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Complex probiotics can
reduce diarrhea by boosting
immunity and balancing gut
microbiota in weaned piglets
Mingyu Wang1†, Xian Zhou1†, Lea Hübertz Birch Hansen2,
Yongshuai Sheng2, Bing Yu1, Jun He1, Jie Yu1 and Ping Zheng1*

1Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-
Resistance Nutrition, Ministry of Education, and Key Laboratory of Animal Disease-Resistant Nu-
trition, Chengdu, Sichuan, China, 2Animal and Plant Health & Nutrition, Chr. Hansen A/S,
Hoersholm, Denmark
Purpose: SOLVENS (SLV) is a zootechnical feed additive based on viable spores of

Bacillus licheniformis and Bacillus subtilis. This study aimed to evaluate the

effects of SLV on the intestinal health of weaned piglets.

Methods: A total of 360 healthy 24-day-old weaned Duroc × Landrace ×

Yorkshire piglets were allocated to three treatment groups based on body

weight and sex: T1 (Control, CON), T2 (SLV 200, 6.5×108 CFU per kg feed), and

T3 (SLV 400, 1.3×109 CFU per kg feed). Each treatment consisted of 30 replicates

with four pigs per replicate, and the experiment lasted 42 days. Piglets were fed

mash pre-starter feed (days 1–14) and mash starter feed (days 15–42). Growth

performance, fecal microorganisms, serum immunity, and intestinal barrier

function were assessed. Experimental data were analyzed using SPSS 27.0 for

one-way ANOVA, and multiple comparisons were made using the

DUNCAN method.

Results: Compared with the control, SLV 200 and SLV 400 significantly reduced

diarrhea rate (P < 0.05). SLV 200 increased fecal Lactobacilli and decreased

Escherichia coli on day 14 (P < 0.05), while SLV 400 elevated Lactobacilli on days

14 and 42 and reduced E. coli on day 14 (P < 0.05). SLV 200 increased fecal sIgA

and serum IgG on day 42 (P < 0.05), whereas SLV 400 elevated serum IgG and

IgM on day 14 (P < 0.05) and serum IgA on day 42 (P < 0.05). Additionally, SLV 200

downregulated ileal interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a)
gene expression (P < 0.05), and SLV 400 reduced TNF-a expression (P < 0.05).

Conclusion: Dietary supplementation with SLV improved intestinal health by

modulating gut microbiota and enhancing immunity in weaned piglets.
KEYWORDS

compound probiotics, weaned piglets, growth performance, intestinal health,
immune modulation
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1 Introduction

Immune function and the digestive system of piglets at weaning

are not fully developed, and weaning stress causes disturbances in

gut microbiota and mucosal immune dysfunction (1, 2). Weaning

stress often causes post-weaning diarrhea and slows down the

growth of piglets (3). In addition, weaning stress damages

intestinal structure and function, induces various diseases, and

can even lead to death (4, 5).

In the past, livestock industry used antibiotics to alleviate post-

weaning diarrhea, but due to the many negative effects of antibiotic

use, many countries have banned the use of antibiotics in feed.

Therefore, new feed additives are urgently needed in the swine

industry to solve this problem. During the last decade, the

application of probiotics in animal feed has increased. Studies have

shown that probiotics can improve intestinal health and reduce the

negative impact of weaning stress on piglets (6–9). According to

previous studies, dietary supplementation with Bacillus subtilis in

weaned piglets can increase the number of goblet cells and upregulate

the expression of antimicrobial peptides, thereby enhancing intestinal

mucosal barrier and improving mucosal immunity (10). This helps to

inhibit Escherichia coli-induced intestinal damage, reduce diarrhea

incidence, and improve growth performance in piglets (11, 12).

Bacillus licheniformis functions to balance gut microbiota,

promoting development of immune organs as well as improving

immune function. (13–15). However, the effects of a single probiotic

on the health of piglets are limited (16). Complex probiotics may have

synergistic effects on piglet health, but relevant research is limited and

needs further research.

