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Mu opioid receptor activation in
microglia enhances HIV-1
infection and HIV-infection-
induced inflammatory responses
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Xianbao He3, Daniel Bryant3, Mengwei Yang2, Shreya Banerjee1,
Andrés A. Quiñones-Molina1, Hisashi Akiyama1,
Gustavo Mostoslavsky2, Andrew J. Henderson3

and Suryaram Gummuluru1*

1Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian
School of Medicine, Boston, MA, United States, 2Boston University Chobanian and Avedisian School of
Medicine, Center for Regenerative Medicine, Boston Medical Center, Boston, MA, United States,
3Section of Infectious Diseases, Boston Medical Center, Boston, MA, United States
People living with HIV-1 (PWH) and chronically using opioids have elevated risks

of developing HIV-associated neurological disorders (HAND) that are often

correlated with persistent inflammation. Microglia, innate immune cells in the

brain, are the principal HIV-1 reservoir in the central nervous system and regulate

neuroinflammation. Our group previously showed that HIV-1 infection of

induced pluripotent stem cell (iPSC)-derived microglia and viral intron-

containing RNA (icRNA) expression triggers inflammatory responses. Microglia

express m opioid receptor, MOR, yet the immunomodulatory effects of opioids on

HIV-1 infection in microglia are unclear. Here, we report that MOR activation

impacts HIV-1 infection establishment and HIV-1-induced innate responses in

microglia. Morphine pretreatment enhanced reverse transcription (RT),

integration, viral transcription, and p24Gag secretion in HIV-1-infected iPSC-

derived microglia, which was blocked by treatment with naloxone, a MOR

antagonist. In contrast, morphine treatment did not impact HIV-1 infection in

MOR-deficient monocyte-derived macrophages, although, induced exogenous

expression of MOR in macrophages conferred morphine-mediated

enhancement of HIV-1 infection. Interestingly, viral transcriptome analysis by

digital-drop PCR revealed selective enhancement of HIV-1 icRNA expression in

morphine-exposed iPSC-derived microglia, which correlated with enhanced

HIV-1 icRNA-induced secretion of IP-10 in MOR+ cells. Further, PI3K inhibitor,

wortmannin, blocked morphine-mediated enhancement of HIV-1 replication

and HIV-1 icRNA-induced IP-10 secretion, suggesting that MOR signaling and

HIV-1 icRNA expression synergistically activate the PI3K-Akt signaling pathway in

microglia to exacerbate virus-induced inflammatory responses.
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Introduction

HIV-1 remains a public health threat across the globe, with over

39.9 million people living with HIV-1 in 2023 (1). While new

infections have declined by 39% as of 2023, primarily due to the

expansion of antiretroviral therapy (ART) use, 1.3 million people

were still newly diagnosed with HIV in 2023. Injection drug use is

highly associated with HIV-1 infection, with intravenous drug use

being a major route for HIV-1 infection (2). Globally, there are 11

million people who inject drugs (PWID), and 1 in 8 of these people

are living with HIV-1 (3). The most common drug to be injected

during non-medical usage is heroin, which is derived from

morphine (4, 5). Heroin usage significantly influences opioid-

dependency behaviors and raises the risk of developing opioid use

disorders (OUD) (6), thus contributing to the establishment of the

OUD and HIV-1 syndemic (7). In addition to intravenous routes,

opioids such as morphine or fentanyl are also ingested via the oral

route in pill form at higher rates in PWH than people without HIV

(8). HIV-associated neurocognitive disorders (HAND) are a

spectrum of neurocognitive impairments that are estimated to

impact 30-50% of people with HIV-1 (PWH) globally (9). PWH

who use injection drugs, such as opioids, are at higher risk for

various co-morbidities, including neurocognitive disorders (10–12).

Further, chronic opioid use has been shown to worsen

neurocognition in PWH (13, 14). Therefore, understanding the

underlying mechanisms by which opioids can exacerbate HAND is

essential to the development of HAND treatments (15).

Microglia are the principal long-term cellular reservoir of HIV-

1 in the CNS (16, 17). Despite ART, persistently infected microglia

have been observed in PWH (18), and their longevity as brain

resident macrophages might contribute to viral persistence (19).

Microglia are regulators of neuroinflammation and secrete

interferons and inflammatory cytokines such as interferon

gamma-induced protein 10 (IP-10) and IL-1b in response to

HIV-1 infection (15, 20–22). Secretion of inflammatory cytokines

and interferons by microglia is suspected to damage surrounding

neurons, contributing to the risk of HAND development (23–25).

Specifically, type I interferons have been suggested to contribute to

cognitive impairment (26), and IP-10 is associated with poor

p r o g n o s i s i n PWH w i t h HAND ( 2 7 ) . P e r s i s t e n t

neuroinflammation is highly associated with HAND (28–30).

Further, opioids have been shown to worsen neuroinflammation

by promoting microglial activation, lymphocyte infiltration by

chemokine signaling, and blood-brain barrier (BBB) disruption in

PWID (31). Concurrently, PWH and using injection opioids have

higher levels of systemic inflammation than those who do not use

injection drugs (32–34). However, the effects of opioid signaling on

HIV infection and virus-induced inflammatory responses in the

CNS are not well understood.

Human microglia express the three most common classes of

opioid receptors, Mu (MOR), Delta (DOR), and Kappa (KOR) (35),

as opposed to non-CNS resident myeloid cells such as macrophages,

which have minimal opioid receptor expression (36–38). Opioid

receptors are class A G-protein coupled receptors (GPCRs)
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activated by alkaloid opiates such as morphine (39, 40) that play

a role in both reward and analgesic effects. Agonist binding results

in receptor phosphorylation and activation that aids the

recruitment of other signal transduction cascades, including

mitogen-activated protein kinases (MAPKs), protein kinase C,

and PI3-kinase (PI3K) dependent pathways (41–45). MOR

expression is widespread in the CNS on both neurons and glial

cells in the nucleus accumbens, hippocampus, amygdala, and spinal

cord, though MOR activation in these cell types can contribute to

divergent outcomes (46). For instance, opioid receptor activation in

GABAergic neurons inhibits GABA release, which promotes

dopamine release from dopaminergic neurons in CNS regions

associated with reward, such as the ventral tegmental area (47–

49). Opioid receptor activation in astrocytes is suggested to have

anti-proliferative effects (50, 51), as well as inducing glutamate

release (52). In contrast, opioid receptor activation in microglia,

specifically by MOR agonists morphine and D-Ala (2)-mephe(4)-

gly-ol(5))enkephalin (DAMGO), has been shown to enhance

inflammatory effects (53, 54). MOR displays the highest binding

affinity for morphine compared to DOR or KOR (55), and

interestingly, ligation of MOR by morphine fails to promote

receptor endocytosis and tolerance (56), which might contribute

to the induction of prolonged signaling cascades. To date, the effects

of morphine-induced MOR signaling on HIV-1 infection kinetics

have not been defined in primary human microglia. Previous

attempts to unravel mechanisms of HIV-1 interactions with

microglia have either utilized murine microglia (57) or human

cell lines with an unclear non-human origin that require

transformation for maintenance in culture, which resulted in

substantial loss in HIV-1 infectivity (58).

