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Integrated transcriptomic and
single-cell RNA-seq analysis
identifies CLCNKB, KLK1 and
PLEKHA4 as key gene of
AKI-to-CKD progression
Fanhua Zeng, Zhenhua Yang* and Zufeng Wang*

Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
GuangXi, China
Background: Studies have demonstrated a significant connection between acute

kidney injury (AKI) and chronic kidney disease (CKD). The purpose of this study

was to identify biomarkers linked to the advancement of AKI and CKD, aiming to

offer new targets and insights for treating and intervening in these conditions.

Methods: Initially, candidate genes were identified by overlapping the results

from differential expression analyses of AKI and CKD. Biomarkers were

subsequently identified using machine learning algorithms, receiver operating

characteristic curve analysis, expression analysis and experimental verification.

Functional enrichment, drug prediction analyses and immune cells infiltration

were conducted to investigate the functional mechanisms of the identified

biomarkers. Furthermore, single-cell analyses were performed to examine the

trends of biomarker expression across different cell types.

Results: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers by the

screening. Subsequently, enrichment analysis showed that CLCNKB was

notably enriched in oxidative phosphorylation and the degradation of valine,

leucine, and isoleucine in both AKI and CKD datasets. CLCNKB, KLK1 and

PLEKHA4 were found to be significantly associated with multiple immune cell

types. The regulatory network indicated that PLEKHA4 might play a more

important role in the progression of AKI and CKD. Furthermore, it was

discovered that CLCNKB, KLK1, and PLEKHA4 are commonly targeted by

tetrachlorodibenzodioxin. Finally, in the single-cell data analysis, Type A

intercalated cell and Collecting duct-principal cell were identified as the key

cells. It was observed that the expression trends of these biomarkers were

different under different differentiation states of the key cell subpopulations.

Conclusion: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers related

to the development of AKI and CKD in this study, and new ideas were provided

for the research on the potential mechanisms of the progression of AKI and CKD.
KEYWORDS
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1 Background

Acute kidney injury (AKI) is identified by a quick loss of kidney

function happening within a 48-hour period (1). In medical

environments, AKI is typically marked by a rapid increase in

serum creatinine and a significant decrease in urine output, often

resulting from renal tubular cell necrosis and tissue damage

following acute insults such as renal ischemia-reperfusion,

exposure to nephrotoxic medications, and sepsis, among other

causes (2). Currently, AKI affects 10-15% of all patients in

hospitals and up to 50% of those in ICUs, with its prevalence

growing annually (3). Furthermore, AKI contributes to long-term

chronic kidney damage and accelerates the onset of various

complications, including hypertension and cardiovascular disease

(4). Alternatively, chronic kidney disease (CKD) is a progressive

and lasting disorder identified by the degeneration of renal units,

tubular atrophy, interstitial fibrosis, glomerulosclerosis, vascular

thinning, and arteriosclerosis (5). A glomerular filtration rate

under 60 mL/min/1.73m² for a period exceeding three months

defines CKD (6). In addition, the incidence rate of CKD globally is

roughly 9.1% (7). Due to its high incidence, significant economic

impact, and strong association with morbidity and mortality, CKD

represents a major public health concern (8). The clinical

management of CKD is hindered by several limitations (9).

Therefore, novel insights into the mechanism of AKI and CKD

are urgently required to enhance CKD treatment strategies.

Clinically, AKI and CKD are closely interrelated. Atrophy of the

tubules and fibrosis in the interstitial area are pathological changes

that arise due to inadequate repair mechanisms following AKI,

ultimately leading to the development of CKD (10). In China, there

are at least 3 million cases of AKI annually, with approximately 50%

of survivors subsequently developing CKD (11). Furthermore,

individuals with CKD have a higher chance of developing AKI

due to pre-existing renal lesions (12). The transition from AKI to

CKD is thought to be significantly influenced by the immune-

inflammatory response and kidney fibrosis, both of which

contribute to persistent renal damage (13). Despite this, the

transition from AKI to CKD remains largely unexplored, with the

key genes and pathways involved in this intermediary process not

yet clearly identified. Hence, it is essential to pinpoint biomarkers

related to the progression from AKI to CKD to uncover possible

therapeutic targets.

This study utilized transcriptomic and single-cell datasets from

public repositories related to AKI and CKD to evaluate biomarkers

associated with the progression of these conditions. The assessment

was conducted through differential expression analysis, machine

learning algorithms, Receiver Operating Characteristic (ROC) curve

evaluation, and expression validation. Subsequently, the potential

mechanisms of action of these biomarkers in AKI and CKD were

explored using biomarker enrichment analysis, immune infiltration

analysis, molecular regulatory network construction, and drug

prediction. The single-cell data enabled the examination of
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intercellular communication, leading to the identification of key

cellular entities and additional experiments were undertaken to

verify the results. Furthermore, we investigated the expression

trends of biomarkers in specific cell subsets to elucidate the

molecular roles of these biomarkers and their mechanisms in the

progression of AKI and CKD. This research aims to offer new

perspectives for the early detection and personalized treatment of

AKI and CKD patients, thereby reducing the societal burden of

kidney diseases.
2 Materials and methods

2.1 Data source

Datasets related to both AKI and CKD were sourced from the

Gene Express ion Omnibus (GEO) database (ht tp : / /

www.ncbi.nlm.nih.gov/geo/). GSE139061 (GPL20301) consisted of

39 renal tissue samples from AKI patients and 9 normal renal tissue

samples, while GSE30718 (GPL570) included samples included 28

from AKI patients and 11 from healthy kidney tissues, functioning

respectively as the training set and validation set of AKI. Similarly,

GSE66494 (GPL6480) consisted of 53 renal tissue samples from

CKD patients and 8 normal renal tissue samples, while GSE104948

(GPL22945) included 50 CKD patients’ renal tissue samples and 18

normal renal tissue samples, serving respectively as the training set

and validation set of CKD. Furthermore, GSE183277 (GPL24676)

comprised single-cell RNA sequencing (scRNA-seq) data from

kidney cortex tissue samples of 5 AKI patients, 2 CKD patients

and 11 normal individuals.
2.2 Differential expression analysis

Differentially expressed genes1 (DEGs1) between AKI and

normal samples in the GSE139061 dataset were pinpointed by

employing the DEseq2 (v 1.38.0) package (14).The dataset was

normalized using the estimateSizeFactors function, and genes with

counts ≤ 1 were filtered out. DEGs1 were selected with the

thresholds of |log2fold-change (FC)| > 1.5 and P < 0.05, and the

false discovery rate (FDR) was applied to control for multiple

comparisons. For the GSE66494 dataset, differential expression

analysis between CKD and control samples was performed using

the limma package (v3.44.3) (15). Genes with missing values were

removed using the na.omit() function. DEGs2 were identified with

the same thresholds of log2FC > 1.5 and P < 0.05, and FDR

correction was applied. Subsequently, DEGs1 and DEGs2 were

visualized as volcano plots and heatmaps, displaying only the top

10 in descending order of log2FC for both up- and down-regulated

genes. The visualizations were generated through the ggplot2 (v

3.3.2) package (16) and the pheatmap (v 0.7.7) package

(17), respectively.
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2.3 Identification and functional analysis of
candidate genes