The present experiment was designed to evaluate the effects of

dietary addition of SOLVENS (SLV), a complex probiotic

composed of Bacillus subtilis DSM5750, Bacillus subtilis

DSM27273, and Bacillus licheniformis DSM5749. Our results will

provide a new solution to alleviate post-weaning diarrhea for pig

industry in the post-antibiotic era.
2 Materials and methods

This experiment was conducted at the Animal Experiment

Center of Sichuan Agricultural University, Ya’an, China. All animal

procedures associated with this study were approved by the Animal

Care and Use Committee, Sichuan Agricultural University (Ethical

Approval Code: SICAUAC20220506; Ya’an,China).

Comprehensive probiotic SLV is provided by Chr. Hansen A/S

(Hoersholm, Denmark). SLV is composed of Bacillus subtilis DSM5750,

Bacillus subtilis DSM27273, and Bacillus licheniformis DSM5749, in a

ratio of 2:1:1. The total number of bacteria is 3.25×109 CFU/g.
2.1 Experimental design and animal
management

A total of 360 healthy 24-day-old weaned Duroc × Landrace ×

Yorkshire piglets (initial body weight: 7.79 ± 0.25kg, mean ± SEM)
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were selected and allocated to 3 treatments according to their initial

body weight and sex: CON (a 2-period basal diet, Control); SLV 200

(adding 200 mg/kg SLV); T3: SLV 400 (adding 400 mg/kg SLV).

Each treatment consisted of 30 replicate pens, with four pigs (2 male

and 2 female) per pen. Therefore, each treatment contains a total of

120 piglets. The basal diets (Table 1) were formulated to meet

nutrient requirements based on the National Research Council (17).

The experiment lasted for 42 days.

All weaned piglets were fed the treatment diets 4 times per day

at 08:00, 12:00, 16:00, and 20:00, and water was provided ad libitum.

All piglets were housed in a controlled room with temperature

maintained at 28 ± 1 °C and relative humidity controlled at 65–75%.

In the mornings of days 0, 14, and 42, after 12 hours of fasting,

all piglets were weighed. Daily feed intake per pen was accurately

recorded throughout the trial, and ADG, ADFI, and FCR

were calculated.

From day 1 to day 42, the health status and diarrhea of all

experimental piglets were checked every morning and evening

continuously. Fecal scores of each piglet were observed and

recorded daily by the same investigator according to a

standardized scoring system. The scoring system was:
0 = normal, firm feces;

1 = soft feces, possible slight diarrhea;

2 = feces that are formless and semifluid, moderate diarrhea;

3 = very watery and frothy feces, severe diarrhea.
The fecal score ≥2 was defined as diarrhea. Diarrhea incidence

was calculated as follows: Diarrhea incidence (%) = (total number of

pigs per pen with diarrhea)/(number of pigs per pen × test period)

× 100.
2.2 Sample collection

Fecal samples were collected from female piglets of 15 pens of

each treatment on days 0, 14, and 42, respectively. Feces were

collected directly from the anus to avoid contamination. Fecal

samples were collected into sterile centrifuge tubes, placed in ice

boxes, transported back to the laboratory, and immediately stored

at -80°C.

Blood samples were collected from the anterior vena cava of the

piglets that were the same individuals used for fecal sampling. After

centrifugation for 10 minutes at 3500 rpm, the serum was carefully

separated and stored at -20°C for testing of relevant indicators. A

total of 45 blood samples were collected.

On day 42 at 08:00, piglets selected for fecal and serum sample

collection (n=15) were euthanized by intravenous pentobarbital

sodium (200 mg/kg BW) and then slaughtered by exsanguination

using the protocol approved by the Sichuan Agricultural University

Animal Care Advisory Committee. The abdominal cavity was

immediately opened, and the ileal intestinal segments were

removed according to the procedure described by a previous

study (18). Cut the middle part of the ileum, remove its contents,

rinse it with normal saline, and put it in an ice bag. Following
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TABLE 1 The composition and nutrients levels of the experimental basal diets (air-dried basis, %).