Here we investigated the role of morphine on HIV-1 infection

in human microglia by using human induced pluripotent stem cell

(iPSC) derived microglia. Recent studies by us and others have

described that iPSC-derived microglia are permissive to HIV-1

infection, and the successful establishment of HIV-1 infection and

expression of HIV-1 intron-containing RNA (HIV-1 icRNA) in

iPSC-derived microglia induces inflammatory responses (59–63). In

this report, we demonstrate that morphine enhances HIV-1

infection and viral icRNA expression in MOR+ iPSC-derived

microglia, which is blocked by the opioid receptor antagonist,

naloxone. In contrast, morphine does not significantly impact

HIV-1 infection in monocyte-derived macrophages (MDMs),

which have undetectable MOR expression. Significantly,

overexpression of MOR in a human macrophage cell model,

THP-1/PMA macrophages, rescues morphine-dependent

enhancement of HIV-1 infection and subsequent HIV-1-

infection-induced IP-10 secretion, suggesting that MOR

expression is required for morphine-dependent modulation of

HIV-1 infection in macrophages and microglia. Further PI3K

inhibition suppresses morphine-mediated enhancement of HIV-1

infection and icRNA-induced inflammatory responses, suggesting

that morphine-induced activation of MOR signaling synergizes

with HIV-1 at the PI3K-Akt pathway to enhance infection

kinetics and viral infection-induced inflammatory responses.
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Methods

Cells

HEK293T cells (ATCC) and TZM-bl cells (NIH AIDS Reagent

Program, Division of AIDS, NIAID, NIH: HRP-8129, contributed

by Dr. John C. Kappes, Dr. Xiaoyun Wu, and Tranzyme Inc.)

(Derdeyn, Decker et al., 2000) were maintained in culture with

DMEM/10% FBS and 1% pen/strep (complete D10 media). THP-1

monocytic cells (ATCC, catalog #TIB-202) were cultured in

RPMI1640/10% FBS/1% pen/strep (complete R10 media). To

generate THP-1 macrophages, THP-1 monocytes were

differentiated with PMA (100 nM, SIGMA, catalog # P8139) for

24h, washed, and returned to culture. PBMCs were isolated from

fresh leukopaks obtained from NYBiologics from the fluffy top layer

of Ficoll Paque Plus (Fisher, catalog# 45-001-750). CD14+

monocytes were isolated from PBMCs using CD14 bead isolation

(Miltenyi, catalog# 130-045-101).
Generation of MDMs

Human monocyte-derived macrophages (MDMs) were

differentiated from CD14+ peripheral blood monocytes by

culturing in RPMI 1640 containing 10% heat-inactivated human

AB serum (Sigma, catalog # H4522) and recombinant human M-

CSF (Peprotech, catalog # 300-25) (20 ng/mL) for 5 days before

culturing in complete R10 media.
Generation of iPSC-derived microglia

To generate iPSC-derived microglia, iPSCs are first

differentiated toward a mesodermal, hematopoietic lineage using a

protocol that consists of plating iPSCs at low confluency on

Matrigel (Corning, catalog #354234)-coated plates in mTeSR

(StemCell Technologies, catalog# 100-0276) for 2 days.

Hematopoietic differentiation was initiated by replacing mTeSR

with StemPro34 (Thermo Fisher Scientific, catalog# 10639011)

media supplemented with Glutamax (Thermo Fisher Scientific,

catalog#35050061), 450 nM alpha monothioglycerol (a-MTG)

(Millipore Sigma, catalog# M6145-25ML), 88 ug/ml ascorbic acid

(Sigma Aldrich, catalog #A4403-100MG), 200 g/ml transferrin

(Millipore Sigma, catalog #10652202001), 0.1 mg/ml primocin

(Fisher Scientific, catalog# ANT-PM-2), 5 ng/ml bone

morphogenetic protein-4 (BMP4) (Peprotech, catalog #120-05ET-

100UG), 50 ng/ml vascular endothelial growth factor (VEGF)

(Peprotech, catalog # 100-20A-100UG) and 2µM CHIR99021

(Fisher Scientific, catalog #44-231-0), and transferring cells to

hypoxic culture conditions (5% O2). On days 2 and 4, the media

was changed, with 2µM CHIR99021 being switched out for 20 ng/

ml basic fibroblast growth factor (bFGF) (StemCell Technologies,

catalog #78003). On days 6 through 12, media was replaced every

other day with StemPro34, containing Glutamax, 450 nM a-MTG,
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50 mg/ml ascorbic acid, 150 g/ml transferrin, 0.1 mg/ml primocin,

10 ng/ml BMP4, 5 ng/ml VEGF, 5 ng/ml bFGF, 100 ng/ml SCF, 10

ng/ml FMS like tyrosine kinase 3 ligand (FLT3L) (R&D Systems,

catalog #308-FKHB-050), 30 ng/ml thyroid peroxidase (TPO)

(Peprotech, catalog #300-18-100UG), 30 ng/ml IL-3 (R&D

Systems, catalog #203-IL-050/CF), 10ng/ml IL-6 (Peprotech,

catalog #200-06), 5 ng/ml IL-11 (Peprotech, catalog #200-11), 25

ng/ml insulin like growth factor-1 (IFG1) (R&D Systems, catalog

#291-G1-200) and 20 ng/ml sonic hedgehog recombinant protein

(SHH) (Peprotech, catalog #100-45). Cells were switched back to

normoxia conditions at day 8. At the end of the 12-day protocol,

hematopoietic cells contain 25 - 65% (average 43%) CD34+CD45+

progenitor cells (64). Subsequently, the hematopoietic cells were

harvested and differentiated toward microglia lineage using

STEMdiff™ Microglia Differentiation Kit (StemCell Technologies,

catalog #100-0019) and STEMdiff™ Microglia Maturation Kit

(StemCell Technologies, catalog #100-0020). This protocol

consists of 24 days of microglia differentiation followed by 4–10

days of microglia maturation, resulting in a highly pure population

of microglia (> 90% CD45/CD11b-positive, 90% TREM2-

positive microglia).
Viruses

HIV-1 proviral plasmids, Lai/YU2-env (replication-competent,

CCR5-tropic), and LaiDenv/GFP (single-round GFP-expressing

HIV-1 reporter virus) have been described previously (65, 66).

Viruses were derived via calcium phosphate-mediated transient

transfection of HEK293T cells with proviral plasmids, packaging

plasmid (psPAX2), and VSV-G-expression plasmid (H-CMVG). As

previously described, SIVmac Vpx containing VLPs were generated

from HEK293T cells by co-transfection with SIV3+ packaging

plasmid and H-CMVG (Goujon, Jarrosson-Wuillème et al., 2006).

The plasmid pcDNA3.1/OPRM1, which expresses a flag-epitope-

tagged MOR, was a gracious gift of the Ferré lab (67). To generate a

flag-MOR-expressing retroviral expression plasmid, flag-OPRM1

orf was cloned into pLNCX using Hind III and Apa I restriction

enzymes. LNC-MOR or empty LNCX retroviral particles were

generated by calcium phosphate-mediated co-transfection of

HEK293T cells with LNCX or LNC-MOR retroviral plasmids

with packaging plasmid (pCL10A1) and envelope-expression

plasmid (H-CMVG). Virus particles were harvested from

HEK293T supernatants at two days post-transfection, filtered

through a 0.45 µm filter, and concentrated via ultracentrifugation

at 24,000 rpm for 1.5 hours at 4 °C over 20% sucrose using a

SW32Ti rotor (Beckman Coulter). Virus pellets were resuspended

in PBS and stored at -80 °C. To generate CD4+ T cell-derived Lai/

YU-2env, CD4+ T cells were infected with Lai/YU2-env at MOI 0.1

by spinoculation at 2300 rpm for 1 hour, washed with PBS, and

cultured in R10 media supplemented with 50U/mL IL-2. CD4+ T

cell supernatants were harvested at days 3, 6, and 9 post-infection

using the same ultracentrifugation steps described above. Infectious

virus titers were measured on TZM-bI cells by measuring b-
galactosidase activity as described previously in (68).
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Generation of MOR-expressing THP-1s

