often referred to as the “atopic march” (38), highlights

the potential role of TSLP and the other epithelial cytokines as

initiators and propagators of allergic disease. Studies over the past

20 years have shown TSLP to be an important driver of the atopic

march in both humans and rodents. Previous clinical and

experimental studies concluded that the role of TSLP-TSLPR axis

in cancer was controversial (39–41). Since then, several

experimental and clinical studies have shed light on the different

mechanisms of the protumorigenic role of TSLP and its isoforms in

cancer. In this Review, we will summarize the work on TSLP

immunobiology, emerging data regarding TSLP isoforms and a

new-found role for TSLP in a wide variety of cancers.
TSLP in type-2 inflammation

Epithelial-derived cytokines, including TSLP, IL-33, IL-25, and

TL1A, play critical roles in the development of allergic responses at

barrier surfaces (42). These alarmins have been implicated in the

pathogenesis of T2 inflammatory diseases, including AD (43), food

hypersensitivity reactions (44), asthma (45, 46), CRSwNPs (47) and

chronic obstructive pulmonary disease (COPD) (48, 49). The

release of these alarmins is stimulated by epithelial exposure to

allergens (particularly those rich in proteases), microbes (viruses,

bacteria, parasites), and inorganic chemicals. Although the inducing

stimuli, cellular sources, target populations and functions of

alarmins share similarities, several differences characterize the

three epithelial-derived cytokines (23, 42). Actually, there is some

evidence that TSLP and IL-33 can synergistically enhance certain

aspects of innate T2 airway inflammation (50).

TSLP has diverse effects in Type 2 (T2) inflammation. The most

proximal effect of TSLP in this regard, shared with IL-33, is the

upregulation of DC expression of OX40L, CD80, and CD86, which

are required for T helper T2 cell (TH2) polarization (12). While

expression of the IL-33 receptor ST2 on TH2 cells requires prior cell

activation, TSLPR expression does not require TH2 cell activation

and can be identified on naïve CD4+ T cells (51, 52), suggesting a

possibly earlier role for TSLP. There are a number of other

significant effects of TSLP on a broad range of cell types,

including increased proliferation of T cells (18) and TH2 cells (53)

and release of TH2 cytokines and chemokines from mast cells (54),

ILCs (21), and macrophages (55) (48, 56). While the role of TSLP in

human basophil activation is controversial (23, 57), mouse

basophils appear to play an important role in the induction of

TSLP-mediated TH2 inflammation (24, 58). Using a mouse model

that employed the vitamin D analog MC903 to induce TSLP release

from keratinocytes, investigators demonstrated that TSLP-activated

DCs prime CD4+ T cells via OX40L signaling to produce IL-3,
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leading to recruitment of basophils. As these events precede the

induction of IL-4 production by T cells, mouse basophils may

provide an initial source of IL-4 early in the course of TH2 immune

responses, suggesting that this sequential cascade of DCs, T cells,

and basophils is critical to T cell expansion and TH2 priming.

The clear role of TSLP in atopic diseases led to the development

of a neutralizing anti-TSLP human monoclonal antibody, referred

to as tezepelumab. Tezepelumab has been used in clinical trials to

treat a variety of T2 conditions, including AD (59), EoE

(NCT05583227), asthma (60) and chronic rhinosinusitis with

nasal polyps (CRSwNPs) (61). In a small study of patients with

moderate-to-severe AD, treatment with tezepelumab resulted in a

numerical, but not statistically significant improvement in eczema

severity scores, likely due to the use of background medication

during the trial (59). Tezepelumab has been extensively tested in

patients with severe asthma. A large Phase III trial using

tezepelumab in severe asthmatics to decrease exacerbations

showed a clear benefit in glucocorticoid-resistant asthma

compared to the placebo group (60). Importantly, the frequencies

and types of adverse events did not differ between the two groups.

Based on these results, tezepelumab has been approved by the

American FDA in 2021 and the European EMA in 2023 for

treatment of severe asthma. Recently, tezepelumab significantly

reduced nasal polyp size, nasal symptoms and the need for nasal

polyp surgery or systemic glucocorticoids in severe CRSwNPs

compared to placebo (61).
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Structural basis of TSLP-mediated
receptor activation and signaling

X-ray crystallographic analysis of human TSLP showed that this

cytokine has a four-helix bundle structure with four alpha helices

(aA, aB, aC, and aD) arranged in an alternating ‘up-up-down-

down’ configuration (11, 62). The TSLP four-helix bundle is

threaded by three loops (a BC-, AB-, and CD- loop). Human

TSLP contains six cysteine residues forming three disulfide bonds

(11, 63).

TSLP engages a heterodimeric complex comprising the TSLPR,

a type I cytokine receptor, and IL7Ra, a receptor also engaged by

IL-7, on several target cells (7, 8). TSLPR, highly negative, binds

TSLP containing several positively charged amino acids with high

affinity (Kd = 32 nM). Although IL-7Ra does not interact with

TSLPR alone, IL-7Ra associates with high affinity (Kd = 29 nM) to

the TSLP: TSLPR binary complex (11, 62). TSLP binding induces

the dimerization of these receptor chains, triggering Janus kinases

(JAKs) and signal transducers and activators of transcription 5

(STAT5) signaling, leading to the transcription of genes in several

targets cells (5, 6, 64, 65) (Figure 1).

The interaction of TSLP with TSLPR (site I) is mediated by

electrostatic attraction, with a positively charged region on TSLP

interfacing with a negatively charged area on TSLPR. This

interaction establishes a binary complex with a negative charge,

priming it for the addition of IL-7Ra, which has a positive
FIGURE 1

Schematic representation of TSLP-mediated receptor activation and signaling on the surface of cellular targets. A variety of triggers (e.g., cytokines,
cigarette smoke extracts, viral, bacterial and fungal products, allergens, and tryptase) can stimulate the production and release of TSLP by lung and
gut epithelial cells, cancer cells, keratinocytes, and/or macrophages. TSLP, positively charged, binds to the highly negatively charged TSLP receptor
(TSLPR). Then, IL-7Ra, positively charged, can be recruited to the TSLPR: TSLP binary complex to form the ternary TSLPR-TSLP-IL-7Ra complex (11).
This receptor complex phosphorylates Janus kinases (JAKs) and signal transducers and activators of transcription 5 (STAT5) to initiate
proinflammatory signaling in target cells (Adapted from Varricchi et al., Front. Immunol 2018).
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electrostatic potential. Critical contact points for the amino acids

involved in TSLP: TSLPR interactions are located in the C-terminal

region of aD helix and AB-loop region undergoing conformational

changes. The AB- loop offers a link to the aA helix, playing a crucial

role in the engagement with IL-7Ra at site II. This interaction is

essential for conferring an entropic benefit that facilitates the

assembly of a stable T-shaped ternary complex. In addition to the

aA helix’s role, the hydrophobic surface of IL-7Ra engages with

various outward-facing residues on TSLP’s aC helix, further

stabilizing the interaction (11).
TSLP isoforms

Harada et al. first discovered two TSLP isoforms in human

bronchial epithelial cells (66, 67). The long form TSLP (lfTSLP),

which is the homolog of mouse TSLP, is a small protein of 159

amino acids, which has a signal peptide encoded in the first 28

amino acids at the N-terminal portion of the protein (1, 6)

