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Broadly neutralizing antibodies (bnAbs) offer a promising route to protect against

rapidly evolving pathogens such as HIV, influenza, and SARS-CoV-2, yet eliciting

them through vaccination remains a significant challenge. A key to this problem

lies in understanding antibody affinity maturation (AM), the evolutionary process

within germinal centers (GCs) that shapes the B cell and thus antibody response.

Traditionally, AM has been viewed as favoring the selection of B cells with the

highest-affinity B cell receptors (BCRs) through competitive interplays. However,

emerging evidence suggests that GCs are more permissive, allowing B cells with

a broad range of affinities to persist, thereby promoting clonal diversity and

enabling the rare emergence of bnAbs. This review reassesses affinity-based

selection models and proposes a new paradigm that integrates multifactorial

processes, including stochastic B cell decisions within GC dynamics, antigen

extraction efficiency influenced by probabilistic bond rupture, and avidity-driven

BCR binding alterations and representations on multivalent antigens. We

highlight how advanced AM simulations that move beyond affinity as the sole

determinant provide a more realistic and predictive representation of AM,

marking a major step forward in developing strategies to promote effective

immune responses against highly mutable, complex antigens.
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1 Introduction

Antibody affinity maturation (AM) is a dynamic evolutionary process orchestrated

primarily within germinal centers (GCs) (1–3), where antibody-producing B cells undergo

rounds of somatic hypermutation (SHM) and selection. During SHM, mutations are

introduced into antibody genes as B cells proliferate, followed by a competitive selection

mechanism that favors B cells with enhanced antigen-binding affinity. This iterative cycle of

mutation and selection drives the generation of competent antibodies essential for effective

immune responses (4).

The predominant principle of AM involves a stringent process aimed at generating

antibodies with high antigen affinities (5). However, this understanding is challenged by the
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spectrum of antibody affinities observed experimentally (6–10).

Permissive GCs allow low-affinity B cells to mature and diversify

the clonal population (9, 10), a strategy that supports the generation

of broadly neutralizing antibodies (bnAbs), which prioritize breadth

over depth (11). Higher affinities do not always correlate with

improved competence when dealing with highly mutable complex

antigens (12, 13), instead, the ability to recognize a wide range of

antigen variants, as seen with bnAbs, appears more effective (14).

This prompts a reevaluation of the affinity-based discrimination

theory and whether binding affinity should remain the sole measure

of antibody maturation.

Understanding how GCs balance stringency and permissiveness

during AM is critical for informing vaccine strategies aimed at

eliciting bnAbs. However, experimental access to GC dynamics is

limited. Simulations provide an unrestricted theory-testing space to

derive novel predictions of permissive GC responses promoting the

rare emergence of bnAbs (15, 16). In recent decades, computer-

aided simulation tools have emerged, leveraging experimental

findings and mathematical algorithms to model the complex

cellular interactions and selection pressures within GCs (17), thus

guiding the iterative AM process to tailor antibody characteristics

such as high breadth (18–22). The accuracy and translatability of

in silico findings depend on models that align with essential

biological principles. A single theory that completely explains the

evolutionary dynamics of AM under GC responses does not yet

exist, and some mechanisms of GC reactions remain elusive.

Building on the foundational overview by Buchauer and

Wardemann in 2019 (17), we explore recent strategies for

modeling AM, with a specific focus on incorporating crucial

features of GCs (3) that may influence the emergence of bnAbs.

In particular, we address three central questions: (1) What

biological mechanisms promote diversity during AM within GCs?

(2) How are these mechanisms represented in current

computational models? (3) What emerging modeling techniques

offer new opportunities to advance AM simulations in support of

guiding immune responses against highly mutable pathogens? This

review synthesizes updated insights into GC dynamics and

emerging trends in computational techniques, offering a

framework to pursue new paradigms in AM modeling.

2 Recapping germinal center
dynamics

GCs are dynamic microenvironments where B cells, T follicular

helper (Tfh) cells, and follicular dendritic cells (FDCs) engage in

complex interactions driving antibody evolution (Figure 1). Upon

formation by activated B cells after infection or immunization, GCs
Abbreviations: AM, Affinity Maturation; GC, Germinal Center; BC, B Cell; Tfh,

T Follicular Helper Cell; FDC, Follicular Dendritic Cell; SHM, Somatic

Hypermutation; BCR, B Cell Receptor; PC, Plasma Cell; MBC, Memory B Cell;

pMHC, Peptide–Major Histocompatibility Complex; CDR, Complementarity-

Determining Region; FWR, Framework Region; FcR, Fc Receptor; CR,

Complement Receptor; AID, Activation-Induced Cytidine Deaminase.
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exhibit a distinct spatial organization with two main regions: the dark

zone and the light zone (1). The dark zone is a site of rapid B cell

proliferation and SHM, while the light zone is where B cells undergo

affinity-based selection and receive help from Tfh cells (2, 23, 24).