Items Pre-starter (Days 1 to 14) Starter (Days 15 to 42)

Ingredients,%

Extruded corn 25.00 30.00

Corn 30.53 35.33

Soy protein concentrate 10.00 8.00

Low protein whey powder 5.00 4.00

Extruded soybean 8.00 6.00

Soybean meal 7.00 6.00

Soybean oil 1.00 1.20

Coconut oil 1.00 0.00

Fish meal 5.00 4.00

Sucrose 2.00 2.00

Glucose 3.00 1.00

NaCl 0.20 0.30

Chloride choline 0.10 0.10

Limestone 0.82 0.82

Dicalcium phosphate 0.55 0.35

Vitamin premix1 0.01 0.01

Mineral premix2 0.20 0.20

L-Lys·HCl 0.32 0.40

L-Thr 0.10 0.12

DL-Met 0.15 0.15

L-Trp 0.02 0.02

Total 100.00 100.00

Nutrition level3

DE, MJ/Kg 14.81 14.60

CP,% 20.64 18.37

Ca,% 0.80 0.70

TP,% 0.59 0.52

AP,% 0.40 0.33

D-Lys,% 1.35 1.23

D-Met,% 0.46 0.43

D-Cys,% 0.28 0.25

D-Met+Cys,% 0.75 0.68

D-Thr,% 0.82 0.74

D-Trp,% 0.23 0.20
F
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1The premix provided the following per kg diet: vitamin A 3–000 IU; vitamin D 1–000 IU; vitamin E 8.0 IU; vitamin K3 1.0 mg; vitamin B1 1.0 mg; vitamin B2 2.5 mg; vitamin B6 1.2 mg; vitamin
B12 0.012 mg; nicotinic acid 10.0 mg; D-pantothenic acid 5.0 mg; folic acid 0.5 mg; biotin 0.05 mg. 2The premix provided the following per kg diet: Fe 100.0 mg; Cu 6.0 mg; Zn 100.0 mg; Mn 4.0
mg; I 0.14 mg; Se 0.3 mg. 3Nutrients levels except CP level were calculated.
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scraping of the mucosa with a sterile glass slide, the sample was snap

frozen in liquid nitrogen and stored at -80°C. Additionally, an ileal

segment (about 3cm) was placed in 4% neutral formalin solution

and processed for histology.
2.3 Feces sample analysis

The number of Lactobacilli (MRS agar plates), E. coli (blood agar

plates to identify hemolytic colonies and MacConkey for

Enterobacteriaceae) and C. perfringens (using the ISO-GRID

membrane filtration, with TSC Agar medium supplemented with

D-Cycloserine and in anaerobiosis conditions) in the feces of the

piglets on days 0, 14, and 42 was determined using the bacterial

enumeration method. Secretory immunoglobulin A (sIgA) was

measured via enzyme-linked immunosorbent assay (ELISA)

(Jiangsu Enzyme Free Industry Co., Ltd, Jiangsu, China), and the

concentration of myeloperoxidase (MPO) was determined by

enzymatic colorimetric methods (Nanjing Jian cheng Bioengineering

Institute, Nanjing, China). Determination of dry matter content in

feces was carried out by the constant weight method (19).
2.4 Blood sample analysis

Serum immunoglobulin A (IgA), immunoglobulin M (IgM),

immunoglobulin G (IgG), C-reactive protein (CRP), and

Haptoglobin (HPT) were measured via enzyme-linked

immunosorbent assay (ELISA) (Jiangsu Enzyme Free Industry Co.,

Ltd, Jiangsu, China). The manufacturer’s instructions were followed

for all procedures.
2.5 Intestinal morphology analysis

After fixation with 4% paraformaldehyde, samples of ileal

segments were dehydrated, embedded, sectioned, and stained. The

target area of tissue was then selected for imaging using an Eclipse

Ci-L camera microscope. Analyzing images with Image-Pro Plus

6.0, and in each section, five intestinal villus heights and five crypt

depths were measured using a 40×field of view, and the villus

height/crypt depth (V/C) was calculated. Selection of target areas

using a 100×field of view was then carried out, and measurement of

the height of villi at each of five locations and a count of the number

of Goblet cells and Peyer’s patches were made.
2.6 Gene expression in intestinal mucosa

Trizol Reagent (TaKaRa, Dalian, China) was used to extract

total RNA from the ileal mucosa, and a spectrophotometer was used

to measure concentration and purity of total RNA (NanoDrop,

Gene Company Limited, Guangzhou, China) at 260 and 280 nm

according to the manufacturer’s directions. Reverse transcription
Frontiers in Immunology 04
was performed according to the manufacturer’s instructions using

the Prime Script RT reagent kit (TaKaRa, Dalian, China). With the

help of a CFX96 Real-Time PCR Detection System (Bio-Rad

Laboratories, Inc., Hercules, CA) and SYBR Green PCR reagents

(TaKaRa, Dalian, China), real-time PCR reactions were performed.