(Figure 2). The amino acids sequence spanning 63 residues in the

short form TSLP (sfTSLP) shares homology with the C-terminal

segment of the long form. The mRNA encoding sfTSLP was shown

to be initiated from an internal promoter in intron 2 of the TSLP

gene (66). The relevance of sfTSLP is unclear for a variety of reasons
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(49). First, sfTSLP mRNA appears to be human specific and there

are no reports of a similar variant in other species (40). Second,

while there is evidence that the sfTSLP mRNA is constitutively

expressed in a variety of tissues, including bronchial and colonic

epithelial cells, keratinocytes, and lung fibroblasts (66, 68–72), there

is no evidence for expression of a sfTSLP protein (49). This is

further complicated by the lack of anti-sfTSLP antibody reagents.

Thus, the biological role, if any, of sfTSLP remains largely unknown.

Previous research has largely overlooked the application of

analytical methods to investigate the differential expression

patterns and roles of the two distinct isoforms of TSLP in

different cancers.

There is an additional level of complexity in studying the

pathophysiological role of TSLP due to its post-translational

cleavage. The protease furin can cleave TSLP, generating

fragments of 10 and 4 kDa with different activity on human

peripheral blood mononuclear cells compared with the mature

cytokine (73). Carboxypeptidase N can also cleave TSLP to form

two peptides, which strongly activate human DCs (63). Mast cell-

derived tryptase and chymase rapidly cleave TSLP to generate

several peptides without apparent biological activity on human

lung macrophages (48, 74). These findings emphasize the need

for additional studies on the role of post-transcriptionally cleaved

products of TSLP in tumor biology.
FIGURE 2

Three-dimensional (3D) structure of human long form TSLP (lfTSLP) and short form TSLP (sfTSLP). (A) TSLP is a small protein of 159 amino acids,
which has a signal peptide of 28 amino acids at the N-portion of the protein (6). (B) The sequence of the 63 amino acids of sfTSLP is homologous to
the C-terminal portion of the lfTSLP. (C) Amino acid sequence of lfTSLP (underlined in red), the signal peptide (underlined in light blue), and sfTSLP
(underlined in green).
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Immune cellular targets of TSLP

TSLP can modulate the activation of various immune cell

populations, including DCs (11, 63, 75, 76), CD4+ T cells and

Th2 cells (18, 51). In particular, TSLP signaling in CD4+ T cells

programs a pathogenic Th2 cell state (77). TSLP limits primary and

recall responses of CD8+ T cell (78), which play a critical role in

cancer immunity (79). TSLP is a critical mediator acting on ILC2s

(63, 80, 81), and drives the development of Th2 cells (51). TSLP

provides critical signals for human (82) and mouse B cell

proliferation (83) and also expands bone marrow B cell

precursors to support lung metastasis in a breast cancer model

(84). TSLP-activated DCs promotes Tfh differentiation from naïve

CD4+ T cells (75). Tfh cells are important constituents of tertiary

lymphoid structure in human breast cancer (85). Moreover, TSLP

influences regulatory T cells (Tregs) (86–88).

Initial studies demonstrated co-expression of TSLP receptor

(TSLPR) and IL-7 receptor a chain (IL-7Ra) mRNA in human

monocytes, with TSLP stimulation inducing CCL17 production (5).

Borriello et al. (89) demonstrated that freshly isolated monocytes do

not express detectable levels of TSLPR or IL-7Ra, as assessed by

flow cytometry, nor do they exhibit STAT5 phosphorylation in

response to TSLP. Exposure to lipopolysaccharide (LPS) induced

expression of the TSLPR complex in a subset of monocytes. These

results highlighted an unrecognized phenotypic and functional

heterogeneity within the human monocyte compartment based

on TSLPR expression.

In vivo administration of TSLP modulates the differentiation of

alternatively activated macrophages (55). Interestingly, TSLP

potentiated CCL17 production induced by IL-4 from murine

macrophages. We presented novel evidence demonstrating the

constitutive intracellular presence of TSLP within the cytoplasm

of human lung macrophages (HLMs) (48). Upon stimulation with

both type 2 (T2)-high and T2-low inflammatory stimuli, HLMs

secreted TSLP (56, 74). Moreover, the long isoform of TSLP

(lfTSLP) stimulated the release of vascular endothelial growth

factor A (VEGF-A) from HLMs (48). In contrast, the short

isoform of TSLP (sfTSLP) neither induced VEGF-A production

nor inhibited the stimulatory effect of lfTSLP. These findings reveal

a previously unrecognized feedback loop between HLMs and TSLP

that may contribute to the regulation of inflammatory and tumor

angiogenesis (48, 90).

Both TSLPR and IL-7Ra are expressed at the mRNA and

protein levels in CD34+ progenitor-derived mast cells as well as

in mast cells isolated from human lung tissue (91). TSLP, alone or in

combination with proinflammatory cytokines such as IL-1b or

TNF-a, did not induce mast cell degranulation or the release of

lipid mediators (91, 92). Nonetheless, when co-stimulated with IL-

1b or TNF-a, TSLP promoted the secretion of multiple cytokines

and chemokines (91, 93, 94). Additionally, TSLP has been shown to

enhance prostaglandin D2 (PGD2) production in human mast cells

in the presence of IL-33 (95). TSLP promoted MRGPRX2-triggered

degranulation of human skin mast cells (96, 97).

A notable interspecies divergence between human and murine

basophils pertains to their responsiveness to TSLP. In line with
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previous studies (57, 98), we confirmed that human basophils did

not exhibit cytokine release (i.e., IL-4 and IL-13) upon exposure to

TSLP (23). Moreover, TSLP stimulation also failed to induce

CXCL8 secretion in human basophils. In contrast, murine

basophils responded to TSLP with upregulation of mRNA

expression and subsequent release of IL-4, IL-13, CXCL1, and

CXCL2 (23). These results reinforce the role of TSLP in

promoting the differentiation and activation of basophils in

various mouse models (24, 36, 99, 100). TSLP induced

chemotaxis and the formation of eosinophil DNA extracellular

traps from human eosinophils (101, 102). This observation is

relevant because there is emerging evidence that eosinophils and

their DNA extracellular traps play a role in cancer initiation and

growth (103, 104).

