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Early immune reconstitution following autologous hematopoietic stem cell
transplantation (autoHSCT) is associated with improved outcome in various
cancers. Natural killer (NK) cells are the first lymphocyte subset to recover post-
autoHSCT and play a crucial role in antitumor immunity. In this study, we have
performed an in-depth characterization of NK cells in adult patients with different
hematological malignancies. Our results revealed that, immediately after autoHSCT,
NK cells transiently acquired a decidual-like phenotype, displayed a more immature
and activated state, and exhibited an upregulation of inhibitory receptors and a
downregulation of activating receptors. This decidual-like and activated phenotype
was characterized by increased expression of CD56, CD9, CD49a, CD151, CD38
and HLA-DR. Additionally, we assessed plasma cytokine levels and identified
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associations between cytokine concentrations and NK cell phenotypic changes. In
vitro experiments suggested that these phenotype alterations could modulate NK
cell function. Finally, in patients with non-Hodgkin lymphoma (NHL), we observed a
correlation between NK cell maturation status and progression-free survival.
Collectively, our findings provide valuable insights into NK cell dynamics during
immune reconstitution following autoHSCT and may inform of strategies for
improving patients’ management.

NK cells, autologous hematopoietic stem cell transplantation, autoHSCT, LAIR-1, CD9,

GDF-15, IL-15, TGF-B

Introduction

Natural killer (NK) cells play a central role in cancer defense
due to their ability to directly kill target cells through multiple
mechanisms (1-4). Human circulating NK cells have been classified
into two major subsets with different functionalities based on CD56
and CD16 expression: CD56°#"CD16'°%/~ (CD56*"8") and
CD56%™CD16+ (CD56™) NK cells. CD56"8" NK cells produce
large quantities of immunomodulatory cytokines and chemokines,
with limited cytotoxicity unless they are activated by cytokines. In
contrast, CD56%™ NK cells are more cytotoxic but secrete lower
amounts of cytokines (5-8). NK cells express activating and
inhibitory receptors whose integrated signals determine their
response (9). In this manner, inhibitory receptors such as killer
immunoglobulin-like receptors (KIRs) and CD94/NKG2A
recognize self-human leukocyte antigen class I (HLA-I)
molecules, preventing NK cell activation. On the other hand, NK
cells are activated upon recognition of stress-induced ligands on
virus-infected or malignant cells, or via antibody-dependent cell-
mediated cytotoxicity (ADCC) (4, 7, 10, 11).

Autologous hematopoietic stem cell transplantation (autoHSCT)
is an effective and well-established treatment for various hematological
malignancies, including multiple myeloma (MM), Hodgkin
lymphoma (HL) and non-Hodgkin lymphoma (NHL) with its
different subcategories (12-15). Early immune reconstitution
following autoHSCT is associated with improved outcome across
several cancer types (16-18). Specifically, day 15 absolute lymphocyte
count (ALC-15) of = 500 cells/pl after autoHSCT is a good prognostic
indicator in MM and NHL patients (17). A high number of NK cells,
the first lymphocyte subset to recover post-transplantation (19-21), is
associated with better clinical outcome following autoHSCT (22-24).

Given the potent anti-tumor properties of NK cells and their
rapid recovery post-autoHSCT, understanding their biology and
reconstitution dynamics in this context is of significant importance.
It has been described that following autoHSCT, particularly during
early leukocyte recovery, there is a redistribution of NK cells
subsets. In MM and lymphoma patients it has been described an
increased frequency of immature CD56""8""NKG2A+ NK cells with
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high levels of CD57 and KIRs early after transplant (25). Another
study in MM has described a similar redistribution, characterized
by increased NK cell proliferation and a rise in the frequency of
both CD56"" NK cells as well as the most immature population
within the CD56"™ NK cell subset (CD57-NKG2A+) (26).
Normally, NK cell function is recovered early after autoHSCT
(25, 26), with transcriptomic analyses revealing significant
changes in pathways related to the cell cycle, DNA replication,
and the mevalonate pathway (27). Notably, in MM patients
undergoing autoHSCT, an expansion of a CD9+ decidual-like NK
cell subset has been observed, characterized by high granzyme B
and perforin expression levels (27). It has been proposed that this
CD9+ NK cell subset expansion could be the attributed to the
combination of TGF-B and the high levels of IL-15 observed
immediately after autoHSCT (28).