Notably, most B cells degrade their pre-SHM B cell receptors (BCRs)

before exiting the dark zone, and those bearing dysfunctional BCRs

due to SHM undergo apoptosis at this stage. This checkpoint ensures

that only B cells with functional, somatically mutated BCRs proceed

to the light zone for selection (25). In the light zone, FDCs display

antigens on their surface, allowing B cells to test the affinity of their

receptors for the antigen. Higher-affinity B cells collect more antigens

from FDCs, leading to a higher density of antigen-derived, peptide-

loaded histocompatibility complexes (pMHC) on their surface that

can be recognized by the limited number of Tfh cells (26, 27). This

interaction facilitates the death-limited selection (i.e., Tfh-cell

selective survival license) of B cells with higher affinity receptors to

re-enter the dark zone for further rounds of proliferation and

mutation (28, 29), while those with lower affinity undergo

apoptosis due to neglect (2, 5).

While the GC mechanism generally favors higher-affinity B

cells, the process is not entirely stringent, allowing lower-affinity

clones to persist—an observation not fully explained by the death-

limited model. In this model, help from Tfh cells is a crucial

determinant of B cell survival (5, 30). A remarkable work by

Bannard and colleagues demonstrated that T-cell help is not

required to initiate cyclic reentry into the dark zone (31). Instead,

pMHC-dependent interactions with Tfh cells gradually refuel B

cells, aiding their survival in the dark zone through prolonged dwell

times and accelerated cell cycles, increasing the likelihood of reentry

into the light zone (31–33). Unlike the death-limited theory, the

birth-limited selection model proposes that a B cell’s ability to

proliferate after re-entering the dark zone depends on the strength

of signals received in the light zone (3). This model aligns with the

aforementioned findings by Bannard and colleagues and allows for

a broader range of affinities to be selected, as B cells are not strictly

eliminated based on affinity but are given varying opportunities to

proliferate (34, 35). Consequently, overall diversity is maintained by

allowing lower-affinity clones to persist until clonal bursts occur,

where a single B cell clone rapidly expands (6). Although the cyclic

re-entry initiation mechanism remains under investigation, the

evidence presented above suggests that the deterministic, death-

limited selection model, which relies solely on Tfh cell help and a

constant number of B cell divisions, may need revision.

An alternative approach to understanding the selection process

in GCs involves integrating GC models with intracellular molecular

networks to manipulate AM, specifically through the upregulation

of cell-cycle regulators such as the transcription factor c-Myc (7).

The induction of c-Myc is regulated by a combination of BCR

signaling and Tfh cell-derived signals (36). BCR engagement primes

B cells to receive help from Tfh cells (37), which provide additional

signals like CD40 ligation and cytokines, fully activating c-Myc

expression. This expression is induced in a small subset of light zone

B cells associated with positive selection (38), marking them for

further proliferation (39). Meyer-Hermann introduced a simulation

framework incorporating these molecular networks, accounting for
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both Tfh cell-dependent and independent pathways, thus allowing

for separate control of selection and division (40). This framework

predicts varying outcomes for high- and low-affinity B cells, such

as differences in light zone passage times and division numbers,

which were validated experimentally (31). However, the precise

transcriptional regulatory networks governing the positive selection

of B cells remain incompletely understood. Rather than relying on

explicit molecular mechanisms, models incorporating coarse-

grained versions of antagonistic regulators between BCR signaling

and Tfh-cell have been developed to replicate biologically relevant

dynamics in GCs without predefining deterministic, affinity-based

decisions (41). Similarly, Martıńez’s research group developed a

probabilistic model of GC reactions inspired by the stochastic

kinetics of cellular reactants (42), demonstrating that clonal

diversity is reduced over time due to clonal dominance driven by

division bursts arising from slight stochastic advantages in antigen

affinity (43).
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Beyond cyclic reentry, B cells can exit GCs by differentiating

into antibody-secreting plasma cells (PCs) or long-lived memory B

cells (MBCs), though the mechanisms underlying this fate decision

remain unclear. Some studies suggest that B cell signaling mediated

by Tfh cells influences this decision in the light zone, with high-

affinity B cells more likely to differentiate into PCs (44–46), while

lower-affinity B cells tend to become MBCs (47, 48). Other studies

propose that antigens are asymmetrically distributed during cell

division, leading to antigen-retaining daughter cells differentiating

into either PCs or MBCs based on the cellular signals they acquire

and exit the GC through the dark zone, while those without

antigens remain engaged in the GC reaction (5, 49, 50).