THP-1 monocytes were transduced with flag-MOR-expressing

retrovirus particles and cultured in geneticin (Gibco, 10-131-027) (1

mg/mL)-containing complete R10 media. Surface expression of

MOR was confirmed by flow cytometry and immunofluorescence

analysis using anti-MOR polyclonal antibody (Novus Biologicals,

catalog # 31180).
Opioid treatment

Cells were treated with varying concentrations of morphine

(NDC 00216-1307-08) or DMSO (vehicle control) for 24h before

infection initiation. In some experimental conditions, cells were

treated with 1µM naloxone (Sigma-Aldrich, catalog #BP548) for 1

hour before morphine was added.
Infection

iPSC-derived microglia and MDMs were infected with CD4+ T

cell-passaged Lai/YU-2env, and THP-1/PMA macrophages were

infected with LaiDenv/GFP/G. To increase the permissiveness of

THP-1/PMA macrophages and MDMs to HIV-1 infection,

infection conditions included either SIVmac Vpx-VLPs (5 ng of

p27) or deoxyribonucleosides (dNs, 2.5mM, Sigma-Aldrich,

catalog# D8668, D0776, T1895, D0901) for THP1/macrophages

andMDMs, respectively. In some experiments, cells were pretreated

with efavirenz (EFV, 1 µM, NIH AIDS Reagent Program) or

raltegravir (Ral, 30 µM, Selleck Chemicals, catalog #50-615-1).

DMSO (Sigma Aldrich, catalog #BP231-1) was used as a vehicle

control. Cells were spinoculated with virus-containing supernatants

for 1 hr at 2300 rpm at room temperature with various multiplicities

of infection (MOI) ranging from 0.2 to 1. Cells were washed 2 hours

after spinoculation to remove unbound virus. Cells were harvested 3

days post-infection, and cells and cell-free supernatants were

processed for measurements of infection establishment (flow

cytometry for GFP expression or p24gag ELISA).
RNA analysis

Total mRNA (100 ng), isolated from 5x105 cells using a RNeasy

Plus kit (Qiagen, catalog #74136), was reverse transcribed

(Superscript IV, Invitrogen, catalog #18-090-010) using oligo(dT)

20, and random hexamer primers. Target mRNA was quantified

using Maxima SYBR Green (Thermo Scientific, catalog

#FERK0242) for the following targets: OPRM1, HIV-1 msRNA,

HIV-1 gRNA. The threshold cycle (Cq) was normalized to that of

GAPDH using the DDCt method (Rao, Huang et al., 2013). Primers

for RT-PCR are listed in Table 1. For RT-ddPCR, FAM-conjugated

probes were designed to distinguish HIV transcripts. RT-ddPCR

probe design was based on those previously reported (69) and
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multiplexed to measure the frequency of probe sites simultaneously

in ddPCR assays. Cycling conditions for ddPCR were described

previously (70). Signals were identified using a Bio-Rad QX200

Droplet Digital PCR System and Quantasoft Data Analysis

Software. The lists of primers and probes for RT-ddPCR are

listed in Tables 2 and 3, respectively.
DNA analysis

Cells were lysed with DNA lysis buffer containing 10 mM

EDTA (Bioworld, catalog #40120337, 100 mM NaCl (Fisher

Scientific, catalog #S271-3), 0.5% (W/V) SDS (Boston

Bioproducts, catalog #BM-230), and 10 mM Tris-Cl (pH 8.0)

(Boston Bioproducts, catalog #BBT-75). Lysates were treated with

proteinase K (New England Biolabs, catalog #P8107) for 15min at

56 °C. DNA was isolated from proteinase K-treated cell lysates

using phenol: chloroform: isoamyl alcohol (Fisher Scientific,

15593031) extraction, precipitated with sodium acetate and

ethanol, and resuspended in water. Total cell DNA was used for

quantification of early and late RT products by qPCR (primers are

listed in Table 1).
TABLE 1 List of primers for RT-PCR.

Gene name Forward (5’…3’) Reverse (5’…3’)

GAPDH
CAAGATCATCAGCA
ATGCCT

AGGGATGATGTTCT
GGAGAG

IP-10
AAAGCAGTTAGCAA
GGAAAG

TCATTGGTCACCTT
TTAGTG

OPRM1
CAGATACACCAAGAT
GAAGAC

CCCATTAGGTAATTC
ACACTC

Early RT
GGCTAACTAGGGAAC
CCACTG

CTGCTAGAGATTTTCCAC
ACTGAC

Late RT
TGTGTGCCCGTCTG
TTGTGT

GAGTCCTGCGTCGA
GAGAGC

HIV-1 gRNA
TGTGTGCCCGTCTG
TTGTGT

CTCTCCTTCTAGCC
TCCGCT

HIV-1 msRNA
GCGACGAAGACCT
CCTCAA

GAGGTGGGTTGCTTTGA
TAGAGA
TABLE 2 List of primers for RT-ddPCR.

Gene name Forward Reverse

LTR
GCCTCAATAAAGCT
TGCCTTGA

GGGCGCCACTGCTAGAGA

Nef
GGTGGGAGCAGYATC
TCGAGA

TGTAAGTCATTGGTCTT
AAAGGTACCTGAGG

Env
TVTTCMTTGGGTTCT
TRGGAGCAGCAGG

GCACTATRCCAGACAA
TAVYTGTCTGGCCTGTACC

Gag
GACTAGCGGAGGCT
AGAAGGAGAGA

CTAATTTTCCSCCDCTTA
ATAYTGACG
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Intact proviral DNA assay

Primers and probes targeting the 5’ (psi sequence) and 3’

regions (RRE/env) of HIV-1 provirus, conjugated to FAM and

VIC fluorophores, respectively, were used as previously described

(70, 71). The lists for IPDA primers and probes are listed in Tables 4

and 5, respectively. The dark probe recognized hypermutated Env

sequences to define hypermutated provirus sequences.

Hypermutated signals were detected as single positive droplets

with FAM signals. RPP30 primers and probes were used to

determine the cell number and DNA shearing index. Infections in

the presence of EFV or RAL were used as controls to confirm that

IPDA signals were dependent on reverse transcription and derived

from integrated genomes. Cell numbers are estimated from the

RPP30 and DNA shearing quantification.
Western blot analysis

THP-1/PMA macrophages were pretreated with 1 µM naloxone

for 20min before 1 µMmorphine or DMSO treatment for 7min. Cells

were washed with ice-cold PBS and lysed with RIPA buffer (Boston

Bioproducts, catalog #116TX) supplemented with protease inhibitors

(Sigma-Aldrich, catalog # 4693159001). Lysates were clarified by

centrifugation for 20min at 13,000 rpm. Protein concentrations were

determined using Bradford reagent (Fisher Scientific, catalog

#PI23246). Cell lysates containing 30 µg of total protein were

separated by SDS-PAGE and transferred to nitrocellulose

membranes. Membranes were blocked with Li-Cor Blocking Buffer

(Fisher Scientific, catalog #NC1660556) before being probed with

rabbit anti-phospho-Akt (Cell Signaling, catalog # 4060, 1:1000) or

rabbit anti-phospho-MOR (Cell Signaling, catalog #3451, 1:1000) and
Frontiers in Immunology 05
mouse anti-b-actin antibody (Thermo-Fisher, catalog #AM4302,

1:5000). Staining was visualized with secondary antibodies: goat

anti-mouse-IgG-DyLight 680 (Pierce, catalog #35568) and goat

anti-rabbit-IgG-DyLight 800 (Pierce, catalog #35518). Membranes

were stripped with stripping buffer (Invitrogen, catalog #46430) for

30min at room temperature and probed again for rabbit anti-pan-Akt

(Cell Signaling, catalog #4691, 1:1000) and mouse anti-actin.