NK cell numbers and subset frequencies have been associated
with survival outcome (21, 29). For instance, MM patients with
lower frequencies of the highly differentiated NKG2A-CD57+ NK
cell subset after autoHSCT showed better clinical outcome (26).
Additionally, MM patients achieving long-term complete response
after autoHSCT showed increased frequencies of NK cells
expressing the inhibitory receptors KIR2DL1 and NKG2A
compared with age-matched healthy donors (30). Notably, similar
to allogeneic HSCT, a graft-versus-tumor effect mediated by NK
cells may occur in autoHSCT, potentially influenced by KIR-HLA-I
receptor-ligand mismatch and affinity interactions (31-35). KIR
and HLA-I genotypes have also been shown to impact
neuroblastoma patients undergoing autoHSCT and anti-GD2
therapy (32, 36).

Currently, few reliable biomarkers exist to predict prognosis in
patients undergoing autoHSCT, and understanding immune
reconstitution complexity is crucial for identifying them.
Therefore, a detailed characterization of NK cells and their
correlation with prognosis indicators is needed. In this study, we
report significant post-autoHSCT changes in the expression of
inhibitory and activating receptors, activation markers and
decidual-like markers, as well as in plasma levels of key cytokines
involved in NK cell functions. We also identified associations
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between specific cytokine levels and NK cell phenotypic changes. In
vitro functional studies suggest that these phenotypic alterations
may tune NK cell function. Finally, we observed a correlation
between NK cell maturation levels and progression-free survival
in NHL patients. Overall, these findings provide valuable insight
into the NK cell pool reconstitution dynamics after autoHSCT and
may contribute to the development of improved therapeutic
strategies for cancer patients undergoing this treatment.

Materials and methods

Patients  characteristics and study design
The clinical characteristics of the patients are shown in Table 1.

Blood samples were collected at six distinct time points: prior to

transplantation (S1), post-leucocyte recovery (defined as exceeding
1000 leukocytes/ul of blood, typically around day 12 following

TABLE 1 Patients’ clinical characteristics.

10.3389/fimmu.2025.1629118

autoHSCT) (S2), 30 days post-autoHSCT (S3), 100 days post-
autoHSCT (S4), 180 days post-autoHSCT (S5), and one year after
autoHSCT (S6) (Supplementary Figure S1A). Sample collection was
conducted through the Basque Biobank for Research (https://
www.biobancovasco.bioef.eus), in accordance with the quality
management, traceability, and biosecurity standards outlined in
the Spanish Law 14/2007 on Biomedical Research and Royal Decree
1716/2011. The project was approved by the Basque Ethics
Committee for Clinical Research (BIO14/TP/003, PI+CES+INC-
BIOEF 2017-03). Written informed consent was obtained from all
participants in accordance with the Declaration of Helsinki.

Determination of NK cell count

The total number of NK cells was determined from whole blood
samples. NK cells were identified as CD45+, CD3-, CD56+ and/or
CD16+ by flow cytometry. The following clinical-grade

Gender Male 35 (61.4%)
Female 22 (38.6%)
Cancer type Hodgkin lymphoma 8 (14.0%)

Non-Hodgkin lymphoma®

41 (72.0%)

Other cancers®
Mobilization regimen G-CSF

G-CSF + CTx

G-CSF + Plerixafor

8 (14.0%)
26 (45.6%)
17 (29.8%)

14 (24.6%)

BEAM

Conditioning regimen .
& e Other regimens®

Maintenance regimen

Rituximab (Non-Hodgkin lymphoma)
Lenalidomide (Multiple myeloma)