Figure 3 shows the constellation of immune and structural cells

that can be activated by TSLP.
Protumorigenic role of TSLP in
hematologic cancers

As previously emphasized, TSLP exerts several pleiotropic

effects on cells of innate and adaptive immune system (40) that

are directly and/or indirectly involved in the initiation and

progression of tumors, angiogenesis and lymphangiogenesis (129–

131). Hence, it is not surprising that TSLP would have a significant

direct or indirect role in the regulation of experimental and human

cancers (39–41).

Figure 4 schematically illustrates the protumorigenic role of

TSLP in different hematologic and solid cancers.

The cytokine receptor-like factor 2 (CRLF2) locus encodes for

human TSLPR (7). Russell et al. first identified genetic

rearrangements and mutations in the TSLPR gene in a percentage

of pediatric patients with acute lymphoblastic leukemia (ALL)

(132). Subsequent studies confirmed and extended the previous

observation demonstrating rearrangement of CRLF2 in

approximately 15% of both pediatric and adult B-cell ALL (133,

134). A more recent study found CRLF2 rearrangement in

approximately 50% of pediatric B-cell ALL (135). In this study,

TSLPR was absent in normal precursor B cells, but variably

expressed in B-cell ALL by flow cytometry (135, 136).

Rearrangements including deletions and translocations of TSLPR

can be associated in the majority of B-ALL with activating

mutations in the gene encoding the tyrosine kinase JAK2, which

signals downstream of the TSLP receptor complex (133–135, 137).

TSLP enhanced proliferation of long-term cultures of B-ALL cells

(136). CRLF2 overexpression was associated with a poor prognosis

among children and adults with B-cell ALL (133, 134, 137–140). A

recent study reported CRLF2 rearrangement in 30% of Russian

children with B-cell ALL and 72% of CRLF+ were TSLPR+ by flow

cytometry (141). Approximately 80% CRLF2 rearranged

patients had translocation involving P2RY8, a known indicator of

relapse in ALL. A study in a large cohort of 630 pediatric

Chinese patients with B-ALL reported a low percentage of

P2RYB-CRLF2 (3.33%) and CRLF2 (5.71%) overexpression.
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P2RYB-CRLF2 identified only a subset of pediatric patients with

poor prognosis (142).

TSLP concentrations are increased in plasma and overexpressed

in lymph nodes of patients with Hodgkin lymphoma (143). TSLP

mRNA is overexpressed in lesional skin and cutaneous T-cell

lymphoma (CTCL) (144). TSLP induced the production of Th2

cytokines (e.g., IL-4 and IL-13) from CTCL cell lines and

proliferation of CTCL cells through the activation of STAT5.

Studies supporting the protumorigenic role of TSLP in

hematologic cancers are outlined in Table 1.
Protumorigenic role of TSLP in solid
cancers

Pancreatic cancer

Pancreatic cancer is a very aggressive disease characterized by a

predominant Th2 (GATA3+) lymphoid infiltrate (145). Protti and

collaborators first demonstrated that human pancreatic cancer

[pancreatic ductal adenocarcinoma (PDAC)]-derived TNF-a and
Frontiers in Immunology 06
IL-1 induced the release of TSLP from cancer-associated fibroblasts

(CAFs) (146). This observation was extended showing that TSLP

released from CAFs activated TSLPR+ DCs to drive Th2

differentiation mediated by IL-4 released from basophils (147).

The translational relevance of these findings was provided

showing that IL4 expressing basophils increased in tumor-

draining lymph nodes (TDLN) of PDAC patients (148). Basophils

in TDLN correlated with Th2 phenotype in tumors and were a

negative prognostic marker of patient survival. Studies in a mouse

model of pancreatic cancer confirmed a role for basophils during

pancreatic cancer progression (147). Collectively, these results

demonstrate that TSLP released from CAFs activates DCs, which

induce T cells to secrete IL-3. Monocytes resident in TDLN secrete

CCL7, which recruits basophils that are activated by IL-3 to release

IL-4. This cytokine favors GATA3 expression in Th2 cells. A recent

study identified IL-1a and IL-1b released by pancreatic cancer cells

and tumor-associated macrophages as relevant stimuli for TSLP

release from CAFs (149). The protumorigenic role of TSLP in

PDAC was extended by showing that TSLP levels are detected in

situ in tumor cells and systematically in advanced cancer patients

(150). Moreover, elevated plasma TSLP concentrations were
FIGURE 3

Cellular Sources and Targets of TSLP. A diverse array of triggers can activate lung (28, 29, 91, 105–107) and gut epithelial cells (66, 108–111),
keratinocytes (30, 68, 70, 71, 112, 113) and cancer cells (114–118) to release TSLP. This alarmin can also be produced by mast cells (33, 92, 119, 120),
DCs (121, 122), lung macrophages (48, 56, 74), and monocytes (56). Tryptase, released by mast cells can activate the protease-activated receptor 2
(PAR2) on fibroblasts (123, 124) and keratinocytes (123) to release TSLP. TSLP activates DCs (11, 63, 75, 76), CD4+ T and Th2 cells (18, 51, 77), ILC2
(63, 80, 81), NKT cells (125), CD8+ T cells (78, 126) and B cells (4, 82), Treg cells (86–88), murine (24) but not human basophils (23, 57), mast cells
(91, 93–95), eosinophils (101, 102), macrophages (48, 55, 74), monocytes (48, 89), platelets (127, 128), and sensory neurons (123).
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correlated with reduced overall patient survival (150). Although

basophils account for 1% or less of the circulating leukocytes both in

humans and mice, they have the propensity to infiltrate into the

sites of inflammation (151). Basophils share some morphological
Frontiers in Immunology 07
and functional characteristics with mast cells, but these cells are

distinct in many aspects (152). TSLP influences the development

(24, 100) and activation of mouse basophils (23). Different models

have uncovered unique roles for basophils in Th2 inflammatory
TABLE 1 Protumorigenic role of TSLP in hematologic cancers.

Cancer Type Mechanisms References

Pediatric Acute Lymphoblastic
Leukemia (ALL)

Genetic rearrangements and overexpression of TSLPR gene (CRLF2). (132)

Pediatric and Adult B-cell ALL Genetic rearrangements and overexpression of CRLF2 in approximately 14% of patients. (133, 134)

Pediatric B-cell ALL Genetic rearrangements in approximately 50% of patients. (135)

B-cell ALL TSLP enhanced proliferation of B-ALL cells. (136)

Pediatric and Adult B-cell ALL CRLF2 overexpression was associated with poor prognosis. (134, 137–139)

Pediatric B-cell ALL P2RY8-CRLF2 rearrangement was associated with poor prognosis. (133, 138)

Pediatric B-cell ALL CRLF2 rearrangements in approximately 30-40% of patients. 80% of rearranged patients had translocation
involving P2RY8.