IL-1b, IL-4, IL-6, IL-10, TNF-a,MUC2,MUC3, ZO-1, CLDN-1, and

OCLN gene expression in the ileal mucosal tissue were measured.

Analyses of gene expression data in replicate samples were

conducted using the 2 −▲▲CT method (20). Table 2 shows the

sequence of primers used.
2.7 Statistical analysis

The pen was designated as the experimental unit for growth

performance and diarrhea rate analysis, with 30 replicates per

treatment group (n=30). For fecal, blood, and tissue sample

collections, one piglet per pen was selected as the sampling unit,

maintaining 15 replicates per treatment (n=15). Data were

expressed as mean and standard error. Descriptive statistics were

performed to evaluate whether data were normally distributed with

statistical software SPSS 27.0 (IBM, USA). Then, a one-way

ANOVA test was used to compare the differences in normally

distributed data among groups, followed by Duncan’s multiple-

range test. The diarrhea rate was analyzed by the chi-square test.

Correlations between variables were calculated using Spearman

rank correlation in GraphPad Prism v7.0. A marginally significant

difference was considered at 0.05 ≤ P ≤ 0.10, a statistically

significant difference was considered at P < 0.05, a highly

significant difference at P < 0.01, and an extremely significant

difference at P < 0.001.
3 Results

3.1 Effects of SLV on growth performance
and diarrhea rate of weaned piglets

Results of growth performance and diarrhea rate are shown

in Table 3. Compared with the control group, the FCR of piglets in

the SLV400 group was decreased by 0.05 during the whole trial

period (P > 0.05). Furthermore, the SLV 200 and SLV 400 groups

both reduced diarrhea in the starter and the entire period (P < 0.05).

The SLV 200 group also reduced diarrhea in the pre-starter

period (P < 0.05).
3.2 Effects of SLV on fecal indexes of
weaned piglets

As shown in Table 4, compared with the control group, SLV

had no significant effects on either dry matter or MPO in feces of

weaned piglets (P > 0.05).
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As shown in Figure 1, compared with the control group, SLV 200

increased the number of Lactobacilli and reduced the number of E.

coli in feces on day 14 (P < 0.05). SLV 400 also increased the number

of Lactobacilli in feces on day 14 and day 42 (P < 0.05) and reduced

the number of E. coli in feces on day 14 (P < 0.05). However, SLV did

not affect the number of C. perfringens in piglet feces (P > 0.05).

As shown in Figure 2, compared with the control group,

SLV200 and SLV400 tended to increase sIgA levels in feces on

day 14 (P < 0.10), and SLV200 increased sIgA levels in feces on day

42 (P < 0.05).
3.3 Effects of SLV on blood indexes of
weaned piglets

Effects of SLV on serum immunoglobulin of piglets are shown in

Figure 3. Compared with the control group, SLV 200 increased serum

IgG on Day 42 (P < 0.05), and SLV 400 increased serum IgG and IgM

on day 14 and increased the serum IgA on day 42 (P < 0.05).
Frontiers in Immunology 05
As shown in Table 5, dietary supplementation of SLV did not

affect the concentration of C-reactive protein and haptoglobin in

serum compared to the control group (P > 0.05).
3.4 Correlation between diarrhea rate,
immunoglobulins, and fecal
microorganisms

We further evaluated the correlations among diarrhea rate, serum

immunoglobulins, fecal secretory IgA (sIgA), and fecal microbiota at

different stages. As shown in Figure 4, during days 0–14, diarrhea rate

was significantly positively correlated with Escherichia coli

abundance (r = 0.53, P < 0.001). Fecal sIgA was positively

correlated with serum IgM (r = 0.67, P < 0.001), and negatively

correlated with fecal E. coli (r = –0.38, P < 0.05). On day 42, fecal sIgA

was positively correlated with serum IgA (r = 0.42, P < 0.01), IgG (r =

0.64, P < 0.001), and IgM (r = 0.47, P < 0.01), and negatively

correlated with fecal Clostridium perfringens (r = –0.35, P < 0.05).
TABLE 2 Primer sequences of intestinal mucosa used for real-time PCR.