To identify candidate genes in AKI and CKD progression, the

up-regulated genes from DEGs1 and DEGs2, as well as the down-

regulated genes from DEGs1 and DEGs2 were separately

overlapped using (v 1.7.3) ggvenn package (18). Subsequently, the

clusterProfiler package (version 3.16.0) was used to perform Gene

Ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG)

enrichment analyses on the candidate genes (19). The Benjamini-

Hochberg (BH) method was applied to control the FDR, with a

significance threshold of pvalueCutoff = 0.05. The top 10 most

significantly enriched terms (ranked in ascending order of p-value)

from the GO and KEGG analyses were visualized using the

enrichplot package (v 1.14.2) (20). To explore protein interactions

among the candidate genes, the protein-protein interaction (PPI)

network (interaction score > 0.15) was constructed using the

Searching for Interacting Genes (STRING, https://www.string-

db.org) database and the results were visualized using Cytoscape

(v 3.10.2) software (21).
2.4 Biomarkers identification and
expression analysis

The glmnet (v 4.1.4) package was used to apply the least

absolute shrinkage and selection operator (LASSO) method to the

candidate genes in the GSE139061 and GSE66494 datasets (22). The

parameter family was set as binomial, and 10-fold cross-validation

(nfolds = 10) was performed to determine the optimal lambda (l)
value. Potential feature genes were screened based on the

lambda.min value for each dataset. Moreover, feature genes were

obtained by overlapping the potential feature genes obtained from

the GSE139061 and GSE66494 datasets, respectively. Immediately,

to evaluate the potential of the feature genes to distinguish AKI

samples from control samples, and CKD samples from control

samples, these feature genes were subjected to ROC curve analysis

using pROC (v 1.18.0) package (23) in the AKI training set and the

AKI validation set, the CKD training set and the CKD validation set,

respectively, and feature genes with area under the curve (AUC)

>0.7 in all four datasets were named as candidate biomarkers.

Simultaneously, the candidate biomarkers were subjected to gene

expression analysis in the AKI training set and AKI validation set,

the CKD training set and the CKD validation set, respectively, and

the candidate biomarkers showing a notable difference (P<0.05)

between the disease samples and the control samples in the four

datasets and a consistent expression trend were selected as the

biomarkers for the subsequent analyses.
2.5 Gene set enrichment analysis

To investigate the biological roles of biomarkers involved in

AKI and CKD, GSEA was performed in the GSE139061 and

GSE66494 datasets, respectively. For the analysis, the
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c2.cp.kegg.v2023.1.Hs.symbols.gmt gene set was acquired from

the Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/) to act as the background set. First,

Spearman correlations between the biomarkers and other genes

were calculated using the psych (v 2.2.5) package (24) in the

GSE139061 dataset. Subsequently, GSEA for each biomarker was

constructed using clusterProfiler (v 3.16.0) package, with

significance determined at P <0.05 and |normalized enrichment

score (NES)| > 1. The top five pathways in descending order of P-

value were visualized using the enrichplot package (v 1.14.2).

Similarly, GSEA of the biomarkers was carried out using the same

methods and thresholds in the GSE66494 dataset.
2.6 Analysis of immune infiltration and
cytokines expression

To assess the infiltration of 64 immune cells in disease samples

and control samples in the GSE139061 and GSE66494 datasets,

respectively. In the case of the GSE139061 dataset, relative

abundance was calculated using the xCell (v 1.1.0) package (25),

and the proportionate distribution of the 64 immune cells of the

AKI samples versus the control samples was visualized using the

ggplot2 (v 3.3.2) package. Differences in infiltration scores between

AKI samples and control samples in the GSE139061 dataset were

then assessed using Wilcoxon test to screen for immune cell types

with a significant difference in infiltration (P<0.05), which were

named differential immune cells. Subsequently, Spearman

correlation analysis was performed using corrplot (v 0.92)

package (26) to explore the relationship between differential

immune cells and the association between diverse immune cells

and biomarkers(|cor| > 0.30, P < 0.05), and correlation heatmaps

were plotted to show the results. In addition, immune infiltration

and correlation analyses were carried out in the GSE66494 dataset

with the same methods and thresholds.
2.7 Construction of regulatory networks
and drug prediction

Biomarkers targeted by miRNAs were forecasted using the

TargetScan (http://www.targetscan.org/) and miRDB (http://

mirdb.org/) databases. The transcription factors (TFs) that

regulate biomarkers were predicted through the ChEA3 (https://

maayanlab.cloud/chea3/) database. Then, the lncRNAs targeting

the aforementioned miRNAs were predicted by means of the

LncBase (http://carolina.imis.athena-innovation.gr/diana_tools/

web/index.php?r=lncba) database. The miRNA-mRNA, TF-

mRNA and TF-mRNA-miRNA networks were visualized by

using the Cytoscape (v 3.10.2) software, and using the ggplot2

package (v 3.3.2), the lncRNA-miRNA-mRNA network was

visualized. Additionally, the Comparative Toxicogenomics

Database (CTD, http://ctdbase.org/) was employed to predict

drugs targeting biomarkers and Cytoscape version 3.10.2 was

employed to plot the biomarker-drug network.
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2.8 scRNA-seq analysis

Firstly, 5 AKI samples and 11 control samples were selected

from the GSE183277 dataset as the AKI single-cell dataset. The AKI

single-cell dataset was the “Seurat” package (v 4.1.0) was utilized for

quality control (QC) to filter out cells with exceeded 20% of

mitochondrial genes, cells with nCount_RNA under 200 and

surpassed 30,000 genes, and cells with nFeature_RNA > 200 (27).

Then, in light of the GSE183277 dataset, data were normalized by

the “NormalizeData” function in the “Seurat” package (v 4.1.0), and

highly var iab le genes (HVGs) were se lec ted by the

“FindVariableFeatures” function. Next, the “ScaleData” function

in the “Seurat” package (v 4.1.0) was applied to scale data before

principal components analysis (PCA). Subsequently, the

“JackStraw” function within the “Seurat” package (v 5.0.1) was

applied to execute PCA on HVGs. The “ElbowPlot” function within

the “Seurat” package (v 4.1.0) was thereafter applied to draw a scree

plot of the top 30 principal components (PCs), aiming to identify

PCs that notably contributed to variation for subsequent analysis

(p < 0.05). Afterward, cell cluster analysis was conducted on cells

after dimensionality reduction utilizing “FindNeighbors” and

“FindClusters” functions (resolution = 0.2, dimension = 30).