Additionally, evidence supports a temporal switch (51) in GC

reactions, where PC differentiation is favored in later GC stages

and MBCs are primarily derived from earlier GC stages. However,

high-affinity pre-MBCs have also been identified in late-stage GCs,

supported by the observation that high-affinity antibodies with
FIGURE 1

Dynamics of GC reactions. Activated B cells enter the GC and undergo cycles of proliferation, SHM, and selection to improve their antigen affinity.
In the dark zone, B cells proliferate and mutate before migrating to the light zone to test their BCRs against antigens presented by FDCs. B cells that
successfully bind antigens and receive signals from Tfh cells can re-enter the dark zone for further rounds of division and BCR mutation or exit the
GC to differentiate into antibody-secreting PCs or MBCs. B cells that fail to bind antigens, presumably not receiving these signals, undergo their
default apoptosis. GC, Germinal Center; BC, B Cell; DZ, Dark Zone; SHM, Somatic Hypermutation; FDC, Follicular Dendritic Cell; LZ, Light Zone;
PC, Plasma Cell; MBC, Memory B Cell. Created with https://BioRender.com.
frontiersin.org
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extensive SHM are commonly derived from the human MBC pool

(3, 52). Recent findings by Sprumont et al. (9) and Sutton and Gao

et al. (10) challenge this view, showing PCs can emerge at any stage

of the GC reaction, independent of BCR affinity or temporal pattern

during the GC reaction (e.g., early versus late stages). Taken

together, these findings suggest that our understanding of the

criteria guiding the fate determination of B cells is not yet

absolute. Where the underlying mechanisms are less understood,

stochastic, probabilistic models provide an alternative to address the

complexity and variability in GC dynamics. By incorporating

stochastic interactions and decision-making guided by cellular

and molecular machinery, simulations can better align with

experimental data (41, 43, 53–55).
3 Reconsidering antigen collection
mechanisms

A key survival strategy for B cells involves their recognition by

Tfh cells, mediated by the presentation of antigens on the B cell

surface, which reflects the amount of antigen acquired from FDCs

(27). Antigen capture occurs through physical extraction via BCRs,

with the efficiency of this process driven by the BCR-antigen

interaction. Stronger-binding BCRs are better able to withstand

the mechanical pulling forces exerted by B cells (56, 57). The

assumption that higher-affinity B cells lead to enhanced

interactions with Tfh cells holds true for simple antigens with a

single epitope, like haptens (58), where BCR affinities directly

correlate with the number of antigens presented, driving the

purifying selection of the most competent clones. However, the

model becomes more nuanced for antigens with multiple epitopes

(59, 60), where permissive selection allows the survival of the less-fit

clones concerning their affinity against a pre-defined epitope. This

survival suggests that the definition of strong-binding BCRs

depends on more than single-epitope affinity, and other metrics

such as probabilistic bond rupture (61, 62), avidity (63), and

bivalent effects (18) can redefine what constitutes strong binders.

Incorporating additional factors beyond affinity provides an

alternative framework for recapitulating the dynamics of antigen

collection mechanisms, thus, reproducing permissive selection

processes in GCs.

Evidence from many studies suggests the existence of an affinity

ceiling in vivo, potentially determined by the strength of antigen

tethers (64), Fc receptors, or complement receptors on the FDC

membrane (Figure 2A). This implies that exceptionally high-affinity

BCRs gain little advantage over moderate-affinity BCRs in GCs. In

contrast to traditional equilibrium-based models, where binding

affinity depends on static association and dissociation rates, Jiang

and Wang developed a theoretical framework integrating

nonequilibrium mechanical forces exerted by B cells and the

physical properties of antigen tethers (61) In their model, the

success of antigen extraction depends on the magnitude and

duration of the applied force relative to the tether strength. If the
Frontiers in Immunology 04
applied force exceeds the tether strength, the antigen is extracted,

influencing clonal selection. The model predicts a limit to how much

force can be applied before reaching the affinity ceiling, beyond which

further increases in affinity do not significantly enhance antigen

extraction. Another alternative to affinity-based antigen collection is

the probabilistic rupture mechanism proposed by Lashgari et al.