40 (70.2%)
17 (29.8%)

5 (8.8%)
2 (3.5%)

No 50 (87.7%)
Disease progression Yes 18 (31.6%)

No 39 (68.4%)
Dead Yes 8 (14.0%)

No 49 (86.0%)

Median (interquartile range)

Age

53 (44-61)

Infused CD34+ cells (x10° cells/kg)

33 (2.6-42)

“Non-Hodgkin lymphomas are diffuse large B-cell lymphoma (16), follicular lymphoma (11), mantle cell lymphoma (7), angioimmunoblastic lymphoma (3), primary cerebral lymphoma (2) and

peripheral T-cell lymphoma (2).

®Other cancers include multiple myeloma (3), acute myeloid leukemia (3), amyloidosis (1) and Burkitt lymphoma (1).
“Other regimens include BUCY (5), Melphalan 200 (4), Thiotepa + BCNU (3), BEA (2), TEAM (2) and Z-BEAM (1).

G-CSF, granulocyte colony-stimulating factor.

BEAM, BCNU, etoposide, cytarabine and melphalan.
BUCY, busulfan, cyclophosphamide.

BEA, BCNU, etoposide, cytarabine.

TEAM, thiotepa, etoposide, cytarabine and melphalan.
Z-BEAM, Zevalin (CD20 targeting antibody) + BEAM.
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fluorochrome-conjugated monoclonal antibodies (mAbs) were
used: FITC anti-CD16 (CLB/FcGranl), PE anti-CD56 (MY31),
PerCP-Cy5.5 anti-CD3 (SK7), and V450 anti-CD45 (2D1), all
from BD Biosciences. The total NK cell count per uL of blood
was calculated using the formula: (percentage of NK cells in the
lymphocyte gate x absolute lymphocyte count)/100. The total
lymphocyte count was obtained from the hemogram.

Plasma and peripheral blood mononuclear
cells

Plasma and peripheral blood mononuclear cells (PBMCs) were
isolated as previously described (28). Briefly, blood samples were
collected in EDTA-containing tubes from adults diagnosed with
various hematological malignancies who underwent autoHSCT.
Plasma was obtained after centrifugation. PBMCs were enriched
through density gradient centrifugation, cryopreserved in heat-
inactivated fetal bovine serum (FBS) (GE Healthcare Hyclone)
with 10% dimethylsulfoxide (DMSO) (Thermo Scientific), and
stored in liquid nitrogen until use.

Cryopreserved PBMCs were thawed in a 37°C water bath and
washed twice with RPMI 1640 medium supplemented with L-
Glutamine (Lonza). Next, cells were incubated for 1 hour at 37 °C
with 5% CO, in R10 medium, which consists of RPMI 1640 with
GlutaMAX, 10% FBS, and 1% Penicillin-Streptomycin (P-S), all
from Thermo Fisher Scientific, and supplemented with 10U DNase
(Roche). Subsequently, cells were washed one time, resuspended in
NK cell medium (RPMI 1640 medium with GlutaMAX, 10% FBS,
1% P-S, 1% Sodium Pyruvate and 1% MEM Non-Essential Amino
Acids Solution, all from Thermo Fisher Scientific), filtered through
70 pum cell strainers, and counted before being used in flow
cytometry studies and/or in vitro degranulation assays.

Flow cytometry and data analysis

NK cells were characterized phenotypically (Supplementary
Table S1, panels 1-3) and functionally (Supplementary Table S1,
panel 4) by flow cytometry. After two washes with PBS, PBMCs
were initially incubated in 1 mL of a 1/1000 dilution of the LIVE/
DEAD Cell Stain Kit (Invitrogen) in PBS, on ice for 30 minutes in
the dark. Next, cells were washed twice with PBS supplemented with
2.5% bovine serum albumin (BSA) (Sigma-Aldrich) prior to
conducting the staining of surface receptors. To achieve this, cells
were placed on ice for 30 minutes in the dark and incubated with
the fluorochrome-conjugated mAbs listed in Supplementary Table
S1. Following the staining, cells were washed once more with PBS
supplemented with 2.5% BSA and then resuspended in 200 pL of
PBS. Samples were acquired using a LSR Fortessa X-20 flow
cytometer (BD Biosciences).