Finally, the Seurat package’s FindNeighbors and FindClusters

functions were employed to categorize all high-quality cells into

various cell clusters using the uniform manifold approximation and

projection (UMAP) clustering technique.The FindAllMarkers

function was used to identify key marker genes for various

populations, and the classical marker genes of relevant cells in the

CellMarker (http://xteam.xbio.top/CellMarker/) database were used

as the reference gene set to annotate each cell cluster

(Supplementary Table 1). Additionally, 2 CKD samples and 11

control samples were selected from the GSE183277 dataset as the

CKD single-cell dataset and analyzed by scRNA-seq in the same

way, with marker genes shown in Supplementary Table 2.
2.9 Cell communication analysis and
identification of key cells

Cellular communication networks between cell types of AKI

samples and control samples as well as those between cell types of

CKD samples and control samples were analyzed respectively using

the CellChat (v 1.6.1) package (28) based on the AKI single-cell

dataset and the CKD single-cell dataset. And visualization was

carried out by using the patchwork (v 1.3.0) package (29). In

addition, key cells were screened and obtained based on the

expression situation of biomarkers in cell types within the 2

single-cell datasets.
2.10 Pseudotime analysis

To explore the expression changes of biomarkers during the

process of cell state transformation, key cells were first extracted

respectively based on the AKI single-cell dataset and the CKD
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clustering, and the key cells were reclustered and divided into

different cell subpopulations. Following this, the Monocle (v

2.30.0) package was used to conduct cell pseudo-time trajectory

analysis on both the AKI and CKD single-cell datasets (30).
2.11 Mice models

In this study, male C57BL/6J mice, approximately 8 weeks of age,

were utilized. The strain was sourced from the University Model

Animal Research Center at Guangxi Medical University. Ethical

approval for the use of animals in this research was obtained in

compliance with the Guidelines for the Management of Laboratory

Animals as stipulated by the Ministry of Science and Technology of

the People’s Republic of China, as well as the Guidelines for Ethical

Review of Laboratory Animals according to the National Standard

GB/T35892–2018 of the People’s Republic of China, and the

protocols of the Animal Care and Welfare Committee at Guangxi

Medical University (No:202506002). The mice were provided with

food and water ad libitum, and the housing environment was

maintained at a temperature of 25 ± 2°C with a 12-hour light/dark

cycle. The experimental design included three groups of mice, with

the model being established through renal artery ischemia-

reperfusion surgery. For the intervention study, the C57BL/6J mice

were divided into three groups (n = 5 or 6 per group): (1) normal

control group; (2) AKI group; and (3) CKD group. Ischemic AKI was

experimentally induced using a bilateral ischemia-reperfusion injury

(BIRI) model. In this model, mice were anesthetized, and bilateral

dorsal incisions were performed to access the kidneys. Both kidneys

were then clamped to occlude blood flow for a duration of 30

minutes. CKD was simulated through a unilateral ischemia-

reperfusion procedure combined with a contralateral total

nephrectomy. Following anesthesia, a left dorsal incision was made

to clamp the left kidney, obstructing blood flow for 30 minutes.

Subsequently, 14 days post-procedure, a right dorsal incision was

executed to facilitate the complete removal of the right kidney (31).
2.12 Immunohistochemistry

Kidney tissues were paraffin-embedded and sectioned into 4 mm
slices. After deparaffinization and rehydration, antigen retrieval was

conducted with EDTA buffer at pH 9.0 for 25 minutes. A 15-minute

treatment with 10% hydrogen peroxide was used to block

endogenous peroxidase activity, and secondary antibodies were

blocked with 5% serum for 30 minutes at room temperature.The

kidney tissues underwent overnight incubation at 4°C with primary

antibodies (PLEKHA4,BD-PB3919, 1:300, Biodragon, Jiangsu,

China; KLKI,YP-AB-02871, 1:200, UpingBio, Zhejiang, China;

CLCNKB, DF9376, 1:150, Biodragon, Jiangsu, China) targeting

the candidate biomarkers. Horseradish peroxidase (HRP)-

conjugated antibodies were applied to the sections on the

subsequent day. 3,3’-diaminobenzidine (DAB) (G1212-200T,

Servicebio, Wuhan, China), a substrate specific to HRP, was used
frontiersin.org

http://xteam.xbio.top/CellMarker/
https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2025.1628962
to highlight the stained areas in kidney tissue. Subsequently,

counterstaining is performed using hematoxylin (G1004-100ML,

Servicebio, Wuhan, China). Representative images were captured

using an Olympus microscope, and ImageJ (NIH, USA) was

employed to quantify the average optical density of the images to

assess the expression levels of candidate biomarkers.
2.13 Immunofluorescent staining

Immunofluorescence staining was conducted on 5 mm-thick

paraffin-embedded sections of mice kidney tissue. Following

deparaffinization and antigen retrieval using EDTA (pH 9.0), the

sections were blocked with goat serum and incubated overnight at

4°C with primary antibodies targeting SLC4A1 (A17391, 1:150,

ABclonal, Wuhan, China) and CA II (EM1801-08, 1:150, HuaAn,

Zhejiang, China). Subsequently, the sections were treated with

iFluor™ 647-conjugated goat anti-rabbit IgG and iFluor™ 488-

conjugated goat anti-mouse IgG (HA1125 and HA1123, 1:300,

HuaAn) for one hour at room temperature. Nuclei were

counterstained with DAPI, and imaging was performed using a

Zeiss Axio-Imager A2 confocal microscope (Carl Zeiss,

Jena, Germany).
2.14 Reverse-transcription polymerase
chain reaction

In summary, total RNA was extracted from renal tissues using

the Trizol method (15596026, Invitrogen, USA). Equivalent

amounts of mRNA were reverse transcribed into cDNA utilizing

the HiScript RT SuperMix kit (R122-01; Vazyme, China).

Quantitative real-time PCR (qRT-PCR) was conducted with the

ChamQ Universal SYBR qPCR Master Mix (Q711-02; Vazyme,

China) on a Viia 7 quantitative real-time PCR instrument (Thermo-

Fisher Scientific, USA). The PCR amplification protocol consisted

of 35 cycles at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C

for 30 seconds. The following primers were employed: Aqp6

forward: GCCGTCATTGTTGGGAAGTTC and reverse: GGCT

CCAGGTCTACCACTTTC; Kit forward: GAACAGGACCTC

GGCTAACAA and reverse: CCTTTGCTCTGCTCCTGTACA;

Slc4a1 forward: CCTCGTCCAATACATCTCCCG and reverse:

CGTCATGGCAAGTAGGAAGGT. RT-PCR products were

separated on a 1.5% agarose gel and visualized under UV light.