Membranes were scanned with Odyssey CLx scanner (Li-Cor).
Imaging

For THP-1/PMA macrophages, MDMs, and iPSC-derived

microglia, cells cultured on coverslips were stained with Alexa594-

conjugated wheat germ agglutinin (Thermo-Fisher, catalog #32464,

1:250) for 20 minutes at 4 °C to label the plasma membrane. Cells

were washed with PBS and stained with a rabbit anti-MOR antibody

(Novus Biologics, catalog #NBP1-31180 1:500) followed by an Alexa

Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen, catalog

#A11070, 1:200). Cells were fixed with 4% paraformaldehyde

(Boston Bioproducts, catalog#BM-155) followed by DAPI (49,6-

diamidino-2-phenylindole; Sigma-Aldrich, catalog #D9542) staining

to visualize nuclei. Stained cells were imaged with a Nikon SP5

confocal microscope. Images were analyzed with ImageJ (NIH).
ELISAs

IP-10 secretion in culture supernatants was measured with a BD

human IP-10 ELISA set (BD, catalog #B550926). IL-8 secretion in

culture supernatants was measured with a BD human IL-8 ELISA

set (BD, catalog# B555244). MCP-1 secretion in culture

supernatants was measured with a BD human MCP-1 ELISA set

(BD, catalog #B555179). The p24Gag content in cell supernatant

secretion was measured by an ELISA, as previously described

(Akiyama, Miller et al., 2018). SIVmac Vpx VLPs were tittered

using a commercial p27 ELISA (XpressBio, catalog #SK845).
Cell viability assays

Cell viability was quantified by lactate dehydrogenase (LDH)

measurements in cell culture supernatants using a commercial

cytotoxicity assay (Fisher Scientific, catalog #PR-G1780).
TABLE 4 List of primers for IPDA.

Gene name Forward Reverse

Psi
CAGGACTCGGCTTG
CTGAAG

GCACCCATCTCTCTC
CTTCTAGC

Env
AGTGGTGCAGAGAG
AAAAAAGAGC

GTCTGGCCTGTACCGT
CAGC

RPP30-1
GATTTGGACCTGC
GAGCG

GCGGCTGTCTCCACAAGT

RPP30-2
GACACAATGTTTGG
TACATG GTTAA

CCATCTCACCAATCATTC
TCCTTCCTTC
TABLE 5 List of probes for IPDA.

Gene name Probe FAM or HEX

Psi TTTTGGCGTACTCACCAGT FAM

Env (Intact) CCTTGGGTTCTTGGGA VIC

Env (Hypermut) CCTTAGGTTCTTAGGAGC Dark Probe

RPP30-1 CTGACCTGAAGGCTCT HEX

RPP30-2 CTTTGCTTTGTATGTTGGCAGAAA FAM
TABLE 3 List of probes for RT-ddPCR.

Gene
name

Probe
FAM or
HEX

LTR CCAGAGTCACACAACAGACGGGCACA FAM

Nef CCAGGCACAAKCAGCATT FAM

Env AGCACKATGGG HEX

Gag ATGGGTGCGAGA HEX
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Results

Morphine enhances HIV-1 infection
establishment in microglia in a MOR-
dependent manner

Microglia express opioid receptors, though the consequences of

opioid exposure on HIV-1 infection establishment in microglia

have not been mechanistically characterized, primarily due to

limited access to primary human microglia. To overcome
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problems with cell availability, we chose to determine opioid

effects on iPSC-derived microglia, which are phenotypically

similar to CNS-resident microglia. (Pandya, Shen et al., 2017)

Importantly, we have previously shown that iPSC-derived

microglia are susceptible to HIV-1 infection in vitro (60). We

used an iPSC-derived microglia differentiation protocol that

utilized hematopoietic progenitors on two donor-derived cell

lines, BU1 and BU3. Following cell differentiation protocol, >

99% of the CD45+ cells expressed microglial markers CD11b,

TREM2, P2RY12, and TMEM119 (Figure 1A). Similar to CNS-
FIGURE 1

Morphine enhances HIV-1 infection in microglia. (A) Representative flow cytometry plots of TREM2, CD45, CD11B, P2RY12, and TMEM119 expression
in iPSC-derived microglia. (B) OPRM1 mRNA expression was measured by RT-qPCR and normalized to GAPDH in iPSC-derived microglia
(C) Representative immunofluorescence images of MOR surface expression: stained nucleus (DAPI, blue), plasma membrane (wheat germ agglutinin,
red), and MOR (green) in iPSC-derived microglia. (D) iPSC-derived microglia were pretreated with DMSO (vehicle control) or naloxone (1µM) for 1 hr
before treatment with morphine (1 µM) for 24hr. Cells were washed and infected with HIV-1(Lai/YU2-env, MOI 0.2). Supernatants were harvested 3
days post-infection for p24Gag measurements by ELISA. (E) OPRM1 mRNA expression was measured by RT-PCR and normalized to GAPDH in MDMs.
(F) Representative immunofluorescence images of MOR surface expression: stained nucleus (DAPI, blue), plasma membrane (wheat germ agglutinin,
red), and MOR (green) in MDMs. (G) MDMs were pretreated with DMSO (vehicle control) or naloxone (1 µM) for 1 hr before 1 µM morphine was
treated for 24 hr. Cells were washed and infected with HIV-1 (Lai/YU2-env, MOI 1, with SIVmac Vpx VLPs (5ng p27)). Supernatants were harvested 3
days post-infection for p24Gag measurements by ELISA in MDMs. The means +/- SEM are shown, and each symbol represents an independent
experiment for iPSC-derived microglia. P values: one-way ANOVA followed by the Tukey-Kramer posttest; **, p<0.01 (A-G).
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resident microglia (Maduna, Audouard et al., 2019), iPSC-derived

microglia expressed MOR mRNA (Figure 1B), and cell surface

MOR expression was confirmed by confocal immunofluorescence

microscopy (Figure 1C). MOR expression overlapped with plasma

membrane staining and was also located at subcellular

compartments proximal to the plasma membrane (Figure 1C).

iPSC-derived microglia were treated with morphine prior to

infection with CCR5-tropic replication-competent HIV-1 (Lai-

YU2/env). Interestingly, morphine pretreatment enhanced HIV-1

replication in MOR+ iPSC-derived microglia. We observed ~3-fold

enhancement in p24Gag secretion at 3 days post-infection

(Figure 1D). Morphine-mediated enhancement of p24Gag

secretion was suppressed upon naloxone pre-treatment, a MOR

antagonist, suggesting that pro-viral effects of morphine required

MOR activation in iPSC-derived microglia. The expression of

opioid receptors on human macrophages has remained

controversial. While some studies have documented MOR mRNA

expression in peripheral blood mononuclear cells (PBMCs) and

monocytes (Chuang, Killam et al., 1995), expression of MOR

protein has not been observed in human macrophages. In

agreement with some of the previously published studies (36, 37),

monocyte-derived macrophages (MDMs) did not express MOR

mRNA or protein (Figures 1E, F). In correlation with the lack of

MOR expression, morphine pre-treatment did not significantly

impact p24Gag production from MOR-deficient MDMs

(Figure 1G). Therefore, morphine increases HIV-1 virion release

in microglia but not from macrophages, suggesting that morphine

enhancement of HIV-1 infection is dependent on cell-surface

MOR expression.
Exogenous expression of MOR confers
morphine-mediated enhancement of HIV-1
infection in macrophages

To confirm the requirement of MOR expression for morphine-

dependent enhancement of HIV-1 infection, we retrovirally

transduced THP-1 monocytes to constitutively express MOR and

differentiated cells to macrophages by phorbol 12-myristate 13-

acetate (PMA) treatment. While parental THP-1/PMA

macrophages do not express MOR mRNA (Supplementary

Figure 1A) or protein (Figure 2A), exogenous MOR expression by

retroviral transduction in THP-1/PMA macrophages resulted in

robust cell surface MOR expression (Figure 2B). We confirmed

functional MOR expression in THP-1/PMA macrophages as

morphine treatment induced phosphorylation of MOR, which

was blocked by naloxone (Figures 2C, D). To determine the

effects of morphine on HIV-1 infection, cells were pre-treated

with increasing concentrations of morphine prior to virus

exposure. While morphine did not affect p24Gag production in

parental THP-1/PMA macrophages (Figure 2E), morphine pre-

treatment of MOR-THP-1/PMA macrophages significantly

enhanced p24Gag secretion in a dose-dependent manner, with the

induction peaking between 0.1 and 1 µM morphine (Figure 2F).