Genes1 Primer and probe sequences
(5’-3’)

Product length/bp Annealing temperature
(°C)

IL-1b
F:CAGCTGCAAATCTCTCACCA

113 59.7
R:TCTTCATCGGCTTCTCCACT

IL-4
F:CCTGGTCTGCTTACTGGCAT

80 60
R:GCACGAGTTCTTTCTCGCTG

IL-6
F:TTCACCTCTCCGGACAAAAC

122 59.7
R:TCTGCCAGTACCTCCTTGCT

IL-10
F: CGGCGCTGTCATCAATTTCTG

136 62.6
R: CCCCTCTCTTGGAGCTTGCTA

TNF-a
F: CGTGAAGCTGAAAGACAACCAG

121 59.7
R: GATGGTGTGAGTGAGGAAAACG

MUC2
F:GGTCATGCTGGAGCTGGACAGT

185 60
R:TGCCTCCTCGGGGTCGTCAC

MUC3
F: GCTGGCTTTCATCCTCCACT

161 60
R: CCTCCATCCCACACACTTCC

ZO-1
F: CAGCCCCCGTACATGGAGA

114 55
R: GCGCAGACGGTGTTCATAGTT

CLDN1
F:TCTTAGTTGCCACAGCATGG

140 60
R:CCAGTGAAGAGAGCCTGACC

OCLD
F: TCAGGTGCACCCTCCAGATT

158 55
R: AGGAGGTGGACTTTCAAGAGG

b-actin
F:TCCATCGTCCACCGCAAATG

114 59.7
R:TTCAGGAGGCTGGCATGAGG
1IL-1b, interleukin-1b; IL-6, inter-leukin-6; IL-10, interleukin-10; TNF-a, tumor necrosis factor-a; MUC2, mucin2; MUC3, mucin3; ZO-1, zonula occludens-1; CLDN-1, claudin-1; OCLN,
occluding; b-actin, actin, beta.
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TABLE 3 Effects of dietary SLV supplementation on the growth performance of weaned piglets.

Items
Treatments

SEM P-value
CON SLV 200 SLV 400

BW, kg

Day 1 7.80 7.80 7.80 0.054 1.000

Day 14 9.71 9.77 9.67 0.054 0.760

Day 42 21.93 22.17 22.36 0.134 0.416

Days 1 to 14

ADG, g 144.18 148.07 141.94 3.557 0.780

ADFI, g 284.27 284.82 277.83 6.851 0.902

FCR 2.00 1.92 1.97 0.027 0.428

Diarrhea rate, % 9.70a 6.55b 8.04ab 0.006 0.004

Days 15 to 42

ADG, g 438.13 445.50 457.25 3.699 0.104

ADFI, g 854.78 853.13 862.93 6.270 0.792

FCR 1.94 1.93 1.88 0.012 0.107

Diarrhea rate, % 5.88a 3.51b 2.83b 0.005 0.001

Days 1 to 42

ADG, g 338.93 342.89 348.73 3.114 0.436

ADFI, g 661.48 662.13 668.40 5.413 0.849

FCR 1.94 1.93 1.89 0.012 0.207

Diarrhea rate, % 7.15a 4.52b 4.56b 0.005 0.001
F
rontiers in Immunology
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Different superscript letters (a, b) within the table indicate significant differences (P < 0.05).
TABLE 4 Effects of dietary SLV supplementation on the dry matter and myeloperoxidase in feces of weaned piglet.