The quantification of qRT-PCR was performed using the 2−DDCt
method and expressed as relative fold changes.
2.15 Patient samples

To investigate the expression of candidate biomarkers in

patients with AKI and CKD), we selected a cohort comprising

five patients with AKI and five with CKD. Additionally, we included

five patients diagnosed with renal malignancy, from whom normal

renal tissue adjacent to the tumor was obtained during surgical
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procedures. Patients were identified as having AKI if they fulfilled

any of these conditions: (a) a rise in serum creatinine (Scr)

exceeding 26.5 mmol/L within 48 hours; (b) a 50% increase in Scr

over the course of one week; or (c) urine output below 0.5 mL per

kilogram per hour lasting over 6 hours. CKD patients were

recognized by an estimated glomerular filtration rate (eGFR)

under 60 mL/min/1.73 m².Approval for this study was granted by

the ethics committee of The First Affiliated Hospital of Guangxi

Medical University, with informed consent obtained from the

patients (No. 2024-E0918).The data analysis design of this study

was showed in Figure 1.
2.16 Statistical analysis

Bioinformatic analysis were performed in the R (v 4.2.2).

GraphPad Prism statistical software was used for experiment

statistical analyses in the study. We employed the unpaired t test

to compare continuous variables between two groups. Values are

shown as mean ± SEM, with statistical significance set at P<0.05.
3 Results

3.1 Candidate genes were ascertained

In the GSE139061 dataset, 1153 differentially expressed genes

(DEGs1) were screened out, among which 913 were up-regulated and

240 were down-regulated. Similarly, in the GSE66494 dataset, 153

differentially expressed genes (DEGs2) were screened out, with 60

being up-regulated and 93 being down-regulated. The top 10 up- and

down-regulated DEGs in both datasets and their expression profiles

were labeled on the volcano plots and heatmaps respectively

(Figures 2A–D). Subsequently, by overlapping the 913 up-regulated

DEGs1 with the 60 up-regulated DEGs2, 6 common up-regulated

genes were identified (Figure 2E). And by overlapping the 240 down-

regulated DEGs1 with the 93 down-regulated DEGs2, 13 common

down-regulated genes were obtained (Figure 2F). The 6 common up-

regulated genes and the 13 common down-regulated genes were

combined, and 19 candidate genes were determined. In conclusion,

this analysis focused on the discovery of candidate genes that might

play important roles in the progression of AKI and CKD.
3.2 Function and pathways of candidate
genes were explored

Enrichment analyses of the 19 candidate genes showed that they

were enriched in 22 GO entries, such as organic anion transport

(Figure 2G; Supplementary Table 3), whereas KEGG analyses

revealed that the candidate genes were significantly enriched in

the Renin-angiotensin system (Figure 2H; Supplementary Table 4).

In addition, in the constructed PPI network, genes such as ALB,

SLC22A6 and SLC12A3 were highly associated with other

genes (Figure 2I).
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3.3 CLCNKB, KLK1, and PLEKHA4 were
deemed as biomarkers

Based on the candidate genes, 7 potential feature genes in the

AKI training set and 16 potential feature genes in the CKD training

set were obtained respectively through the LASSO regression

analysis (Figures 3A, B). Then, 5 feature genes were finally

obtained by overlapping (Figure 3C). Subsequently, it was found
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in the AKI training set, validation set as well as the CKD training set

and validation set that the AUC values of CLCNKB, KLK1 and

PLEKHA4 were all greater than 0.7, and thus they could be regarded

as the candidate biomarkers for this study (Figures 3D, E).

Moreover, the expression analysis of the candidate biomarkers

showed that the expression trends of CLCNKB, KLK1 and

PLEKHA4 were consistent in the four datasets. Among them,

CLCNKB and KLK1 were significantly down-regulated in AKI
FIGURE 1

The overall workflow of this study. AKI, Acute kidney injury; CKD, Chronic kidney disease; GSEA, Gene set enrichment analysis.
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FIGURE 2

The different expressed genes(DEGs) of AKI and CKD sets and function and pathways of candidate genes. (A, B) The volcano plots of DEGs in AKI
set. (B) The heatmaps of DEGs in CKD set. (C) The volcano plots of DEGs in AKI set. (D) The heatmaps of DEGs in CKD set. (E) The overlapping up-
regulated genes of AKI and CKD sets. (F) The overlapping down-regulated genes of AKI and CKD sets. (G) GO analysis of candidate genes. (H) KEGG
analysis of candidate genes. (I) PPI network of candidate genes. AKI, Acute kidney injury; CKD, Chronic kidney disease; DEGs, Differentially expressed
genes1; GO, Gene Ontology (GO); KEGG, Kyoto Encyclopedia of the Genome; PPI, protein-protein interaction.
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FIGURE 3

CLCNKB, KLK1 and PLEKHA4 were regarded as the candidate biomarkers and the GSEA analysis of candidate biomarkers. (A, B) LASSO regression
analysis of AKI and CKD training sets. (C) Overlapping genes of AKI and CKD training sets. (D, E) Receiver operating characteristic curve analysis of
AKI and CKD training sets and validation sets. (F, G) Expression trends of CLCNKB, KLK1 and PLEKHA4 in AKI and CKD training sets and validation
sets. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. AKI, Acute kidney injury; CKD, Chronic kidney disease; LASSO, Least absolute shrinkage and
selection operator.
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and CKD samples, while PLEKHA4 was significantly up-regulated

(Figures 3F, G). Moreover, the expression trends of CLCNKB,

KLK1 and PLEKHA4 in renal tissues of different groups of

patients and different groups of mice models were consistent with

our results (Figure 4).
3.4 Functional analysis helps explore
potential mechanisms of AKI and CKD
progression

GSEA was performed on the GSE139061 and GSE6649 datasets

to investigate the biological roles of the biomarkers. In the

GSE139061 dataset of AKI, CLCNKB, KLK1 and PLEKHA4 were

significantly enriched in 50, 15 and 51 pathways respectively

(Supplementary Tables 5–7). It was worth noting that CLCNKB

and PLEKHA4 were co-enriched in the valine leucine and

isoleucine degradation pathways and oxidative phosphorylation,

and KLK1 and PLEKHA4 were co-enriched in the neuroactive

ligand receptor interaction pathway (Figures 5A–C). In the

GSE6649 dataset of CKD, CLCNKB, KLK1 and PLEKHA4 were

significantly enriched in 39, 60 and 44 pathways respectively

(Supplementary Tables 8–10). Among them, CLCNKB and KLK1

were jointly enriched in the oxidative phosphorylation and valine,

leucine, and isoleucine degradation pathways, as well as in the

cytokine-cytokine receptor interaction pathway (Figures 5D–F).
3.5 GYG1 and PPP1R3D were associated
with immune infiltrating cells

Figures 6A, B illustrated the infiltration levels of 64 immune cells

in AKI versus control samples, and CKD versus control samples,

respectively. Among them, the infiltration levels of 6 types of immune

cells (differential immune cells 1) were significantly different in AKI

and control samples (Figure 6C), and the infiltration levels of 26 types

of immune cells (differential immune cells 2) were significantly

different in CKD and control samples (Figure 6D), and the

common differential immune cells included Astrocytes, Th2 cells.