(140, 141)

Pediatric B-cell ALL CRLF2 rearrangements in approximately 6% of patients.
P2RY8-CRLF2 overexpression in approximately 3% of patients.

(142)

Hodgkin Lymphoma TSLP mRNA overexpression in lymph nodes. (143)

Cutaneous T-cell lymphoma TSLP mRNA overexpression in lesional skin. (144)
FIGURE 4

The protumorigenic role of TSLP in different hematologic and solid cancers. The red arrows indicate the human tumors in which TSLP plays a
protumorigenic role. The black arrows indicate the experimental tumors in which TSLP appears to play a protumorigenic role.
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responses (152–154) and parasitic infections (155–158). Moreover,

there is growing evidence supporting the significant roles of

basophils in cancer (159–163).

TSLP can induce mouse basophil maturation in an IL-3-

independent manner and TSLP-elicited basophils in vivo were

phenotypically distinct from IL-3-elicited basophils (24). TSLP

caused the production of these cytokines/chemokines (IL-4, IL-13,

CXCL1, and CXCL2) from mouse basophils (23), but did not

induce cytokine release from human basophils (23). Basophils are

present in the tumor microenvironment (TME) of various human

(148, 161, 164, 165) and mouse experimental cancers (99, 148, 165,

166). Their involvement is increasingly recognized as influential in

the onset and progression of both solid tumors and hematologic

cancers (159, 162, 163, 167).

These cells play protumorigenic roles through different

mechanisms. TSLP-activated mouse and human basophils are a

major source of IL-4 and IL-13 (23, 57), which favor the

polarization towards Th2 and M2 phenotypes (168). Moreover,

basophils can release vascular endothelial growth factor-A (VEGF-

A) (169) and cysteinyl leukotriene C4 (LTC4) (170, 171), which are

implicated in the mechanisms of angiogenesis, tumorigenesis, and

metastasis (172, 173).
Breast cancer

Breast cancer is the most common malignancy in women and

the second leading cause of cancer-related mortality in females

(174). Mouse and human breast cancer cells express TSLP, which

promotes Th2 differentiation of CD4+ T cells (175). Human breast

cancer is heavily infiltrated by Th2 cells driven by OX40L-

expressing DCs in response to cancer-derived TSLP (115). In a

mouse model of breast cancer, TSLP activated resident

macrophages to release VEGF-A, the most potent proangiogenic

factor (118). Macrophages are a major anatomical and functional

component of the TME, where they either promote or inhibit

tumorigenesis and metastasis depending on their functional state

(176, 177).

For decades, macrophages were simplistically classified into two

groups, referred to as “classically activated M1” or “alternatively

activated M2” endotypes (168). M2-like phenotype is mostly the

phenotype of tumor-associated macrophages (TAMs) (168).

Different subpopulations of TAMs promote angiogenesis, tumor

invasion, suppress cytotoxic T-cell responses and promote the

formation of metastasis (178). Single-cell analyses have identified

several subsets of TAMs in human cancers (165). T2 cytokines (i.e.,

IL-4 and IL-13) drive the differentiation of macrophages into

alternatively activated macrophages (131, 179). TSLP changes the

phenotype of macrophages toward an M2-like phenotype during

TSLP-induced airway inflammation (55). This differentiation

of macrophages was IL-13-, but not IL-4-dependent. These

results demonstrate that TSLP/TSLPR plays a significant role

in the amplification of alternatively activated macrophage

polarization (55).
Frontiers in Immunology 08
Kuan and Ziegler demonstrated that TSLPR is expressed by

human breast cancer cells and mouse TAM expressed TSLP (117).

Interestingly, non-tumor breast tissue did not express TSLPR.

Moreover, Tslp mRNA was increased in TAM, monocytes, and

neutrophils from both breast cancer patients and mice. They also

demonstrated that TSLP from non-tumor derived sources (i.e., IL-

1a-activated neutrophils) is critical for breast tumor metastasis in

lungs (117). The authors concluded that a breast-myeloid cell axis,

mediated via TSLP and IL-1a, promotes the progression of breast

cancer and metastasis formation (117).

Activation of primary breast cancer tissues, as well as

surrounding tissue, released several proinflammatory cytokines

(i.e., IL-1a, IL-1b, IL-18, and IL-33) (116). The secretion of

cytokines was higher in breast cancer tissues than in non-

malignant ones. cCD11c+ myeloid cells, including monocytes and

DCs, were the main source of IL-1b in human breast cancer. IL-1b
selectively induced TSLP secretion from breast cancer cells. These

findings suggest that Th2 inflammation in breast cancer is

dependent on IL-1b via TSLP induction. Importantly,

neutralization of IL-1b prevented breast cancer progression in a

humanized mouse model (116).

In a mouse model, TSLP released from breast cancer

downregulates the receptors, CXCR4 and a4b1 integrin, which

physiologically keep B-cell precursors in bone marrow (84). Using

mouse and human bone marrow aspirates incubated with

metastatic 4T1 breast cancer cells, the authors demonstrated that

this was the result of TSLP release from cancer cells. The loss of

CXCR4 signaling or a4b1 integrin binding to VCAM-expressing

stromal cells, caused the exit of B-cell precursors from the bone

marrow. It was suggested that these cells can differentiate into Bregs

or suppressive B cells in TME, favoring lung metastasis (84). Finally,

TSLP is overexpressed by immunohistochemistry in breast cancer

compared to normal breast tissue and is associated with an

increased risk in breast cancer in Saudi women (180).
Melanoma

Malignant melanoma continues to be a major health concern

despite the developments of immunotherapy and targeted therapy

(181, 182). Yao and collaborators used genetically engineered

models of melanoma and tumor cell grafting combined with

TSLP knockout or overexpression, to identify a crosstalk between

keratinocytes, immune cells, and melanoma cells in TME (183).

Melanoma cell-derived factors in Braf/Pten mice activated

keratinocytes to release TSLP, which engaged TSLPR on DCs.

These cells promoted the activation of GATA3+ Foxp3- Th2 cells

to release IL-4 and IL-13. At the same time, TSLP-activated DCs

promoted GATA3+ Foxp3- Treg cells showing suppressive activity

on CD8+ T cell proliferation and IFN-g production. Interestingly, a
similar population of GATA3+ Tregs was also found in human

melanoma. A similar subset of GATA3+ Tregs was also found in

skin biopsies from patients with primary human melanoma. This

study highlights the role of TSLP in programming a protumoral
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immune microenvironment in melanoma (183). Collectively, these

results highlight a novel circuit involving keratinocytes-derived

TSLP, which activates DCs and CD4+ cells to release IL-4 and IL-

13, promoting the growth and metastasis of melanoma (183).