Treatments

Items1 CON SLV 200 SLV 400 SEM P-value

Day 0

Mean fecal DM, % 37.05 37.29 37.07 0.423 0.969

MPO in feces, U/g 1.77 2.85 2.46 0.429 0.569

Day 14

Mean fecal DM, % 36.40 36.24 36.66 0.285 0.840

MPO in feces, U/g 0.76 0.75 0.76 0.024 0.760

Day 42

Mean fecal DM, % 35.74 36.33 35.98 0.282 0.704

MPO in feces, U/g 0.76 0.75 0.76 0.035 0.995
1DM, dry matter; MPO, myeloperoxidase.
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3.5 Effects of SLV on intestinal health in
weaned piglets

Results of SLV treatment on intestinal morphology of piglets are

shown in Table 6 and Figure 5. Compared with the control group,

adding SLV trended to increase ileal villus height (P < 0.10). There

was no significant effect on crypt depth, villus height to crypt ratio,

and goblet cell and Peyer’s patch density (P > 0.05).

Results of the effect of SLV on gene expression in the ileal

mucosa of piglets are shown in Figure 6. Compared with the control

group, SLV 200 decreased gene expression of IL-1b and TNF-a in

the ileal mucosa (P < 0.05), and SLV 400 reduced gene expression of
Frontiers in Immunology 07
TNF-a in the ileal mucosa (P < 0.05). There were no significant

effects on the expression of MUC2 and MUC3, and tight junction

proteins OCLD and CLDN-1 in the ileal mucosa (P > 0.05). The

control group tended to increase expression of ZO-1 in the ileal

mucosa compared with the SLV groups (P < 0.10).
4 Discussion

Weaning in piglets causes stress and diarrhea, which results in a

decrease in feed intake and average daily gain. Probiotics can reduce

piglet diarrhea and improve the growth performance of weaned
TABLE 5 Effects of SLV on serum C-reactive protein and haptoglobin levels in piglets.

Treatments

Items CON SLV 200 SLV 400 SEM P-value

Day 0

C-reactive protein, mg/mL 3.40 3.87 3.81 0.105 0.128

Haptoglobin, mg/mL 91.69 92.76 93.86 2.753 0.951

Day 14

C-reactive protein, mg/mL 4.95 4.75 4.79 0.087 0.629

Haptoglobin, mg/mL 44.34 44.62 45.60 0.966 0.861

Day 42

C-reactive protein, mg/mL 2.39 2.36 2.40 0.071 0.968

Haptoglobin, mg/mL 80.13 81.91 82.54 1.745 0.848
FIGURE 1

Effects of SLV supplementation on fecal microflora of weaned piglets: (A) Lactobacillus; (B) Escherichia coli; (C) Clostridium perfringens. 1Letters
above the bars (a, b) indicate significant differences (P < 0.05) and x and y indicate a trend (0.05 ≤ P < 0.10) between the 3 treatments. (n=15). CON,
control group; SLV 200, SOLVENS 200 (6.5×108 CFU per kg feed); SLV 400, SOLVENS 400 (1.3×109 CFU per kg feed). The same figure below. 2LAB,
Lactobacillus; E. coli, Escherichia coli; C. perfringens, Clostridium perfringens.
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piglets (11, 12, 21–23). Our results indicated that both SLV 200 and

SLV 400 effectively reduced diarrhea rate. Furthermore, SLV 400

demonstrated numerically superior average daily gain (ADG) and

feed conversion ratio (FCR) in weaned piglets during the 15 to 42-

day period, though these differences did not reach statistical

significance. The mechanisms underlying the alleviation of

diarrhea and improved growth performance in piglets by dietary

SLV supplementation may be attributed to the following aspects.