Furthermore, among the differential immune cells 1 in AKI,

Fibroblasts had the most significant positive correlation with aDC

(cor = 0.32), and Astrocytes had the most significant negative

correlation with Fibroblasts (cor = -0.36) (Figure 6E;

Supplementary Table 11). Whereas PLEKHA4 had the strongest

positive relationship with pDC (cor = 0.58) and the strongest negative

relationship with Astrocytes (cor = -0.38), CLCNKB had the

strongest positive relationship with Astrocytes (cor = 0.30) and the

strongest negative relationship with Th2 cells (cor = -0.49), but KLK1

was significantly correlated with Differential Immune Cells 1

(Figure 6F; Supplementary Table 12). Subsequently, among the

differential immune cells 2 in CKD, cDC had the most significant

positive correlation with DC (cor = 0.75) and the highest positive

association with Macrophages M2 and Neurons (cor = -0.74)

(Figure 6G; Supplementary Table 13). In contrast, PLEKHA4 had
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the greatest positive connection with Th2 cells (cor = 0.58) and the

greatest negative linkage with MEP (cor = -0.40), CLCNKB had the

most significant positive correlation with Th1 cells (cor = 0.79) and

the strongest inverse relationship with NKT (cor = -0.67), and KLK1

had the greatest positive connection with MEP (cor = 0.62) and the

most prominent negative connection with Th2 cells (cor = -0.43)

(Figure 6H; Supplementary Table 14).
3.6 Molecular regulatory networks probe
regulatory mechanisms of biomarkers

Initially, merely 2 miRNAs were predicted for PLEKHA4,

whereas no miRNAs could be predicted for CLCNKB and KLK1

(Figure 7A). Subsequently, the TF-mRNA networks consisting of

133, 34 and 56 TFs corresponding to PLEKHA4, CLCNKB and

KLK1 respectively were acquired from the ChEA3 database

(Figure 7B). Then, a miRNA-mRNA-TF network was established

by integrating the 2 miRNAs (Figure 7C). Eventually, 8 lncRNAs

upstream of miRNAs were predicted and a lncRNA-miRNA-

mRNA network was constructe, such as EBLN3P-hsa-miR-3187-

3p-PLEKHA4 (Figure 7D). In a nutshell, this analysis centered

around the finding that PLEKHA4 was likely to play a more crucial

role in the progression of AKI and CKD.
3.7 CLCNKB, PLEKHA4 and KLK1 were
simultaneously targeted by
Tetrachlorodibenzodioxin

Drugs were screened for activation of CLCNKB and KLK1,

which are down-regulated in expression, and inhibition of

PLEKHA4, which is up-regulated in expression, including 27

drugs targeting KLK1, 19 drugs targeting CLCNKB and 19 drugs

targeting PLEKHA4 (Supplementary Tables 15–17). A biomarker-

drug network was constructed accordingly (Figure 7E). It was

noteworthy that CLCNKB, PLEKHA4 and KLK1 were

simultaneously targeted by Tetrachlorodibenzodioxin.
3.8 Annotation in AKI and CKD yielded 14
and 13 cell types, respectively

In the AKI single-cell dataset, a total of 78,791 cells were

retained after quality control (Supplementary Figure S1).

Subsequently, the top 2,000 highly variable genes and the top 30

PCs were applied to UMAP clustering (Figures 8A, B). All high-

quality cells were divided into 17 different cell clusters (Figure 8C).

In addition, marker genes had high specificity in different cell

clusters (Figures 8D, E). The cell clusters were annotated and 14

cell types were determined, such as Injured Proximal tubular cell

and Loop of Henle cell (Figure 8F). Subsequently, in the CKD

single-cell dataset, a total of 58,561 cells were retained after quality

control (Supplementary Figure S2). Next, the top 2,000 highly
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variable genes and the top 30 PCs were applied to UMAP clustering

(Figures 9A, B). All high-quality cells were divided into 16 different

cell clusters (Figure 9C). Moreover, marker genes also had high

specificity in different cell clusters (Figures 9D, E). The cell clusters

were annotated and 13 cell types were determined, such as Nephron

epithelial cell and Loop of Henle cell (Figure 9F).
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3.9 Type A intercalated cell and collecting
duct-principal cell identified as key cells

In the AKI single-cell dataset, the injured proximal tubular

cells in AKI samples had a relatively large number of interactions

and a relatively high intensity with other cells (Figure 10A), while
FIGURE 4

The verification of CLCNKB, KLK1 and PLEKHA4 in AKI and CKD samples. (A) The expression level of CLCNKB, KLK1 and PLEKHA4 in the kidneys of
patients with AKI and CKD. (B) The expression level of CLCNKB, KLK1 and PLEKHA4 in the kidneys of AKI and CKD mice models. ns means not
significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.Bar:50um.
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in the control samples, B cells had a relatively large number of

interactions and a relatively high intensity with other cells

(Figure 10B). Interestingly, in the CKD single-cell dataset,

Nephron epithelial cells and B cells had a relatively large

number of interactions and a relatively high intensity with other

cells both in CKD and control samples (Figures 10C, D). In

addition, KLK1 and CLCNKB had relatively high expression

levels in Type A intercalated cells and Collecting duct-principal

cells in both single-cell datasets (Figures 10E, F). To evaluate the
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abundance of type A intercalated cells in kidney disease,

immunofluorescence staining was performed on kidney sections

of AKI/CKD mice. Consistent with the reduced expression of

SLC4A1 (a specific marker for this cell type) in diseased kidneys

(Figure 11A), the expressions of additional markers (Aqp6, Kit

and Slc4a1) were also significantly downregulated (Figures 11B–

D), confirming the loss of type A intercalated cells in AKI/CKD.