Eosinophils are present in the TME of several human solid

(184–188) and hematologic tumors (189), and experimental cancers

(190). Eosinophils release a plethora of mediators that individually

have positive or negative effects on various immune cells (191).

Studies addressing the potential functions of eosinophils in

experimental and human tumors have provided conflicting results

(192–194). In experimental studies, a protective role of eosinophils

was found in melanoma (23, 195–199), Hodgkin’s lymphoma (200),

hepatocellular carcinoma (201), and prostate cancer (202). IL-33

administration in mice-bearing melanoma resulted in tumor

growth delay and prevented pulmonary metastasis (196, 199). On

the other side, human eosinophils produce several proangiogenic

factors such as VEGF-A (203), fibroblast growth factor (FGF-2)

(195, 204), and CXCL8/IL-8 (205). Eosinophils release chemokines

(CCL5, CCL9, CXCL10) important for the attraction of CD8+ T

cells in TME (195).

Association studies have revealed that a higher presence of

basophils (i.e., CD123+, CCR3+, FceRI+) within tumors is correlated

with improved overall survival (161). In a mouse melanoma model,

basophils released CCL3 and CCL4, which played a crucial role in

attracting CD8+ T cells to the tumor site, thereby promoting tumor

rejection (161, 206, 207). Although the mechanisms by which

basophils contribute to tumor suppression are not fully

understood, certain mediators (e.g., granzyme B and TNF-a)
released by these cells have tumor-killing properties. Moreover,

basophils secrete chemokines (e.g., CCL3 and CCL4) involved in

attracting cytotoxic CD8+ T cells into the TME (163).
Colorectal cancer

Colorectal cancer (CRC) is the third most common type of

cancer and the second leading cause of malignancy-related

mortality among the global population (208). Obata-Ninomiya

and collaborators analyzed six independent databases and found

that TSLP expression correlated with CRC and was a marker of

poor prognosis (209). The expression of TSLP mRNA in colon

cancer tissue was increased compared to normal colon from the

same patients (209, 210). These findings were extended by showing

increased expression of TSLP, TSLPR, and IL-7Ra by

immunohistochemistry in colon cancer tissues compared to

normal colon. The authors also found that TSLP rs10043985

polymorphism was strongly correlated with CRC in Saudi

patients (210). The latter finding suggests that this mutation in

the promoter region of TSLP might play a detrimental role in CRC.

In a mouse model of colitis associated with CRC, TSLP mRNA

was overexpressed in colon cancer compared to non-tumor sites

and control mice (209). The number of tumors in Tslp-/- mice was

reduced compared to Tslp+/+ mice, suggesting that TSLP plays a

protumorigenic role in this model of CRC. The frequency of Treg

expressing TSLPR (TSLPR+ Tregs) was increased in colon cancer
Frontiers in Immunology 09
and TSLPR+ Tregs exhibited stronger immunosuppressive activity

compared to TSLPR- Tregs in vitro and in vivo. TSLPR+ Tregs

subset coexpressed ST2, CTLA-4, PD-1 that are associated with

CRC in humans and mice (211–213). Collectively, these results

indicated that TSLPR+ ST2+ Treg subset was involved in CRC

development and progression (209). Although ST2 detection on

Tregs had no effect on tumor number and size, double deficiency of

TSLPR and ST2 on Tregs reduced tumor progression. These results

suggested that TSLPR signaling rather than ST2 signaling by

TSLPR+ ST2+ Tregs is important in tumor growth. The latter

finding suggested that TSLPR blockade signaling could be

effective for the treatment of CRC. In fact, the administration of

an anti-TSLP monoclonal antibody reduced the size and number of

CRC (209). This treatment was associated with decreased TSLPR+

ST2+ Tregs in colon and lymph nodes and increased Th1 cells in

colon. Collectively, these findings demonstrate for the first time that

an anti-TSLP antibody is effective in a mouse model of colitis-

associated CRC.

These results have translational relevance in colorectal tumors

in humans. The frequency of intratumor TSLPR+ ST2+ Foxp3+

CD25hi Tregs was increased in patients with CRC, compared to

adjacent normal colon from the same donor. The frequency of this

Tregs subset was also increased in peripheral blood from these

patients (209). These results are consistent with those observed in

the murine model supporting the notion that TSLPR+ ST2+ Tregs

promote a protumorigenic microenvironment during CRC

initiation and progression.
Lung cancer

Lung cancer is the leading cause of cancer mortality in men and

the second in women, behind breast cancer (214, 215). Non-small

cell lung cancer (NSLC) comprises 85% of lung cancers and 40% of

those are adenocarcinomas (216). The human lung is particularly

rich in a variety of cells of innate and adaptive immune system (217,

218), and tumor-infiltrating myeloid cells are key regulators of lung

cancer initiation and progression (217, 219).

TSLP expression, examined by immunohistochemistry, was

increased in intratumoral lung cancer compared to non-cancer

tissue and benign lesions (220). The number of Foxp3+ Tregs in

lung cancer tissue was increased compared to non-cancer tissue,

particularly in the group of TSLP+ cancers. TSLP induced the

differentiation of CD4+ CD25- T cells into Tregs (220). Recently,

we have found that TSLP, TSLPR, and IL-7Ra expression,

examined by immunohistochemistry, was higher in the

intratumoral lung cancer compared to the peritumoral area (56).

Total TSLP protein was also increased in intratumoral compared to

peritumoral lung tissue. We also examined the expression of the two

TSLP isoforms (lfTSLP and sfTSLP), TSLPR, and IL-7Ra mRNAs

in peritumoral and intratumoral lung cancer. The proinflammatory

lfTSLP mRNA was higher in peritumoral tissue, whereas the sfTSLP

mRNAwas overexpressed in intratumoral compared to peritumoral

lung cancer. The TSLPR mRNA was equally expressed in both

compartments. The IL-7Ra mRNA was highly expressed in
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intratumoral lung tissue (56). These results provide the first

evidence that the protein and molecular expression of the

different components of the TSLP/TSLPR network differ at the

intra- and peritumoral levels in cancer. Furthermore, these results

provide the first demonstration that the molecular expression of the

two isoforms of TSLP is differentially expressed at peri- and

intratumoral levels in human lung cancer. These results suggest

that the expression and the pathogenic role(s) of the two isoforms of

TSLP should be carefully investigated in the initiation and

progression of other human cancers.

In the same study, it was demonstrated that macrophages

purified from macroscopically normal lung parenchyma of

patients with lung cancer constitutively express TSLP, TSLPR,

and IL-7Ra (56). Activation of human lung macrophages (HLMs)

with IL-4, alone and in combination with IL-13, induced the

overexpression of lfTSLP mRNA and TSLP release (56).