Hence, we used a dose of 1 µM morphine for all subsequent
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infection experiments. Morphine at 1 µM did not impact p24Gag

secretion in THP-1/PMA macrophages (Figure 2G). Importantly,

morphine-mediated induction of p24Gag secretion in MOR-THP-1/

PMAmacrophages was suppressed by pre-treatment with the MOR

antagonist, naloxone (Figure 2H). These findings suggest that

morphine enhances HIV-1 infection and virion release in a

MOR-dependent manner.
Morphine enhances HIV-1 reverse
transcription in MOR-expressing cells

Since MOR activation enhanced HIV-1 replication in MOR-

expressing cells, we sought to systematically determine the specific

step of the HIV-1 life cycle that was modulated by morphine. First,

we assessed the effects of MOR activation on early steps of reverse

transcription in iPSC-derived microglia and MOR-expressing or

MOR-deficient (parental) THP1/PMA macrophages. Morphine

pretreatment enhanced early and late RT in iPSC-derived

microglia, though only increase in late RT was statistically

significant (Figures 3A, B). Further, morphine treatment of MOR/

THP-1/PMA macrophages significantly enhanced both early and

late RT which was blocked by naloxone pretreatment (Figures 3C,

D). In contrast, morphine pretreatment did not significantly impact

early (Figure 3E) or late RT steps (Figure 3F) in parental THP-1/

PMA macrophages. These findings suggest that MOR activation by

morphine enhances HIV-1 reverse transcription, which can be

blocked by a MOR antagonist.
Morphine enhances intact proviral
establishment in MOR-expressing cells

Since MOR activation enhanced reverse transcription efficiency

in MOR-expressing cells, we assessed the effects of MOR activation

on the next step, namely, provirus establishment. We utilized Intact

Proviral DNA Assay (IPDA) using digital droplet PCR (ddPCR)

analysis (70, 72) to determine the number of proviruses in both

MOR-expressing (iPSC-derived microglia and MOR- THP-1/PMA

macrophages) and cells lacking MOR expression (parental THP-1/

PMA macrophages) upon HIV-1 infection in the presence or

absence of morphine and naloxone. Genomic DNA, harvested 3

days post-infection, served as a template for IPDA to quantify both

intact and defective (lacking or mutated detection of env or Psi

sequences) proviruses. Morphine pre-treatment significantly

enhanced the numbers of intact proviruses (2-fold) in HIV-1-

infected iPSC-derived microglia (Figure 4A) and MOR-THP1/

PMA macrophages (Figure 4B), which was suppressed by

treatment with naloxone. However, morphine treatment did not

impact intact proviral establishment in parental THP-1/PMA

macrophages (Figure 4C), suggesting that MOR expression and

activation were required for morphine-induced HIV-1 reverse

transcription and integration enhancements.

HIV-1 infection generates both intact and defective proviruses,

with the defective proviruses encompassing by far the predominant
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FIGURE 2

Exogenous MOR expression confers MOR-dependent enhancement of HIV-1 infection in macrophages. (A, B) Representative immunofluorescence images
of MOR surface expression: stained nucleus (DAPI, blue), plasma membrane (wheat germ agglutinin, red), and flag-MOR (green) in (A) parental THP-1/PMA
and (B) MOR-THP-1/PMA macrophages. Phospho-MOR (pMOR) expression in parental THP-1/PMA macrophages and MOR-THP-1/PMA macrophages with
7 min (C) and 24h (D) morphine treatment. pMOR band intensities were quantified and normalized to actin and to the no treatment (NT) group. THP1/PMA
(E) or MOR-THP1/PMA (F) macrophages were pretreated with DMSO (vehicle control) or increasing concentrations (0.01, 0.1, 1, or 10 µM) of morphine for
24 hours. (G, H) Alternatively, cells were pretreated with naloxone (1 µM) prior to morphine (1 µM) treatment. Cells were washed and co-infected with HIV-1
(LaiDEnvGFP/G, MOI 1, in (E, F) and MOI 0.3 in (G, H)) and SIVmac Vpx VLPs (5 ng p27). Supernatants were harvested 3 days post-infection for p24Gag

measurements by ELISA. The means +/- standard error of the SEM are shown, and each symbol represents an independent experiment. p values: one-way
ANOVA followed by the Tukey-Kramer post-test; *, p< 0.05; **, p< 0.01; ****, p< 0.0001 (A-H).
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FIGURE 3

Morphine enhances HIV-1 reverse transcription in a MOR-dependent manner. iPSC-derived microglia (A, B), MOR-THP-1/PMA (C, D), or THP-1/PMA
(E, F) macrophages were pretreated with DMSO (vehicle control) or naloxone (1µM) for 1 hr prior to morphine (1µM) treatment for 24 hr. Cells were
washed and co-infected with HIV-1 (LaiDEnvGFP/G, MOI0.3) and SIVmac Vpx VLPs (5 ng p27). THP/PMA macrophages were lysed at 8h and 24h
post-infection for measurement of early (C, E) and late RT (D, F) products by qPCR. iPSC-derived microglia were lysed 3 days post-infection for
measurement of early (A) and late RT (B). The means +/- SEM are shown, and each symbol represents an independent experiment. p values: one-
way ANOVA followed by the Tukey-Kramer posttest; *, p< 0.05; **, p< 0.01; ****, p< 0.0001 (A-D).
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fraction of the provirus load in vitro and in vivo (70, 72, 73).

Interestingly, although statistically not significant, there was a trend

towards enhanced defective proviral establishment in iPSC-derived

microglia and MOR-THP-1/PMA upon morphine treatment,

which was inhibited by naloxone (Figures 4D, E), while morphine

had no impact on defective proviral establishment in THP-1/PMA

macrophages (Figure 4F). In fact, the ratio of intact to defective

proviruses was not affected by morphine treatment in iPSC-derived

microglia and MOR THP-1/PMA macrophages (Supplementary

Figures S2 B, F, J). These results indicate that morphine treatment

did not significantly impact error rates of HIV-1 integration steps.

Rather, these findings suggest that morphine exposure enhances the

establishment of intact proviruses in MOR-expressing cells.
Morphine enhances abundance of HIV-1
intron-containing transcripts in MOR-
expressing cells

Several studies have demonstrated the extensive diversity of the

viral transcriptome in HIV-1 infected cells (74, 75), though only a
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subset of these viral transcripts encodes for viral proteins essential

for the completion of the viral life cycle. Drugs-of-abuse, including

opioids, can regulate HIV-1 gene expression via diverse

mechanisms, including activation of transcription factors, NF-kB

(76) and AP-1 (77), and alleviating RNA polymerase II pausing to

promote polymerase activity (78), though the direct requirement for

MOR activation and signaling has not been addressed. Hence, we

next sought to determine the effects of acute morphine treatment on

proviral transcription in MOR-expressing cells. We quantified

multiply spliced, partially spliced, and full-length unspliced

transcripts by using a previously described RT-ddPCR assay (79).