Consequently, Type A intercalated cells could have been part of

the disease’s development.
FIGURE 5

GSEA analysis of biomarkers. (A–C) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in AKI set. (D–F) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in
CKD set. GSEA, Gene set enrichment analysis.
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FIGURE 6

Immune infiltrating cells of AKI and CKD. (A, B) Infiltration levels of 64 immune cells in AKI and CKD set. (C) The different immune cells in AKI and
control samples. (D) The different immune cells in CKD and control samples. (E) The correlation of different immune cells in AKI set. (F) Correlation
of immune cells and candidate biomarkers in AKI set. (G) The correlation of different immune cells in CKD set. (H) Correlation of immune cells and
candidate biomarkers in CKD set. AKI, Acute kidney injury; CKD, Chronic kidney disease. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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3.10 CLCNKB, KLK1, and PLEKHA4
expression changes during development of
key cell subpopulations

Secondary dimensionality reduction clustering analysis was

performed on Type A intercalated cell and Collecting duct-

principal cell. It was found that Type A intercalated cell and

Collecting duct-principal cell were divided into 10 and 8

subgroups respectively in the AKI single-cell dataset (Figures 12A,

B). Whereas in the CKD single-cell dataset, Type A intercalated cell

was divided into 10 subgroups and Collecting duct-principal cell

was divided into 9 subgroups (Figures 12C, D). Subsequently, the

different subgroups within Type A intercalated cell and Collecting

duct-principal cell were arranged on the developmental trajectory

according to the differentiation time. A darker blue indicates earlier

cell differentiation. In addition, after different cell subgroups were

mapped to the pseudo-time trajectory plot, it was found that they

exhibited different differentiation states. In the AKI single-cell

dataset, Type A intercalated cell had 10 differentiation states, with

State 4 being the earliest and most specific in differentiation.

Collecting duct-principal cell had 8 differentiation states, and
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State 4 was also the earliest and most specific (Figures 12E, F). In

the CKD single-cell dataset, Type A intercalated cell also had 10

differentiation states, with State 9 being the earliest in

differentiation. Collecting duct-principal cell had 8 differentiation

states, and State 0 was the earliest and most specific (Figures 12G,

H). In the AKI single-cell dataset, with the differentiation of Type A

intercalated cells, the expressions of KLK1 and PLEKHA4 had no

significant changes. The expression of CLCNKB showed a trend of

first decreasing, then increasing and finally decreasing again

(Figures 12I). With the development of Collecting duct-principal

cells, PLEKHA4 had no significant change. The expression of

CLCNKB showed a trend of first increasing and then decreasing,

and the expression of KLK1 showed a trend of first remaining

unchanged, then increasing, then decreasing and finally remaining

unchanged (Figures 12J) In the CKD single-cell dataset, with the

development of Type A intercalated cells, PLEKHA4 had no

significant change. The expression of CLCNKB showed a trend of

first decreasing and then increasing, and the expression of KLK1

showed a trend of first decreasing, then remaining unchanged and

finally increasing (Figures 12K). With the development of

Collecting duct-principal cells, PLEKHA4 had no significant
FIGURE 7

Molecular regulatory networks and biomarker-drug network of candidate biomarkers. (A) The miRNAs were predicted for candidate biomarkers.
(B) TF-mRNA networks of candidate biomarkers. (C) miRNA-mRNA-TF network of candidate biomarkers. (D) lncRNA-miRNA-mRNA network of
candidate biomarkers. (E) Biomarker-drug network of CLCNKB, KLK1 and PLEKHA4. TF, Transcription factors.
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change. CLCNKB expression consistently declined, while KLK1

expression initially decreased and then stabilized (Figures 12L).
4 Discussion

AKI is marked by a swift reduction in kidney function over a

brief period, and the transition from AKI to CKD is a widely

recognized clinical occurrence. Our study identified three

biomarkers (CLCNKB, KLK1, and PLEKHA4) through a
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combination of machine learning algorithms, ROC curve analysis,

and expression validation. The potential mechanisms associated

with these biomarkers in AKI and CKD were explored through

enrichment analysis, regulatory network construction, immune

infiltration analysis, and drug target prediction. By integrating

single-cell data, we identified key cell types and investigated the

expression of these biomarkers at the cellular level. Thus, our

investigation discovered some new perspectives on the potential

pathogenesis and progression of AKI to CKD, which might provide

therapeutic targets to avert the transition.
FIGURE 8

Annotated cell types in AKI groups. (A, B) Top variable genes and PCs were applied to UMAP clustering. (C) Different cell cluster of high-quality cells
of AKI single-cell dataset. (D, E) Marker genes identified different cell clusters. (F) 14 cell types were determined in AKI single-cell dataset. AKI, Acute
kidney injury; UMAP, Uniform manifold approximation and projection.
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CLCNKB is responsible for encoding the CLC-Kb protein, a

component of the CLC chloride channel family, that helps with

chloride ion reabsorption in the renal tubules (32, 33).Genetic

mutations in CLCNKB can impair the glycosylation of the CLC-

Kb protein, compromising its functionality and resulting in reduced

uptake of sodium and chloride ions in the kidney tubules (34).

Mutations in the CLCNKB gene are notably linked to Bartter

syndrome type III, a rare hereditary renal tubular disorder

characterized by salt loss and electrolyte imbalances, frequently
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culminating in CKD (35, 36).Our study demonstrated a significant

down-regulation of CLCNKB in renal tissue samples from patients

with both AKI and CKD, aligning with the loss-of-function effect

indicated by the aforementioned genetic evidence. Moreover, this

substantial loss of sodium and chloride ions triggers the activation

of the renin – angiotensin – aldosterone system (RAAS), which may

exacerbate kidney injury in AKI and facilitate the development to

CKD (37).During the acute phase, persistent activation of the RAAS

may exacerbate AKI-induced renal damage by promoting
FIGURE 9

Annotated cell types in CKD groups. (A, B) Top variable genes and PCs were applied to UMAP clustering. (C) Different cell cluster of high-quality
cells of CKD single-cell dataset. (D, E) Marker genes identified different cell clusters. (F) 13 cell types were determined in AKI single-cell dataset. CKD,
Chronic kidney disease; UMAP, Uniform manifold approximation and projection.
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vasoconstriction and inflammatory responses (37). Over the long

term, this mechanism is pivotal in driving renal fibrosis and

glomerulosclerosis, thereby expediting the progression from AKI

to CKD (38). Functional enrichment analysis corroborated this

mechanism. Furthermore, CLCNKB was found to be significantly

associated with metabolic pathways, such as oxidative

phosphorylation and branched-chain amino acid degradation,

suggesting that its down-regulation may also be implicated in

energy metabolism disorders within renal tubular cells,

collectively facilitating the chronic progression of the disease.

KLK1 is a serine protease that plays a pivotal role in the

kininase-kinin system (KKS) by breaking down low molecular

weight kininogen to yield bradykinin (BK) (39). The KKS is

intricately associated with several physiological processes,
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including inflammation, coagulation, pain, and increased vascular

permeability, all of which are mediated by kinin production (40).