Moreover, lipopolysaccharide (LPS), a promoter of metastatic

cells (221), was a potent stimulus for the release of TSLP from

HLMs. Finally, LPS synergistically potentiated TSLP release

induced by IL-4 from HLMs (56). More recently, it was

demonstrated that TSLP, but not sfTSLP, can activate HLMs to

release VEGF-A, the most potent angiogenic factor. Interestingly,

sfTSLP did not induce nor interfere with the activating property of

lfTSLP on HLMs (48). These results unveil an intriguing interplay

between TSLP and HLMs that might be relevant in lung cancer.

Th2-like cytokine in TME and LPS can induce TSLP release from

HLMs. TSLP, but not sfTSLP, can feedback on TSLPR on HLMs to

induce the release of angiogenic factors that can contribute to lung

cancer growth. In conclusion, TSLP released by lung macrophages

can play a role in the autocrine circuit that could favor lung

cancer progression.

Human basophils co-cultured with the human lung

adenocarcinoma cell line A549, release copious amounts of IL-4

and IL-13 (98). In human and mouse NSCLC, IL-4 derived from

bone marrow basophils and eosinophils promoted the development

of immunosuppressive tumor-promoting myeloid cells (162).

Depletion of basophils and the administration of dupilumab, IL-

4Ra blocking antibody (222), reduced tumor growth (162).

Collectively, these results further suggest that basophils may

contribute to tumor progression through the release of copious

amounts of Th2-like cytokines (163, 223).
Gastric cancer

Gastric cancer is the fifth most prevalent malignancy and the

fourth leading cause of cancer death worldwide (224). TSLP mRNA

was overexpressed in the majority of gastric cancer patients

compared to distant tumor-free samples (225). A significant

association was reported between TSLP overexpression and

lymph node metastasis. In another study, the expression of TSLP

examined by immunohistochemistry was higher in cancer tissue

compared to non-tumor sites (226). Higher tissue expression of

TSLP and higher circulating levels of this cytokine were associated

with a poor prognosis of gastric cancer (226).
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Cervical cancer

Cervical cancer is one of the most common gynecological

malignancies with high rates of morbidity and mortality (227).

TSLP examined by immunohistochemistry was overexpressed in

human cervical cancer compared to cervicitis (114). Cervical

carcinoma HeLa and CaSki cells released TSLP in vitro. TSLP

induced proliferation of human umbilical vein endothelial cells

(HUVEC) expressing TSLPR and cervical carcinoma cell-derived

TSLP promoted HUVEC proliferation. The authors concluded that

TSLP released from human cervical cancer can promote tumor

angiogenesis through the activation of TSLPR on endothelial cells

(114). This group extended the previous findings showing that TSLP

released from cervical cancer cells can activate eosinophils to produce

proinflammatory cytokines (187). A more recent study reported that

TSLP stimulates the proliferation and invasion of HeLa and SiHa cells

by downregulating the expression of miR-132 (228).
Skin cancer

Human (68, 112, 229) and mouse keratinocytes (113) are a

major source of TSLP. In a mouse model, repeated topical exposure

to environmental carcinogens induced skin inflammation and

enhanced the circulating and local levels of polyclonal IgE (99).

IgE increase was accompanied by skin infiltration of basophils

releasing Th2 cytokines (IL-4, IL-6, and IL-13). Basophil-derived

conditioned media promoted proliferation of epithelial cells and the

expression of inflammatory cytokines (i.e., IL-1a, IL-18, and IL-31).
Basophil recruitment to the inflamed skin was dependent on TSLP/

IL-3-mediated upregulation of CXCR4 in basophils (99). TSLP,

abundantly expressed in inflamed skin, induced the transport of

CXCR4 to the basophil surface. These results suggest that TSLP and

IL-3 produced at site of skin inflammation drive the expression of

CXCR4 on basophils, allowing recruitment to the skin in response

to increased levels of CXCL12. In this model of inflammation-

driven epithelial carcinogenesis, TSLP plays a key role in the

promotion of epithelial hyperplasia and tumor growth (99).
Ovarian cancer

TSLP mRNA was overexpressed in human epithelial ovarian

carcinoma (EOC) compared to adjacent normal tissues (230). TSLP

protein overexpression was found in approximately 60% of 144

patients with EOC and 16% of benign cases. Patients with TSLP

overexpression were associated with worse survival and lower

overall survival (OS) (230). It has been reported that sfTSLP

mRNA was selectively expressed by human ovarian cancers (231).

Overexpression of sfTSLP in TSLP ovarian and endometrial cancer

cells promoted tumor growth in vitro. The authors concluded that

sfTSLP was predominantly expressed in human ovarian cancers

and promoted tumor growth in vitro. These intriguing results

emphasize the need for further studies to investigate the

expression and role(s) of the two TSLP isoforms in human cancers.
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Studies supporting the protumorigenic role of TSLP in human

and experimental solid cancers are outlined in Table 2.

Figure 5 schematically illustrates the possible mechanisms by

which TSLP plays a protumorigenic role in different human and

experimental cancers.
Antitumorigenic role of TSLP in solid
cancers

Breast cancer

In a mouse model, TSLP overexpression in the skin leads to

inflammation, which was associated with inhibition of early stages

of breast carcinogenesis (232). TSLP-induced breast cancer

suppression was associated with CD4+ T cell accumulation

around breast cancer (232). The same group also examined the

possible role of TSLP induction during breast cancer development

using the PyMt cell line model in Tslptg mice (233). In an orthotopic

breast tumor model, primary breast cancer cells from PyMttg mice

or PyMt cell line were implanted into the mammary fat pad of Tslptg

and wild-type (WT) controls. Tslptg mice receiving PyMt primary

cells had delayed tumor growth and smaller tumors compared with

WT mice. Tslptg mice receiving PyM cell line also showed delayed

tumor growth. Analysis of PyMt cell line-derived breast tumor
TABLE 2 Protumorigenic role of TSLP in solid cancers.

Cancer
Type

Model Mechanisms References

Pancreatic
cancer

Human/
Mouse

TNF-a and IL-1b induced TSLP
release from cancer-associated
fibroblasts (CAFs). TSLP
activated TSLPR+ DCs.

(146, 147)

Pancreatic
cancer

Mouse IL-1a and IL-1b from pancreatic
cancer cells released TSLP
from CAFs.

(147, 149)

Pancreatic
cancer

Human TSLP was detected in situ in
cancer cells and plasma levels
were correlated with
poor prognosis.

(150)

Breast
cancer

Human/
Mouse

Breast cancer cells and tumor-
associated macrophages expressed
TSLP. Breast tumor cell-derived
IL-1a induced TSLP expression
in several immune cells. TSLP
was critical for experimental
breast tumor metastasis.

(117)

Breast
cancer

Human/
Mouse

Breast cancer cells
expressed TSLP.

(175)

Breast
cancer

Human Breast cancer cells released TSLP. (115)

Breast
cancer

Mouse TSLP induced VEGF-A release
from cancer resident
macrophages.