Firstly, supplementation with SLV in the diets of weaned piglets

showed a tendency to improve intestinal morphology. Previous

studies have demonstrated that weaning stress leads to damage to

the structure of intestinal villi (4, 5). As the primary site for nutrient

digestion and absorption, intestinal villi are essential for growth and

development (24, 25). Damage to villi has been reported to increase
Frontiers in Immunology 08
the risk of diarrhea and growth retardation (24, 26–28). Tight

junction proteins play a crucial role in maintaining normal tissue

morphology of the intestine and contributing to the integrity and

permeability of the intestinal barrier (29–31). Previous studies have

shown that dietary supplementation with Bacillus subtilis or Bacillus

licheniformis can increase intestinal villus height, promote the

expression of tight junction proteins, and enhance structural

integrity of intestinal morphology in pigs (32–34). The results of

this study showed that dietary supplementation with 200 mg/kg and

400 mg/kg SLV increased ileal villus height in piglets by 13.73% and

12.27%, respectively, exhibiting a marginally significant statistical

effect. However, it did not affect the gene expression of tight

junction protein OCLD and CLDN-1. This discrepancy may be

attributed to variations in the physiological and health status of
FIGURE 2

Effects of SLV supplementation on secretory immunoglobulin A in feces of piglets. sIgA, secretory Immunoglobulin A Letters above the bars (a, b)
indicate significant differences (P < 0.05) and x and y indicate a trend (0.05 ≤ P < 0.10) between the 3 treatments. (n=15).
FIGURE 3

Effects of SLV supplementation on serum immunoglobulin of piglets: (A) immunoglobulin A; (B) immunoglobulin G; (C) immunoglobulin M. 1IgA,
immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M. Letters above the bars (a, b) indicate significant differences (P < 0.05). (n=15).
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piglets, where the efficacy of SLV could potentially exert more

pronounced effects under pathological conditions, such as

inflammatory states (e.g., E. coli-infected piglets) or intestinal

damage. Future studies should validate this hypothesis in

challenged models.

Secondly, SLV supplementation balanced the abundance of

intestinal Lactobacillus, Escherichia coli, and Clostridium perfringens

of piglets. Gut microbiota plays a crucial role in the intestinal health of

weaned piglets. Dysbiosis of gut microbiota usually leads to a series of

chain reactions such as diarrhea post-weaning, damage to the

intestinal barrier, smaller intestinal villi, shrinkage of intestinal cells,

reduced digestive capacity, and slower weight gain (35). In this study,

SLV supplementation increased the number of Lactobacilli in the feces

of weaned piglets on days 14 and 42, and reduced the number of E. coli

in the feces of piglets on day 14. Previous studies also found that

supplementation with probiotics could reduce diarrhea rates by

regulating the balance of the intestinal community (13–15, 22, 36).
Frontiers in Immunology 09
Our findings revealed that dietary SLV supplementation reduced the

abundance of pathogenic bacteria while increasing beneficial bacteria

in the fecal microbiota. This modulatory effect on gut microbiota

constitutes one mechanism through which SLV enhances intestinal

health and reduces diarrhea incidence in piglets.

Thirdly, SLV supplementation enhanced immunity of piglets.

Immunoglobulins are a critical component of immune system and

play an essential role in protecting against diarrhea caused by intestinal

infections (37–39). Previous studies have found that adding Bacillus

subtilis to piglet diets increased the levels of IgA and IgM in serum of

weaned piglets (36, 40–43). Results of our study showed that dietary

supplementation of SLV to feed increased serum levels of IgA, IgG, and

IgM in piglets on days 14 and 42 after weaning. These findings are

consistent with previous studies (36, 42), indicating that SLV enhances

immune function of weaned piglets and may help prevent pathogen

invasion. Pro-inflammatory factors, such as IL-1b, IL-6, and TNF-a,
can mediate host’s inflammatory response by rapidly generating an
FIGURE 4

Spearman correlation among immunoglobulins, fecal microbiota, and diarrhea rate. Brown indicates a positive correlation, and green indicates a
negative correlation. (A) Spearman correlation analysis for day 14 (or days 0–14); (B) Spearman correlation analysis for day 42 (or days 15–42). *, **,
and *** indicate statistically significant correlations at P < 0.05, P < 0.01, and P < 0.001.
TABLE 6 Effects of SLV supplementation on the ileal morphology of weaned piglets.