KLK1 is notably involved in the signaling pathways of the B1

receptor for bradykinin (B1R) and the B2 receptor for bradykinin

(B2R), thereby triggering a series of physiological responses that

produce anti-apoptotic, anti-inflammatory, anti-fibrotic, and

antioxidant effects. These actions collectively contribute to tissue

protection, underscoring the multifaceted beneficial roles of KLK1

in maintaining tissue homeostasis (41). Furthermore, previous

research has demonstrated that Klk1 ameliorates lupus nephritis

in murine models (42, 43). The functional enrichment analysis

conducted in this study revealed a significant association between

the down-regulation of KLK1 expression and the neuroactive

ligand-receptor interaction and cytokine-cytokine receptor
FIGURE 10

Key cells and expression trends of candidate biomarkers during development of key cell sub-populations of AKI and CKD single-cell datasets. (A, B)
The cell interactions of AKI and control samples. (C, D) The cell interactions of CKD and control samples. (E, F) Cells with high expression of
candidate biomarkers in AKI and CKD datasets.
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interaction signaling pathways. This suggests that reduced KLK1

expression may compromise the protective function of renal tubular

cells by disrupting bradykinin signaling and exacerbating the

inflammatory microenvironment.Consequently, the absence of

KLK1 may be implicated in the development from AKI to CKD.

PLEKHA4 encodes a protein characterized by a Pleckstrin

homology domain near its N-terminus and has an important

function in cancer biology, particularly in gliomas. Furthermore,

PLEKHA4 regulates the Wnt/b-catenin signaling pathway. In vitro

downregulation of PLEKHA4 resulted in decreased dishevelled

protein levels and a later diminishment of Wnt/b-catenin
signaling (44).Conversely, overexpression of PLEKHA4 activated

the Wnt/b-catenin pathway, facilitating the transfer of b-catenin to

the nucleus and promoting signaling activity (45). The Wnt/b-
catenin pathway, a developmental signaling cascade typically

inactive in the adult kidney, becomes reactivated in various renal

pathologies and plays a pivotal role in the pathogenesis of CKD (46,

47). Continuous activation of the Wnt/b-catenin signaling pathway

has been linked to the advancement of kidney fibrosis, podocyte

injury, and proteinuria in CKD (48–50), as well as contributing to

AKI and sustained tissue damage in cystic kidney disease (51, 52).

Furthermore, molecular regulatory networks suggest that

PLEKHA4 may play a significant role in the progression from

AKI to CKD. Consequently, the overexpression of PLEKHA4 could

potentially exacerbate kidney damage in AKI and expedite the

progression from AKI to CKD, warranting further investigation

into the underlying mechanisms.
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Our study indicates that during the progression from AKI to

CKD, the oxidative phosphorylation pathway and the degradation

pathways of valine, leucine, and isoleucine are pivotal. Following

acute kidney injury, the renal repair process is often maladaptive,

resulting in the dedifferentiation of tubular cells and the

intensification of inflammatory responses. This maladaptive

repair mechanism is intricately linked to the dysregulation of

oxidative phosphorylation, which subsequently impacts long-term

kidney function (53, 54). Research has demonstrated a significant

association between valine degradation disorder and renal fibrosis, a

critical pathological feature of CKD (55).Similarly, amino acid

metabolism assumes a pivotal role in CKD (56). Amino acids can

influence renal lesions and fibrosis through the aryl hydrocarbon

receptor (AhR) signaling pathway (57). Certain amino acids, such

as taurine, exhibit renoprotective properties by safeguarding the

mitochondrial membrane and inhibiting cell apoptosis, thereby

mitigating structural damage to the renal cortex (58, 59). The

significance of amino acid metabolism in disease mechanisms

positions it as a potential target for the early diagnosis and

treatment of CKD (60). In CKD, amino acid metabolism is

markedly disrupted, typically evidenced by elevated levels of

arginine and citrulline and a decreased ornithine/citrulline ratio,

indicating that citrulline may serve as a potent biomarker of renal

metabolism (61). This metabolic disturbance interacts with

systemic inflammation and metabolic acidosis, disrupting amino

acid and protein homeostasis. As CKD progresses, glomerular

filtration and renal tubular reabsorption functions are further
FIGURE 11

Abundance of type A intercalated cells in AKI/CKD mice. (A) Immunostaining of intercalated cell maker CAII (green) and the type A intercalated cell
maker SLC4A1 (red) in renal collecting duct of AKI/CKD mice. (B–D) Relative expression level of type A intercalated cell maker (Aqp6, Kit and Slc4a1)
in the kidneys of AKI/CKD mice.ns means not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.Bar:50um.
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compromised, exacerbating amino acid depletion and proteinuria,

thereby perpetuating a detrimental cycle (62). Therefore,

interventions targeting oxidative phosphorylation pathways and

amino acid metabolism may offer advanced therapeutic

techniques to decelerate the progression from AKI to CKD.
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During the transition from AKI to CKD, various cell types

including fibroblasts, Th2 cells, astrocytes, DCs, and M2

macrophages, play pivotal roles, aligning with our findings.

Studies indicate that fibroblasts differentiate into myofibroblasts

following kidney injury, thereby promoting extracellular matrix
FIGURE 12

(A, B) The subgroups of Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset. (C, D) The subgroups of Type A
intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. (E, F) Different states of Type A intercalated cell and Collecting duct-
principal cell in AKI single-cell dataset. (G, H) Different states of Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset.
(I, J) Expression trends of CLCNKB、KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset.
(K, L) Expression trends of CLCNKB、KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. AKI,
Acute kidney injury; CKD, Chronic kidney disease.
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accumulation and contributing to renal fibrosis (63). Moreover, M2

macrophages exhibit a dual role in this process, engaging in tissue

repair while potentially facilitating fibrosis progression in chronic

inflammation (64). Post-AKI, Th2 cell activation may mitigate

inflammatory responses and promote renal repair.However, an

excessive Th2 cell response can also exacerbate fibrosis (65). In

addition, suppressing PLEKHA4 might obstruct the M2

polarization process in macrophages (66). Thus, the positive

association of Th2 cells with PLEKHA4 may expedite the

progression of kidney fibrosis. Dendritic cells modulate T cell

activation and differentiation through antigen presentation and

cytokine secretion, thereby impacting the inflammatory and

reparative mechanisms of kidney (67). Meanwhile, astrocytes are

integral to the neuroimmune regulation of the kidney, potentially

influencing the inflammatory response and fibrotic processes via

the release of neurotransmitters and cytokines (68). It is noteworthy

that interstitial cells, as a crucial component of the renal

microenvironment, play a significant role in renal inflammation.