Here, bonds between BCRs and antigens break with a probability

dependent on the speed of binding (association) and unbinding

(dissociation) (62). B cells with slower dissociation rates

outcompete those with faster association rates because bonds with

slower dissociation rates are less likely to rupture during extraction

attempts, translating into more successful antigen collection.

Affinity refers to the strength of a single interaction between a

BCR and its epitope, while avidity describes the cumulative strength

of multiple interactions in polyvalent systems where multiple

epitopes are presented. A BCR has two arms capable of engaging

in both monovalent (single interaction) and bivalent (dual

interaction) binding modes (Figure 2B), and multiple BCRs can

simultaneously interact with polyvalent antigens, increasing overall

binding strength through avidity (65). This enhancement is

observed even when the affinity of individual BCR-antigen

interactions is relatively weak (63, 66). Building on the

assumption of monovalent BCR-antigen interactions, a coarse-

grained AM model from Ovchinnikov and Karplus incorporates

both monovalent and bivalent binding modes to explore differences

in avidity based on binding valency (63). In this model, the

interaction between BCRs and antigens is expressed by two

equilibrium constants, corresponding to the first and second BCR

arm, which vary depending on the strategy each clone employs the

second arm to engage in binding. In their simulations, cooperative

bivalent binders (i.e., stronger binding after the first arm engages)

outcompeted non-cooperative bivalent and monovalent binders,

achieving greater AM and memory cell production. Amitai et al.

developed a complementary framework for bivalent binding,

considering epitope accessibility with respect to antigen geometry

(18). Using molecular dynamics simulations, they calculated the on-

rate of BCR binding for the first and second arms based on the

favorable geometry of nearby epitopes. These rates are crucial for

efficient antigen capture and subsequent B cell activation in their

GC simulations. Notably, consistent with the previously discussed

coarse-grained model developed by Ovchinnikov et al., avidity-

enhanced bivalent binding plays a key role in determining

immunodominance hierarchies by preferentially selecting epitopes

that enable such interactions. It is also worth noting that vaccine

design is often targeted towards subdominant but protective

epitopes, such as those recognized by bnAbs. Bivalent binding is

thought to reproduce the competitive pressures in GCs that select

for clones targeting these subdominant epitopes.

While BCR affinity, mediated by the complementarity-

determining regions (CDRs), is critical for antigen recognition

through epitope binding bnAbs often contain a high number of

mutations in the framework regions (FWRs), which play a key role

in governing the flexibility (67, 68) necessary for bivalent binding
frontiersin.org
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and broad antigen recognition (18). More flexible antibodies

experience greater entropy loss upon binding, making their

binding less favorable thermodynamically compared to rigid

antibodies. However, the flexibility alternatively offers an

advantage, as it enables them to bind a broader array of antigen

variants by adopting multiple conformations (68). Flexibility

parameters can be incorporated into AM modeling to influence

the CDR-directed binding free energy, as they affect the structural

rigidity or flexibility toward conserved and variable regions (69).

The AMmodel that incorporates the flexibility parameter predicts a

distinct evolutionary pathway for BCRs with low to moderate

affinity for conserved epitopes. Initially, FWR mutations increase
Frontiers in Immunology 05
flexibility, allowing antibodies to bind a broader range of antigen

variants. Over time, however, antibodies evolve toward greater

rigidity, enhancing specificity and potency for conserved epitopes.
4 Reconstructing antibody-antigen
representations

In the context of simulating AM, the selection of B cells is

typically guided by energy functions derived from the interactions

between BCRs/antibodies and antigens (17). These energy functions
FIGURE 2

Interactions between FDC and B cells and in the GC. The FDC displays antigens on its surface, often in the form of immune complexes bound to
antibodies and complement proteins like C3b. (A) Fc or complement receptor secures the immune complexes on FDC, while BCRs bind to specific
epitopes on the tethered antigen. BCR-antigen interactions trigger BCR signaling through associated molecules like CD79a/b, leading to
downstream processes such as antigen internalization. (B) The mechanical pulling force exerted by B cells to extract antigens from the FDC is
crucial for efficient internalization and processing of the antigen. The strength of this pulling force depends on how tightly the BCR interacts with
the antigen’s epitopes. FDC, Follicular Dendritic Cell; BC, B Cell; GC, Germinal Center; CR, Complement Receptor; FcR, Fc Receptor; BCR, B Cell
Receptor. Created with https://BioRender.com.
frontiersin.org
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primarily quantify the binding affinity between antibodies