(118)

Breast
cancer

Human IL-1b induced TSLP release from
breast cancer cells.

(116)

Breast
cancer

Mouse TSLP released from breast cancer
cells promoted lung metastasis.

(84)

Melanoma Mouse/
Human

Keratinocyte-derived TSLP
promoted growth and metastasis
of melanoma programming a
suppressive tumor
microenvironment.

(183)

Colorectal
cancer

Human/
Mouse

TSLP expression correlated with
poor prognosis in colorectal
cancer (CRC).

(209)

Colorectal
cancer

Mouse TSLP mRNA was overexpressed
in cancer tissue. Tregs expressing
TSLPR were increased in CRCs
and were associated with
progression of CRCs in human. A
monoclonal antibody anti-TSLP
reduced the size and number of
CRC in mice.

(209)

Colorectal
cancer

Human TSLP mRNA was overexpressed
in colon cancer.

(209, 210)

Colorectal
cancer

Human TSLP rs10043985 polymorphism
was correlated with CRC.

(180)

Lung
cancer

Human TSLP was overexpressed in
intratumoral lung cancer and
correlated with Foxp3+ Tregs.

(220)

Lung
cancer

Human TSLP, TSLPR, and IL-7Ra were
overexpressed in intratumoral

(56)

(Continued)
TABLE 2 Continued

Cancer
Type

Model Mechanisms References

lung cancer. lfTSLP and sfTSLP
were differently expressed in
peritumoral and intratumoral
lung cancer tissues.

Lung
cancer

Human lfTSLP but not sfTSLP activated
human lung macrophages to
release VEGF-A.

(48, 56)

Lung
cancer

Human Basophils co-cultured with
human lung adenocarcinoma
A549 released IL-4 and IL-13.

(98)

Gastric
cancer

Human TSLP mRNA was overexpressed
in intratumoral gastric cancer.

(225, 226)

Gastric
cancer

Human Higher tissue expression and
circulating levels of TSLP were
associated with poor prognosis.

(226)

Cervical
cancer

Human TSLP was overexpressed in
cervical cancer. Cervical
carcinoma cell lines released
TSLP, which promoted
endothelial cell proliferation.

(113)

Skin
cancer

Mouse Skin carcinogens induced
basophil recruitment to the skin
mediated by TSLP.

(165)

Ovarian
cancer

Human TSLP was overexpressed in
ovarian cancer and associated
with poor prognosis.

(227, 228)
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revealed increasing CD4+ T cells in Tslptg compared with WT mice.

TSLP-activated CD4+ T cells sorted from the tumors inhibited the

growth of PyMt cells in vitro. TNF-a and IFN-g present in

supernatants of TSLP-activated CD4+ T cells were required for

PyMt tumor suppression. The authors concluded that TNF-a and

IFN-g produced by TSLP-stimulated CD4+ T cells play a major role

in providing antitumor immunity against experimental breast

cancer (233).
Lung cancer

To evaluate the role of TSLP on early lung carcinogenesis, a

mouse model of spontaneous lung adenocarcinoma, Kras+/GI2D

(KrasGI2D) was crossed with K14-TSLPtg (Tslptg) mice. Tslptg

KrasGI2D mice developed a lower lung tumor burden compared to
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KrasGI2D mice. Tslptg KrasGI2D lung tumors were composed of

lower-grade atypical alveolar hyperplasia and adenoma compared

to adenocarcinoma in KrasGI2D lung (234). CD4+ T cell depletion

inhibited the proliferative impact of TSLP against lung

carcinogenesis in TSLP overexpressing mice. The authors

suggested that in this experimental model of lung carcinogenesis,

TSLP inhibits the early stages of lung cancer development.
Skin cancer

In a mouse model of Notch-deficient skin carcinogenesis, it has

been proposed that TSLP-mediated inflammation protects against

carcinogenesis (235). TSLP-mediated tumor protection was

mediated by CD8+ and CD4+ T cells. The protective effect of

TSLPR signalling was also confirmed in a model of Notch-
FIGURE 5

Possible mechanisms by which TSLP may play a protumorigenic role. Several lines of evidence suggest that thymic stromal lymphopoietin (TSLP)
contributes to tumor development and progression through various mechanisms. Rearrangement and mutation of the cytokine receptor-like factor
2 (CRLF2) locus which encodes for human TSLPR are found in a variable percentage of children and adult patients with acute lymphoblastic
leukemia (ALL) (132–142). TSLP induces the production of Th2 cytokines (e.g., IL-4, IL-13) from cutaneous T-cell lymphoma (CTCL) (144), thereby
contributing to a protumorigenic immune milieu. Beyond hematologic malignancies, TSLP has also been implicated in a variety of solid tumors.
Several human (56, 114, 117, 150, 175, 187, 209, 210, 225, 230) and mouse cancers (209) overexpress and/or release TSLP. Within the tumor
microenvironment (TME), TSLP released from cancer-associated fibroblasts (CAFs) from pancreatic cancer activates TSLPR+ DCs to drive Th2 and
macrophage M2 phenotypes (146, 148), contributing to a protumorigenic immune microenvironment. Similarly, tumor-associated macrophages
(TAMs) from lung cancer patients express and release TSLP (48, 56, 74). Once activated by TSLP, TAMs release vascular endothelial growth factor-A
(VEGF-A), a key mediator of angiogenesis (48, 56). Consistently, in a mouse model of breast cancer, TSLP can activate macrophages to release
VEGF-A (118). TSLP can also exert direct pro-angiogenic effects. In human cervical cancer, TSLP can promote tumor angiogenesis through the
activation of TSLPR+ endothelial cells (114). Additionally, TSLPR+ Tregs exhibit strong immunosuppressive activity in both human and experimental
models of colorectal (209) and breast cancer (175) and melanoma (183), helping tumors evade immune surveillance. In a mouse model, TSLP
released from breast cancer cells promotes the differentiation of B-cell precursors into Bregs or immunosuppressive B cells in tumor
microenvironment (TME) (84). Furthermore, both mouse and human basophils activated by TSLP are a major source of T2 cytokines (IL-4, IL-13) (23,
57), which promote Th2 and M2-skewed immune responses (168). Finally, keratinocyte-derived TSLP promotes growth and metastasis of human and
experimental melanoma by activating TSLPR+ DCs which induce Tregs and immunosuppression in TME (183). In a mouse model of chronic skin
inflammation, basophils are recruited to inflamed skin via TSLP (99), promoting epithelial cell outgrowth harboring oncogenic mutations.
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independent skin cancer (235). Demeri et al. extended the previous