They amplify local inflammatory signals by releasing

proinflammatory factors, thereby inducing increased apoptosis of

renal parenchymal cells and exacerbating renal fibrosis through the

promotion of myofibroblast activation and extracellular matrix

deposition (69). This process is intricately linked to abnormal

oxidative stress, which not only results from the inflammatory

response but also exacerbates inflammation and apoptosis by

impairing mitochondrial function and activating the NF-kB and

Nrf2 signaling pathways (70–72). These pathways are central to the

regulation of apoptosis, inflammation (73), and oxidative stress in

kidney diseases and are pivotal in determining the progression and

outcomes of CKD (74, 75). Furthermore, Type A intercalated cells

and collecting duct principal cells are identified as pivotal in the

transition from AKI to CKD. This process encompasses a variety of

complex pathophysiological mechanisms, including inflammation,

fibrosis, and renal tubular injury. Type A interstitial cells, a distinct

group of cells located in the kidney’s collecting duct, are crucial for

maintaining acid-base equilibrium and facilitating ion transport

(76). AKI is frequently associated with an inflammatory response,

which stimulates the release of pro-inflammatory cytokines and

chemokines (77). Type A interstitial cells may exacerbate renal

fibrosis by promoting fibroblast activation and collagen synthesis

(78). Furthermore, the dysfunction of intercalated cells is intricately

associated with alterations in the renal microenvironment, which

may encompass hypoxia, modifications in the extracellular matrix,

and dysregulation of intercellular signaling pathways (79).

Collecting duct principal cells, another predominant cell type in

the collecting duct, are responsible for the regulation of sodium and

water reabsorption, thereby maintaining fluid balance (77).

Dysfunction in the collecting duct principal cells results in

compromised water and sodium reabsorption, further

exacerbating kidney damage. Collecting duct principal cells

demonstrate considerable proliferative capacity following acute

kidney injury, a response likely aimed at compensating for

tubular damage and facilitating renal repair (80). Consequently,

these cellular types may represent potential therapeutic targets in
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the progression from AKI to CKD, warranting further in-depth

investigation into the interactions among different cell types.

In this study, a biomarker-drug network was developed, revealing

that CLCNKB, PLEKHA4, and KLK1 are concurrently targeted by

tetrachlorodibenzodioxin. However, tetrachlorobiphenyldioxin is

recognized as an environmental pollutant that induces toxicity across

multiple tissues, including the kidneys (81). Research has demonstrated

that exposure to tetrachlorobiphenyldioxin can result in oxidative

stress, leading to cellular damage and dysfunction within the kidneys

(82). However, the therapeutic effect of tetrachlorobiphenyldioxin are

poorly studied. These findings are contrary to our results, indicating

that the mechanisms of action of related drugs require further

exploration in future studies.

In this study, miRNAs and immune cells synergistically

influence the progression from AKI to CKD by targeting specific

biomarkers and engaging in the inflammation-fibrosis axis.

Regarding miRNAs, although only two miRNAs, such as hsa-

miR-3187-3p, were predicted to target PLEKHA4, the constructed

lncRNA-miRNA-mRNA network indicates its regulatory role.

MiRNAs may negatively regulate PLEKHA4 expression by

promoting mRNA degradation or inhibiting its translation. The

downregulation or loss of function of miRNAs can lead to

PLEKHA4 overexpression, which subsequently activates the Wnt/

b-catenin pathway. This activation promotes fibroblast activation,

epithelial-mesenchymal transition, and extracellular matrix

deposition, thereby accelerating renal fibrosis (51). These findings

illuminate the intricate mechanisms underlying immunometabolic

regulation in kidney diseases and provide a rationale for therapeutic

strategies targeting miRNAs or immune cells.

Among the biomarkers identified in this study, CLCNKB

demonstrates s ignificant novel ty . Pr ior research has

predominantly concentrated on the relationship between

CLCNKB variants and inherited renal tubular disorders, such as

Bartter syndrome (35). However, to date, no investigations have

reported an association between CLCNKB and AKI or CKD. This

study is the first to reveal that CLCNKB plays a crucial role in the

transition from AKI to CKD, potentially offering a novel perspective

on the mechanisms underlying AKI-CKD progression. In contrast,

KLK1 and PLEKHA4 are established targets in AKI and CKD

research. KLK1 has been demonstrated to play a significant role in

kidney disease (83). Regarding PLEKHA4, the continuous

activation of the Wnt/b-catenin signaling pathway is implicated

in the progression of renal fibrosis in CKD, contributing to ongoing

tissue damage in kidney disease (52). Through comprehensive

bioinformatics analysis, this study systematically examined the

expression patterns and potential regulatory networks of KLK1

and PLEKHA4 in the AKI-CKD transition, thereby enhancing the

understanding of their mechanisms in kidney diseases. The

identification of these biomarkers not only provides potential

molecular indicators for early diagnosis but also enriches the

current understanding of kidney disease pathophysiology.

Three biomarkers, CLCNKB, KLK1, and PLEKHA4, were

identified through bioinformatics methods as being associated with

the progression of AKI to CKD. Functional enrichment analysis was
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conducted based on these biomarkers to elucidate the biological

pathways involved in AKI and CKD. Additionally, correlation

analysis between differential immune cells and the identified

biomarkers was performed to explore potential regulatory

relationships. Single-cell analysis provided insights into the cellular-

level expression of these biomarkers, offering new perspectives for early

diagnosis and the development of novel therapeutic strategies for AKI

and CKD. This study is subject to several limitations. Firstly, the

retrospective analysis based on public databases is unable to fully

eliminate batch effects, and the sample sizes are constrained (for

instance, the scRNA-seq dataset includes only five cases of AKI and

two cases of CKD), which impedes the effective application of

multivariate statistical analysis to control for confounding factors.

Secondly, the study lacks gene function experiments, such as gene

knockout or overexpression, which are necessary to directly validate the

causal mechanisms of the candidate genes. Furthermore, the clinical

translation of target-related compounds, such as tetrachlorodibenzo-

dioxins, is severely limited due to their toxicity. Future research should

aim to expand the sample size through multi-center prospective cohort

studies to acquire comprehensive clinical information. Additionally,

animal models and cellular experiments, including gene editing and

inhibitor or agonist treatments, should be employed to further elucidate

the specific mechanisms by which CLCNKB, KLK1, and PLEKHA4

regulate fibrosis and the immune microenvironment. Moreover, flow

cytometry and RNA sequencing (RNA-seq) technologies will be

employed to assess the dynamic expression and functional status of

type A interstitial cells within a kidney injury model, thereby

elucidating their potential role in the disease pathology. Ultimately,

these insights are intended to be translated into early intervention and

targeted therapies for kidney disease through drug repositioning or the

development of novel inhibitors or agonists.
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