Treatments

Items CON SLV 200 SLV 400 SEM P-value

Villus height, mm 412.33y 468.90x 462.91x 11.576 0.096

Crypt depth, mm 291.18 296.16 275.80 6.501 0.429

V:C1 1.51 1.68 1.69 0.054 0.327

Goblet cells/mm 27.20 22.40 26.64 1.432 0.328

Peyer’s patches 43.73 47.27 51.69 1.800 0.208
1V:C, villus height to crypt depth ratio.
Different superscript letters (x, y) within the table indicate trends among the three treatments (0.05 ≤ P < 0.10).
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immune response after pathogen infection. In contrast, anti-

inflammatory factors, including IL-4 and IL-10, can regulate body’s

inflammatory response and enhance immune function. Previous studies

have found that supplementation of Bacillus in feed can increase the
Frontiers in Immunology 10
expression of anti-inflammatory factors IL-4 and IL-10 and reduce the

expression of pro-inflammatory factors IL-1b, IL-6, and TNF-a (44–46).

Our study showed that SLV supplementation significantly reduced the

expression of pro-inflammatory factors in the ileal mucosa of piglets.
FIGURE 5

Effects of SLV supplementation on the ileal morphology of weaned piglets. Representative cross-sectional staining of the ileum with periodic acid-
Schiff (PAS).
FIGURE 6

Effect of SLV on gene expression in the ileal mucosa of weaned piglets: (A) Relative expression of pro-inflammatory factors IL-1b, TNF-a and IL-6 in
the ileum of weaned piglets; (B) Relative expression of anti-inflammatory factors IL-4, IL-10 in the ileum of weaned piglets; (C) Relative expression of
tight junction proteins OCLD, CLDN-1 and ZO-1 in the ileum of weaned piglets; (D) Relative expression of mucins MUC2, MUC3 in the ileum of
weaned piglets. 1IL-1b, interleukin-1b; TNF-a, tumor necrosis factor-a; IL-6, inter-leukin-6; IL-4, inter-leukin-4; IL-10, interleukin-10; ZO-1, zonula
occludens-1; CLDN-1, claudin-1; OCLD, occluding; MUC2, mucin 2; MUC3, mucin 3. Letters above the bars (a, b) indicate significant differences
(P < 0.05) and x and y indicate a trend (0.05 ≤ P < 0.10) between the 3 treatments. (n=15).
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However, it did not affect gene expression of anti-inflammatory factors

IL-4 and IL-10 in the ileal mucosa. These results support the notion that

SLV enhances immune function and prevents disruption of intestinal

immune homeostasis by pathogens before the onset of inflammation.

Increased levels of fecal sIgA further support this interpretation. SIgA is

secreted by B lymphocytes in Peyer’s patches. As the main component

of intestinal immune barrier, sIgA is the most crucial immunoglobulin

for maintaining intestinal mucosal immunity and preventing various

infections (47). Studies have shown that sIgA can recognize and bind to

Escherichia coli through its fragment crystallizable (Fc) region, secretory

component (SC), and N-glycosylation (48), thereby preventing bacterial

translocation across the intestinal epithelial barrier and maintaining

mucosal integrity (49). Our study showed that dietary supplementation

of SLV did not affect the number of ileal Peyer’s patches but could

increase the concentration of sIgA in feces of weaned piglets. Spearman

correlation analysis revealed a significant negative correlation between

fecal sIgA levels and Escherichia coli abundance, while the abundance of

E. coli was positively correlated with diarrhea rate. These findings are

consistent with previous studies and further suggest that SLV enhances

immune capacity of weaned piglets by increasing serum

immunoglobulin levels and fecal secretory IgA (sIgA) concentrations,

thereby preventing the onset of inflammation. This immune

enhancement likely contributes to improved disease resistance and

reduced diarrhea incidence observed in weaned piglets.
5 Conclusions

In conclusion, this study demonstrates that dietary

supplementation with SLV significantly reduces diarrhea in

weaned piglets. This effect is primarily attributed to the

enhancement of intestinal barrier function, improvement of

immune responses, reduction in the abundance of pathogenic

bacteria, and enrichment of beneficial microbes in feces. This

study elucidated the benefits of probiotics composed of Bacillus

subtilis DSM5750, Bacillus subtilis DSM27273, and Bacillus

licheniformis DSM5749 on intestinal health in weaned piglets and

suggested an antibiotic-free effective strategy to alleviate diarrhea in

weaned piglets.
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