RT-ddPCR simultaneously quantifies both spliced and unspliced

LTR-containing transcripts by multiplexing probes for transcripts

spanning the 5’ LTR, nef, env, or gag regions. While morphine

treatment modestly enhanced levels of multiply spliced transcripts

in iPSC-derived microglia (Figure 5A), there was a significant

enhancement in unspliced RNA (which we term HIV-1 icRNA)

expression by ~5.7 fold, which was blocked by naloxone treatment

(Figure 5B). Furthermore, morphine-induced HIV-1 icRNA

expression remained significantly elevated even after accounting

for an increased number of proviruses in morphine-treated iPSC-
FIGURE 4

Morphine enhances intact but not defective provirus establishment in a MOR-dependent manner. iPSC-derived microglia and THP-1/PMA
macrophages, pretreated with DMSO (vehicle control) or naloxone (1 mM) for 1 hr prior to morphine (1 µM) treatment for 24hr, were infected with
HIV-1 (Lai-YU2-env, MOI0.2) for iPSC-derived microglia or LaiDEnvGFP/G, MOI0.3, with SIVmac Vpx VLP (5 ng p27) for THP1/PMA macrophages.
Cells were lysed for DNA extraction 3 days and 1 day post-infection for iPSC-derived microglia and THP-1/PMA macrophages, respectively, and used
for measurement of intact and defective proviruses by IPDA. A parallel reaction to detect the host cell gene RPP30 was used as a correction for DNA
shearing. Quantification of intact HIV-1 proviruses in (A) iPSC-derived microglia, (B) MOR-THP-1/PMA macrophages, and (C) THP-1/PMA
macrophages. Quantification of defective HIV-1 proviruses in (D) iPSC-derived microglia, (E) MOR-THP-1/PMA, (F) THP-1/PMA macrophages. The
means +/- SEM are shown, and each symbol represents an independent experiment for iPSC-derived microglia and THP-1/PMA. p values: one-way
ANOVA followed by the Tukey-Kramer posttest; **, p< 0.01; ***, p< 0.001; ****, p< 0.0001 (A–F).
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derived microglia (Figure 5C), suggesting that acute morphine

exposure in microglia selectively enhances HIV-1 icRNA

expression. In addition to assessing the abundance of LTR-

containing transcripts, analysis of viral transcript diversity in

HIV-infected iPSC-derived microglia revealed that morphine

selectively enhanced the ratio of full-length unspliced HIV-1

icRNA to that of the total viral transcriptome by ~3-fold

(Figure 5D). In contrast to increases in longer transcripts such as

full-length HIV-1 icRNA and env deficient 5’LTR+Nef+Gag

transcript, morphine pretreatment decreased the abundance of

shorter LTR-containing transcripts such as 5’LTR and 5’LTR

+Gag in iPSC-derived microglia (Figure 5E). However, ratios of

all LTR-containing transcripts remained similar across the no-

treatment and morphine+naloxone conditions (Figure 5E). These

results suggest that morphine enhances HIV-1 full-length unspliced
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icRNA abundance by not only modulating splicing efficiency but

also alleviating pausing at promoter-proximal regions of viral LTR

to favor transcriptional elongation and expression of full-length

transcripts in microglia.

We next assessed if morphine modulated HIV-1 transcription

in macrophages in the presence or absence of MOR expression.

While morphine-mediated enhancement of multiply-spliced

(Figure 6A) and unspliced viral transcripts (Figure 6B) was not

observed in parental THP-1/PMA (MOR-deficient) macrophages,

morphine significantly enhanced full-length icRNA expression in

MOR-THP-1/PMA macrophages (2.5 fold, Figure 6D).

Surprisingly, msRNA expression was not impacted by morphine

treatment in MOR-THP-1/PMA macrophages (Figure 6C).

Importantly, morphine-induced enhancement of icRNA

expression in MOR-THP-1/PMA macrophages was suppressed by
FIGURE 5

Morphine enhances HIV-1 full-length icRNA transcript abundance and alters transcriptomic diversity in microglia. iPSC-derived microglia were
pretreated with DMSO (vehicle control) or naloxone (1 µM) for 1 hr prior to morphine (1 µM) treatment for 24 h, and then infected with HIV-1 (Lai-
YU2-env, MOI 0.2). Cells were lysed for RNA extraction 3 days post-infection. (A) Quantification of msRNA (LTR+Nef), and (B) icRNA (LTR+Env+Nef
+Gag, full-length transcripts) in iPSC-derived microglia were determined by RT-ddPCR and reported as viral RNA copies/ng of RNA input. (C) HIV-1
icRNA copy numbers were normalized to those of intact proviruses in iPSC-derived microglia. (D) Quantification of the ratio of full-length icRNA
transcripts out of all transcripts detected in iPSC-derived microglia. (E) Pie charts displaying the mean percentages of LTR containing transcripts in
iPSC-derived microglia infected in the absence (HIV-1) or presence of morphine (HIV-1+ Morph) or both morphine and naloxone (HIV-1+ Morph +
Nal). The means +/- SEM are shown, and each symbol represents an independent experiment (iPSC-derived microglia and THP/PMA macrophages)
or cells from an independent donor (MDMs). p values: one-way ANOVA followed by the Tukey-Kramer posttest; *, p< 0.05; ****, p< 0.0001 (A–D).
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naloxone (Figure 6D), suggesting that MOR expression and

activation is responsible for the enhanced HIV icRNA expression.
Morphine treatment enhances innate
immune responses

Our previous studies have shown that de novo transcribed HIV-

1 icRNA in both macrophages and microglia induce inflammatory

responses, such as the interferon g-inducible protein 10 (IP-10)

(80). Hence, we sought to determine if morphine enhances IP-10

secretion in a MOR-dependent manner. THP-1/PMAmacrophages

were pretreated with increasing concentrations of morphine (0.01,

0.1, 1, or 10 µM) before infection with HIV-1, and IP-10 secretion

was measured by ELISA on supernatants 3 days post-infection.

While morphine modestly reduced IP-10 secretion in parental

THP-1/PMA macrophages (Figure 7A), significant enhancement
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was observed in MOR-THP1/PMA macrophages in a dose-

dependent manner, peaking at 1µM morphine (Figure 7B).

Morphine treatment at 1µM modestly lowered IP-10 secretion in

THP-1/PMA macrophages (Figure 7C). Moreover, the

enhancement in IP-10 secretion (~3.4 fold) observed in morphine

(1 µM) treated HIV-1 infected MOR-THP-1/PMA macrophages

was blocked by naloxone (Figure 7D). These results suggest that

MOR expression promotes morphine-dependent enhancement of

IP-10 secretion during HIV-1 infection.
HIV-1 infection and opioid signaling
synergize at the PI3K/Akt pathway

Next, we sought to identify the pathway by which opioid

signaling and HIV-1 infection synergized to enhance infection

and inflammatory responses. MOR signaling has previously been
FIGURE 6

MOR overexpression promotes morphine-dependent enhancement of HIV-1 icRNA expression in macrophages. THP-1/PMA (A, B) or MOR-THP-1/
PMA (C, D) macrophages were pretreated with DMSO (vehicle control) or naloxone (1µM) for 1 hr prior to morphine (1µM) treatment for 24hr. Cells
were washed and infected with HIV-1 ((LaiDEnvGFP/G, MOI0.3, with SIVmac Vpx VLP (5 ng p27)). Cells were lysed for RNA extraction 3 days post-
infection. Levels of msRNA (A, C) and icRNA (B, D) in THP-1/PMA (A, B) or MOR-THP-1/PMA (C, D) macrophages were quantified by RT-qPCR. The
means +/- SEM are shown, and each symbol represents an independent experiment. p values: one-way ANOVA followed by the Tukey-Kramer
posttest; *, p< 0.05; **, p< 0.01 (A-D).
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shown to activate the PI3K/Akt pathway (81, 82). Additionally,