and antigens, which is crucial for accurately modeling the evolution

of BCRs towards matured antibodies. The quality of such simulations

tied to energy functions, particularly when dealing with complex

antigens, depends significantly on how well the antibody-antigen

representations capture the intricacies of epitope immunodominance

(12, 16). This phenomenon refers to the preferential targeting of

specific epitopes during immune responses, influenced by factors

such as epitope accessibility, antigen valency, and glycosylation

patterns. For instance, epitopes that are more accessible or

structurally exposed are more likely to dominate the immune

response, while those that are concealed or masked by

glycosylation are often overlooked. Additionally, antigen valency—

the number of epitopes presenting on an antigen—can influence the

number of BCRs that can bind simultaneously, thereby affecting the

binding strength and downstream processes (discussed in Section 3).

These factors should be considered in antibody-antigen

representations to ensure the accuracy of the simulations.

Sequence-based approaches are computationally efficient for

large-scale studies. However, their implementation requires careful

consideration to effectively represent the complexity of multi-epitope

interactions with varying degrees of accessibility in the shape space, as

thoroughly discussed in a review by Robert and colleagues (16). To

address this complexity, when epitopes are well-characterized, some

studies suggest treating each antigenic site as an independent entity

(70, 71). This strategy allows the simulations to capture variations in

immune responses by accounting for differences in how antibodies

bind to distinct regions of the antigen, reflecting the phenomenon of

epitope immunodominance. However, when the knowledge of

epitopes is not well understood, introducing weighted parameters

or penalties into the calculations can help mitigate interactions with

hidden or variable regions (19, 72). This approach provides a coarse-

grained yet functional representation of the complex antigenic

landscape. By adjusting these weights, the model can simulate how

certain epitopes may be less accessible or exhibit greater variability,

thus influencing patterns of immunodominance and cross-reactivity,

the latter of which is a multifaceted property (16). It can refer to

polyreactivity, where structural mimicry drives the recognition of

different variants, promiscuity, where sequence similarity leads to

broad recognition, or conserved site recognition, where antibodies

target conserved regions across different strains. Sequence similarity

metrics and the adjustable weights are particularly useful for assessing

cross-reactivity related to conserved site recognition or promiscuity.

However, these metrics are limited in their ability to fully capture the

nuanced interactions involved in polyreactivity, where structural

similarities may not be solely determined by sequence. On the

other hand, structure-based representations are less sensitive to

sequence-level dissimilarities. For example, the lattice-based

representation model by Robert et al. allows for the modeling of

multiple possible binding conformations, each with minimized

energy states (73). This flexibility, although computationally more

expensive, makes structural approaches better suited for capturing

the complexity of both epitope accessibility and cross-reactivity of

multivalent antigens. By incorporating structural representations of

BCR-antigen interactions, the model can capture the permissive
Frontiers in Immunology 06
nature of GCs (74), which is primarily driven by the antigen with

the highest immunogenicity but also remains permissive to antigens

with lower immunogenicity.

Many promising strategies have emerged from the coarse-

graining of antibody-antigen interactions and antibody evolution,

with coarse-grained models becoming the standard approach for

simulating AM over several decades (16, 17). Despite their

versatility and wide applicability, coarse-grained models overlook

critical molecular details of the evolving antibodies in relation to

specific epitopes, which can now be captured by the high-resolution

atomic AM models (75). In contrast to the coarse-grained models,

which typically use shape space representations and assume

uniformly distributed mutations, this high-resolution model

integrates experimentally observed biases in mutational patterns

mediated by the activation-induced cytidine deaminase (AID)