findings showing that Notch-deficient mice develop severe skin

inflammation caused by epidermal TSLP overexpression. Blocking

TSLP signalling in Notch-deficient animals resulted in skin

carcinogenesis. The authors concluded that upregulation of

epidermal TSLP can generate anti-tumor CD4+ T cell response in

a Th2 inflammatory microenvironment (236). Studies in humans

appear necessary to clarify the possible role of TSLP/TSLPR

network in skin carcinogenesis.
Endometrial cancer

Endometrial cancer is one of the most common types of

gynecologic cancers worldwide (237). A recent study reported

that the expression of TSLP (measured by Western blot) was

reduced in several human endometrial cancer cell lines compared

to normal human endometrial cells (238). Micrograms of TSLP

partially inhibited the proliferation of two endometrial cancer cell

lines. High concentrations of TSLP alone had no effect on the in

vitro proliferation of an endometrial cancer cell line, but slightly

enhanced the inhibitory effect of progesterone (238). The authors

concluded that the loss of TSLP in endometrial gland epithelial cells

may contribute to endometrial cancer development. The

concentrations of TSLP used in these experiments exceed by

several logarithms the pathophysiological levels of this cytokine

making the results of difficult interpretation.
Colon cancer

Yue et al. observed a reduction in TSLP expression in human

colon cancer, and there was an inverse relationship between TSLP
Frontiers in Immunology 13
levels and the clinical stage of the cancer (239). TSLP promoted

apoptosis of colon cancer cells through the engagement of TSLPR.

Using a xenograft mouse model, the authors reported that

peritumoral administration of TSLP reduced tumor growth.

Studies supporting the antitumorigenic role of TSLP in

experimental and human cancers are outlined in Table 3.
Conclusions and future perspectives

Previous reviews started to highlight the controversial nature of

the TSLP–TSLPR axis in both experimental models and human

cancers (39–41). Since then, several clinical and experimental

studies have extended the intriguing observation that in different

neoplasias TSLP can play a protumorigenic role or protective effects

depending on the tumor context. In human hematologic cancers,

such as ALL, Hodgkin disease and CTCL, TSLP appears to promote

tumor progression (Figure 6).

By contrast, in a variety of human solid cancers, TSLP can play a

protumorigenic, an antitumorigenic role, or both (Figure 6). In the

vast majority of cancers (pancreatic, ovarian, cervical, gastric,

colorectal cancers and melanoma), TSLP has been found to

promote cancer initiation and growth. By contrast, in a model of

sex hormone-dependent endometrial cancer, TSLP seems to play a

protective role (238). In this study, industrial concentrations of

TSLP inhibited cancer cell proliferation (238). It is intriguing that in

certain tumors (breast, lung and skin cancers), different studies

reported opposing views of TSLP in tumorigenesis. A possible

explanation of these apparently different results is that the

majority of studies showing an antitumorigenic effect of TSLP

were performed in different mouse experimental models (232–

236). Notably, the protumorigenic effects of TSLP were

demonstrated in several human and experimental models of

different cancers. The development of appropriate and specific

animal models appears necessary to better understanding of the

underlying mechanisms of TSLP-driven tumorigenesis in cancers.

In human cancers, the role of TSLP isoforms, which occur only

in this species, has not been thoroughly investigated. There is

preliminary evidence that the two variants of TSLP (lfTSLP and

sfTSLP mRNAs) are differentially expressed at peri- and

intratumoral levels in human lung cancer (56). Moreover, there is

some evidence that sfTSLP is selectively expressed in human

ovarian cancer (231). These preliminary results demand that the

roles of the two TSLP isoforms should be examined during the

initiation and progression of other human cancers.

The results of several studies have suggested that TSLP can exert

a protumorigenic role through different mechanisms. For instance,

TSLP can favor Th2 and M2 polarization in several cancers,

including pancreatic cancer (146–148), melanoma (183), skin

cancer (99), breast cancer (115–117, 175), and CTCL (144). TSLP

can also increase the frequency of Tregs (209) in experimental and

human colorectal cancer (209) and melanoma (183). In breast

cancer, the protumorigenic mechanism is dependent on IL-1b
released by cancer cells that activate myeloid cells in TME. The

latter cells release TSLP, which promotes tumor cell proliferation
TABLE 3 Antitumorigenic role of TSLP.

Cancer
Type

Model Mechanism References

Breast
cancer

Mouse TSLP induced CD4+ T cell
accumulation around
breast cancer.

(232, 233)

Lung cancer Mouse TSLP inhibited the early stages
of lung cancer development.

(234)

Skin cancer Mouse TSLP-mediated inflammation
protects against
skin carcinogenesis.

(232, 235)

Endometrial
cancer

Human High concentrations of TSLP
inhibited endometrial cancer
cell proliferation in vitro.
Reduced expression of TSLP in
endometrial gland
epithelial cells.

(238)

Colon
cancer

Human High concentrations of TSLP
inhibited colon cancer growth
in vitro.

(239)
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(116). Finally, it has been shown in a mouse model of breast cancer

that TSLP can activate resident macrophages to release VEGF-A

(118). We have extended the latter observation showing that TSLP,

but not sfTSLP, can induce the release of VEGF-A and VEGF-C

from macrophages isolated from patients with lung cancer (48, 56).

There is also the possibility that TSLP released from cancer cells can

directly activate endothelial cells expressing TSLPR (114).

From a translational perspective, a deeper understanding of the

tumor context-dependent effects of TSLP isoforms may encourage

the identification of reliable biomarkers to stratify patients who

might benefit from therapeutic targeting of the TSLP–TSLPR axis.

Indeed, the role of TSLP in cancer initiation and growth has

significant implications, especially considering the recent approval

of an anti-TSLP monoclonal antibody (tezepeleumab) for the

treatment of asthma, a common inflammatory disease of the
Frontiers in Immunology 14
respiratory system (60). On one side, it has been demonstrated

that the administration of an anti-TSLP antibody decreased

colorectal cancer in a mouse model (209). On the other side, if

TSLP plays an antitumorigenic role in certain tumors, the

administration of biological therapies targeting TSLP/TSLP

receptor network could lead to negative effects.

Finally, considering the proposed homeostatic and anti-

inflammatory functions of sfTSLP (71), these characteristics

warrant careful consideration in the development of targeted

therapies for cancer initiation and progression. In conclusion, the

above considerations emphasize the urgency of further investigating

the role of TSLP and its isoforms in the onset and progression of

human and experimental cancers. A deeper understanding of the

immunological and molecular determinants driving the dual

behavior of TSLP in the tumor microenvironment will be essential
FIGURE 6

Dual role of TSLP in human tumors. The red boxes indicate the tumors in which TSLP is implicated in promoting tumor growth. The green boxes
represent tumors in which TSLP appears to play a protective role. The mixed red/green boxes depict tumors in which TSLP plays both pro- and
antitumorigenic roles in various experimental and human cancers.
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to support the development of precision immunomodulatory

strategies in oncology.
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