HIV-1 infection has been shown to engage the PI3K/Akt pathway in

macrophages (83) and T cells (84). Therefore, we sought to

determine whether ligation of MOR by morphine induces PI3K/

Akt activation during HIV-1 infection. Morphine had no significant

impact on pAkt expression in HIV-infected THP-1/PMA

macrophages (Figure 8A). In contrast, morphine significantly

enhanced pAkt expression in HIV-infected MOR-THP-1/PMA

macrophages, which was suppressed by both naloxone and the

PI3K inhibitor, wortmannin (Figure 8B). Morphine modestly

enhanced pAkt expression in iPSC-derived microglia which was

reversed by naloxone and wortmannin (Figure 8C). We next

investigated if inhibition of the PI3K/Akt pathway would abrogate

morphine-induced HIV-1 infection enhancement. THP-1/PMA

macrophages and iPSC-derived microglia were pretreated with

wortmannin in the presence or absence of morphine for 24 hours

before initiating HIV-1 infection. Importantly, wortmannin

treatment did not significantly impact cell viability in iPSC-

derived microglia (Supplementary Figure S3A), THP-1/PMA
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(Supplementary Figure S3B) , and MOR-THP-1/PMA

macrophages (Supplementary Figure S3C). Though impact of

wortmannin on p24Gag secretion in the absence of morphine was

minimal and not significant in all cell types (Figures 8D-F), in the

presence of morphine, wortmannin treatment significantly reduced

p24Gag production in MOR-THP-1/PMA macrophages (Figure 8E)

and iPSC-derived microglia (Figure 8F), suggesting that enhanced

p24Gag production by morphine in MOR expressing cells is

mediated by the PI3K/Akt pathway.

Finally, we investigated whether PI3K/Akt inhibition affects

morphine and virus-induced inflammatory responses. Wortmannin

pre-treatment significantly inhibited morphine-mediated

enhancement of IP-10 secretion by ~7.7-fold in HIV-infected

MOR-THP-1/PMA macrophages (Figure 9B) and ~2.8-fold in

iPSC-derived microglia (Figure 9C) but had a negligible impact

on IP-10 secretion in HIV-1-infected THP-1/PMA macrophages

(Figure 9A). Additionally, wortmannin pre-treatment attenuated

IL-8 and MCP-1 secretion (Figures 9D, E) in morphine-treated

HIV-1-infected iPSC-derived microglia. Collectively, these findings
FIGURE 7

Exogenous MOR expression promotes morphine-dependent enhancement of HIV-1-induced IP-10 secretion in macrophages. THP-1/PMA (A) and
MOR-THP-1/PMA (B) macrophages were pretreated with DMSO (vehicle control) or with increasing concentrations of morphine (0.01, 0.1, 1, and 10
µM) for 24hr. Cells were washed and co-infected with HIV-1 (LaiDEnvGFP/G, MOI 1) and SIVmac Vpx VLPs (5 ng p27). IP-10 content in supernatants
harvested 3 days post-infection was determined by an ELISA. Alternatively, cells were pretreated with naloxone (1 µM) prior to morphine (1 µM)
treatment in THP-1/PMA (C) and MOR-THP-1/PMA macrophages (D). The means +/- SEM are shown, and each symbol represents an independent
experiment. p values: one-way ANOVA followed by the Tukey-Kramer posttest; *, p< 0.05; **, p< 0.01; ***, p< 0.001; ****, p< 0.0001 (A–D).
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suggest that opioids promote the induction of inflammatory

responses in HIV-infected microglia via MOR activation and that

PI3K inhibitors can suppress the synergistic enhancement of

inflammatory responses by morphine-induced activation of MOR

signaling pathways and HIV-1 infection.
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Discussion

In this study, we utilized multiple cell models to demonstrate

that morphine enhances HIV-1 infection and promotes HIV-1

infection-induced inflammatory responses in MOR-expressing
FIGURE 8

PI3K inhibition abrogates morphine-mediated enhancement of HIV-1 infection. (A, B) Western blot analysis of phosphorylated Akt (pAkt), total Akt,
and b-actin on lysates from THP-1/PMA (A) or MOR-THP-1/PMA (B) macrophages. pAkt quantification on lysates from iPSC derived microglia by
ELISA (C). THP-1/PMA macrophages (D), MOR-THP-1/PMA macrophages (E) and iPSC-derived microglia (F) were pretreated with combinations of
morphine (1 µM) naloxone (1 µM) or wortmannin (0.1 µM) before infection with HIV-1. THP-1/PMA macrophages were co-infected with LaiDEnvGFP/
G (MOI 1) and SIVmac Vpx VLPs (5 ng p27), while iPSC-derived microglia were infected with Lai/YU2-env (MOI 0.2). The p24Gag content in cell
supernatants, harvested 3 days post-infection, was determined by an ELISA. The means +/- SEM are shown, and each symbol represents an
independent experiment. p values: one-way ANOVA followed by the Tukey-Kramer posttest; *, p< 0.05; **, p< 0.01; ****, p< 0.0001 (A–E).
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cells. We report cell surface expression of MOR in iPSC-derived

microglia, similar to that observed in CNS-resident microglia (35,

85), which correlated with the ability of morphine to enhance HIV-

1 infection in MOR+ iPSC-derived microglia but not in MOR-

deficient macrophages. Exogenous expression of MOR in THP-1/

PMA macrophages promoted morphine-mediated enhancement of

HIV-1 infection. Importantly, morphine-dependent enhancement

of HIV-1 infection was attenuated upon pre-treatment with a MOR

antagonist, naloxone. Taken together, these data suggest that

morphine may trigger MOR-dependent signaling in modulating

HIV-1 infection in microglia. Previous studies have shown that

morphine can modulate CXCR4 and CCR5 expression in myeloid

cells (86, 87) and lymphocytes (88). Similarly, endogenous ligands

such as endomorphins and endorphins that activate MORmay have

similar effects of enhancing HIV-1 infection in microglia in vivo (89,

90). While morphine may enhance CCR5 expression in iPSC-

derived microglia and promote HIV-1 entry, proviral effects of

morphine were also observed at post-entry steps of revere

transcription and integration since morphine also induced VSV
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G-pseudotyped HIV-1 infection in MOR THP-1/PMA