enzyme (76). This implementation enables more accurate

simulations of SHM in B cells and allows for the reconstruction

of evolutionary trajectories, tracing the journey from a germline

BCR sequence to the reactive progeny of antibodies targeting a

structured epitope at a nucleotide level. While glycosylation

patterns and some less common mutations, such as insertions

and deletions, remain beyond the current capabilities of the

models, the evolutionary insights provided by the high-resolution

models hold the potential to significantly enhance our

understanding of antibody evolution and immune response. For

instance, they could estimate the time required for the emergence of

bnAbs, identify convergent solutions arising from different B cell

precursors, and personalize immunization plans.
5 Discussion

AM simulations have been programmed based on the premise

that competition-driven selection and fate decisions depend

primarily on affinity-mediated Tfh cell help. However, emerging

studies challenge this view, revealing that GCs exhibit permissive

properties, both with and without Tfh cells, that allow high-affinity

B cells to thrive while preserving clonal diversity. Rather than

relying solely on deterministic Tfh-cell-dependent selection,

manipulating B cell proliferation and fate through stochastic

cellular and molecular interactions appears to better account for

the maintenance of this diversity. The concept of an affinity ceiling

further suggests that B cell clones do not always outperform others

with their higher-affinity BCRs due to the intrinsic FDC-antigen

tether strength. The additional mechanisms, besides affinity, to

confront antigens underscore the permissive nature of the GC,

where selection is not governed solely by the strength of a single

BCR-antigen interaction but by a broader set of criteria, including

the dynamic bond rupture and the flexibility of BCR binding.

Nevertheless, the simulations depend on sophisticated and

interpretable models that require accurate representations of the

complex interactions between BCRs and antigens. By incorporating

these multifactorial influences, AM simulations could offer a more

nuanced understanding of the antibody evolution that goes beyond

affinity alone.
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While this review primarily focuses on modeling single-GC

dynamics and intra-GC selection (see Table 1 for a summary), it is

important to recognize that inter-GC communication and

antibody-mediated feedback—such as epitope masking and

selection bias from pre-existing antibodies—play crucial roles in

shaping the broader AM landscape. Several experimental and

computational studies have demonstrated how these feedback

mechanisms can bias the recall repertoire away from the

original immunogen and inhibit the recruitment of B cells with

similar specificity into secondary GCs, thereby affecting the

potential for breadth (72, 77–79). Although these multi-GC and

feedback-driven mechanisms are outside the scope of this review,

they represent essential elements of the humoral immune

response that should be incorporated into AM simulation

frameworks aiming to model vaccination scenarios and optimize

bnAb elicitation.
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TABLE 1 Summary of selected affinity maturation models.

Topic Article Contribution Interesting Feature

Understanding
Molecular
mechanisms

Pélissier et al., 2020 (42, 43) A loss of clonal diversity from clonal dominance is
a result of clonal bursts

The cellular interactions of B, Tfh
cells and FDCs were
modelled stochastically.

Meyer-Hermann, 2021 (40) Revision of re-cyclic decision model Intracellular molecular networks
determine B cell fates.

Yan et al., 2022 (41, 53) Introduction of bystander effects Cellular and molecular networks
drive stochastic B cell decisions.

Manipulating
antibody-antigen
interactions

Ovchinnikov et al., 2018 (69) B cells initially increase flexibility to bind antigen
variants and later evolve toward rigidity
for specificity.

Effects of FWR mutations on
antibody flexibility and
antigen binding

Amitai et al., 2020 (18) Epitopes that allow for bivalent interactions are
favored by B cells.

A bivalent effect influences
antigen collection.

Lashgari et al., 2022 (62) The kinetic selection mechanism benefits clones
with lower dissociation rates.

A probabilistic bond rupture inters
dissociation rates of BCR-
antigen contacts.

Ovchinnikov & Karplus, 2022 (63) The GC is easily dominated by B cells with
cooperative bivalent binding.

Affinity is re-defined in a term
of avidity.

Jiang & Wang, 2023 (61) B cells are selected based on ability to engage with
and extract antigens.

Extraction probability is based on the
kinetics of bond rupture.

Modulating
antibody-
antigen
representations

Anderson et al., 2020 (70, 71) The model tracks immune responses at distinct
antigenic sites, showing different
epitope immunodominance.

Representations of multiple antigenic
epitopes in a shape space

Robert et al., 2021 (73, 74) The framework allows for multiple binding
conformations of antibodies interacting with
epitope variants.

3D Structural representations of
antigens with surface amino acid
compositions and topologies

Conti et al., 2022 (75) The simulation captures a full evolutional path at a
residue level.

Incorporating the AID-mediated
mutational biases during SHM

Yang et al., 2023 (72) Subdominant epitope-targeting B cells tend to
develop cross-reactivity.

Two-epitope model of dominant and
subdominant epitopes
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