macrophages (Figures 2, 3). As opposed to MOR-THP1/PMA

macrophages, there was a trend but not statistically significant

enhancement of early RT in iPSC-microglia by morphine

(Figure 3A), suggesting that morphine might also modulate post

RT steps to enhance HIV-1 replication in iPSC-microglia. In

contrast, morphine significantly enhanced reverse transcription in

MOR THP-1/PMA macrophages (5-fold increase in late RT

products, Figure 3), thus contributing to the observed increases in

the numbers of intact proviruses (Figure 4) in these cells. Previous

studies have reported conflicting findings on the immuno-

modulatory effects of opioids and their ability to impact HIV-1

infection in monocytes and macrophages (87, 91, 92). Though

MOR mRNA has been detected at low levels in human MDMs

(38, 93), none of the studies have definitively shown functional cell

surface MOR expression in macrophages (37, 38, 94–96). Further,

our findings show that MDMs do not express MOR at detectable

levels (Figure 1). It remains possible that the previously reported

immune-modulatory effects of morphine in macrophages might be
FIGURE 9

PI3K Inhibition suppresses HIV and morphine-induced inflammatory responses. THP-1/PMA (A), MOR-THP-1/PMA (B) macrophages and iPSC-
derived microglia (C-E), were pretreated with DMSO (vehicle control) or naloxone (1 µM) or wortmannin (0.1 µM) for 1 hr prior to morphine (1 µM)
treatment for 24hr, and infected with either LaiDEnvGFP/G (MOI 1), in the presence of SIVmac Vpx VLPs (5 ng p27) or Lai-YU2-env (MOI 1),
respectively. Supernatants were harvested 3 days post-infection for quantification of IP-10 secretion in (A) THP-1/PMA, (B) MOR-THP-1/PMA
macrophages, and (C) iPSC-derived microglia, or (D) IL-8 secretion and (E) MCP-1 secretion in iPSC-derived microglia by ELISA. The means +/- SEM
are shown, and each symbol represents an independent experiment. p values: one-way ANOVA followed by the Tukey-Kramer posttest; *, p< 0.05;
**, p< 0.01; ***, p< 0.001; ****, p< 0.0001 (A–E).
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attributed to TLR4 or non-classical opioid receptor signaling upon

morphine exposure (97).

Clinically, people who have frequent ART interruptions have

higher HIV-1 proviral DNA reservoirs than people with fewer ART

interruptions (98). People with HIV-1 who inject drugs have higher

incidences of ART interruption (99) and might have a higher risk of

elevated HIV proviral DNA levels. Studies in PWH who inject

heroin, which is metabolized into morphine, reported minor

increases in intact HIV proviral DNA in PBMCs (98).

Additionally, another study has shown that morphine increases

the size of SIV reservoirs in brain resident CD11b+ macrophages in

rhesus macaques (100), though the effects of opioids on viral

reservoirs in the CNS have not been well-characterized in PWH.

Previous studies have suggested that opioids can suppress type I

IFN responses and expression of antiviral restriction factors (38),

such as SAMHD1 and APOBEC3. Suppression of these anti-viral

responses might enhance the efficiency of HIV-1 reverse

transcription and provirus establishment in MOR-expressing

microglia. It should be noted that the ratio of defective to intact

HIV-1 proviruses was considerably lower in iPSC-derived

microglia, compared to that observed in human viremic brain

tissues (>90% of HIV-1 genomes are defective in vivo). In vivo

findings likely reflect chronic HIV-1 infection for several months to

years in the presence of ART, whereas our data reflect only acute

infection conditions in the absence of ART.
Morphine alters HIV-1 transcriptomic
landscape in a MOR dependent manner

Morphine exposure led to the increased expression of LTR-

containing HIV-1 transcripts, though interestingly, enhancement of

unspliced icRNA expression was greater than that observed with

multiply-spliced transcripts in microglia and MOR-THP1/PMA

macrophages. HIV-1 LTR contains numerous binding sites for

transcription factors such as NF-kB, NFAT, AP-1, and CREB

(101). Previous studies have suggested that opioids enhance gene

expression by activating transcription factors such as NF-kB (102–

105) and CREB (103), which may enhance HIV-1 transcription

rates in infected microglia, though such a mechanism would not

account for the selective enhancement of HIV-1 icRNA expression

in morphine-treated microglia. Additionally, since morphine

enhanced the ratio of unspliced full-length icRNA and 5’LTR

+Nef+Gag transcripts compared to all other LTR-containing

transcripts in microglia, morphine might have an additional

impact on post-transcriptional mechanisms that control HIV-1

transcript diversity.

Complex alternative splicing of HIV-1 RNA in the nucleus

results in the over 40 differentially spliced viral transcripts, some of

which encode for the viral accessory proteins and env (106). Spliced

RNAs are exported through the NXF1-dependent nuclear export

pathway (107). To facilitate nuclear export of unspliced full-length

viral RNA, which is utilized for translation of Gag and Gag-Pol

polyproteins or used as viral genomic RNA packaged into

assembling virions, HIV-1 employs the Rev-CRM1 pathway to
Frontiers in Immunology 16
suppress RNA splicing and promote nuclear export (106).

Morphine may potentially impact either one or multiple of these

post-transcriptional RNA processing steps to skew the viral

transcript population towards expression of immunostimulatory

unspliced icRNA transcripts. For instance, morphine has been

shown to modulate the abundance of m6A epitranscriptomic

modifications (108, 109) by downregulating the expression of

RNA demethylases or m6A erasers, FTO and Alkbh5 (109). Some

studies have shown that m6A methylation at 3’ splice sites of

various cellular genes inhibits RNA splicing (110). RNA

methylation at the major splice donor site in HIV-1 5’UTR has

been suggested to contribute to reduced splicing efficiency and

increased nuclear abundance of HIV-1 unspliced RNA (111–114).

Thus, the ability of morphine to modulate both transcriptional and

post-transcriptional regulatory mechanisms might contribute to the

selective enhancement of full-length unspliced HIV-1 icRNA

expression in microglia.
Morphine treatment enhances innate
immune responses during HIV-1 infection

Previous studies by us and others have demonstrated that sensing

of HIV-1 icRNA byMDA5 triggers MAVS-dependent innate immune

responses and inflammatory cytokine secretion in macrophages and

microglia (80, 115–117). Despite ART, HIV-1 RNA has been detected

in CNS and CSF of PWH (118–122). Innate immune sensing of

persistent HIV-1 icRNA expression and morphine-induced MOR

signaling in microglia might contribute to the synergistic increases in

inflammatory responses. Our results (Figure 7) and previously

published studies (123, 124) suggest that opioid signaling through

MOR activates the PI3K/Akt pathway. Interestingly, PI3K inhibitor

wortmannin suppressed morphine-induced enhancement of p24Gag

secretion (Figure 8) and IP-10 expression (Figure 9) in HIV-infected

microglia and MOR-THP-1/PMAmacrophages. We hypothesize that

the putative synergy between morphine – MOR signaling and HIV

icRNA-induced proinflammatory responses might define the

molecular basis for HIV and opiate co-exposure-induced

neuroinflammation and neurotoxicity. Importantly, opioid

antagonists or PI3K/Akt pathway inhibitors might be novel

therapeutic modalities to suppress chronic neuroinflammation in

PWH using injection drugs (22, 125–128).
Limitations of the study

The experimental model under study in this report addresses

consequences of morphine pre-treatment on HIV-1 infection

establishment and effects in HIV-1 infection-induced innate

immune responses, and most likely represents the scenario of

individuals with opioid use disorder who later acquire HIV. This

study does not address the consequences of morphine exposure

post-infection establishment that might be reflective of PWH who

use opioids. Such experimental conditions can be investigated in the

future by adding morphine during and after infection establishment
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in microglia. Finally, there are some discrepancies between the cell

models where morphine significantly enhances reverse

transcription in THP-1/PMA macrophages, but only trends to

enhance reverse transcription in iPSC-derived microglia in a

MOR-dependent manner. This discrepancy reflects that morphine

may have other reverse transcription-independent effects on HIV-1

infection enhancement in iPSC-derived microglia that differ from

the MOR THP-1 cell line.
Conclusions

This study demonstrated for the first time that morphine

treatment in human microglia enhances HIV-1 infection.

Morphine enhancement of HIV-1 infection is specific to CNS-

derived microglia and MOR-expressing cells. Morphine had an

additional selective impact on enhanced HIV-1 icRNA expression,

sensing of which leads to the induction of inflammatory responses.

These findings highlight how opioid use contributes to elevated

neuroinflammation and risk for neurodegenerative disorders in

people with HIV-1. Therapeutics targeting the PI3K/Akt pathway

may reduce neurocognitive disorders in PWH.
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