Flow cytometry data were analyzed with FlowJo v10.8.1
software. Both manual and automated analyses were conducted.
The plug-ins utilized were: DownSample (1.1), UMAP, and
FlowSOM (2.6). Briefly, for the automated analysis, events were
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initially down sampled from the target gate (NK cells) across all
samples using the DownSample plug-in. For every donor, NK cells
were down sampled to 100 cells. Subsequently, the down sampled
populations were concatenated for the analysis. FlowSOM was
executed with the specified parameters in every figure.

NK cell degranulation assay

For in vitro NK cell degranulation assays, the P815 mouse
mastocytoma cell line was used as the target. Cells were cultured in
NK cell medium supplemented with 5 pg/mL of plasmocin
(InvivoGen) at 37 °C and 5% CO, in a flask in an appropriate
volume. Thawed PBMCs were cultured overnight and the next day
they were used in the degranulation assay. Following a previously
described protocol (37), PBMCs and P815 cells were co-cultured at
an effector-to-target (E:T) ratio of 1:1 (500.000 PBMCs and equal
number of P815 cells) per well in round-bottom 96-well plates, in a
final volume of 200 pl. Samples from 7 patients at S1, S2 and S3,
were used for these experiments. These co-cultures were incubated
in the presence of agonist antibodies, previously titrated to
determine the optimal concentration in healthy donors. Due to
the limited cell numbers in sample S2 and results obtained on
healthy donor samples, we selected the anti-LAIR-1 mAb for
degranulation assays.

The positive control well contained 0.05 pg/mL of mouse anti-
human CD16 (clone 3G8, BD Biosciences, ref. 555404), and 4 ug/
mL of mouse IgG1, k isotype control (clone MOPC-21, BioLegend,
ref. 400101). The assay well contained 0.05 pg/mL of mouse anti-
human CD16 and 4 pg/mL of mouse anti-human LAIR-1 inhibitory
receptor (clone DX26, BD Biosciences, ref. 550810). To test the
degranulation, 2 pL of PE-labeled anti-CD107a (clone REA792,
Miltenyi Biotec, ref. 130-111-621) were added to each well. After a
pulse centrifugation (200g), cells were incubated for 1 hour at 37 °C
and 5% CO,. Next, 0.66 uL/mL of GolgiStop (BD Biosciences, ref.
554724) and 1 pL/mL of GolgiPlug (BD Biosciences, ref. 550583)
were added to each well, followed by another pulse centrifugation
and 5 hours of incubation. Finally, plates were stored in the dark at
4 °C overnight, until the next day for antibody staining
(Supplementary Table S1, panel 4) and subsequent acquisition in
a flow cytometer.

DNA extraction and KIR genotyping

DNA was extracted from PBMCs using the FlexiGen DNA kit
(Qiagen) following the manufacturer’s instructions. The initial step
involves adding lysis buffer to each sample according to the Qiagen
“FlexiGene DNA procedure” flowchart. Briefly, cell nuclei and
mitochondria were collected by centrifugation and then
resuspended in a denaturation buffer containing QIAGEN
Protease. After protein digestion, DNA was precipitated by
adding isopropanol, retrieved through centrifugation, washed
with 70% ethanol, and dried. DNA was then dissolved in
hydration buffer and stored at —20°C for future use.
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KIR typing was conducted using a PCR-SSP technique (sequence-
specific primers) with the KIR Ready gene kit (Inno-train Diagnostik
GmbH) (28). PCR products were amplified, separated on agarose gels,
and the results were analyzed following the manufacturer’s guidelines.
Depending on the content of KIR genes, the haplotype (A or B) was
determined, and genotypes (AA or Bx, with “x” being either A or B)
were categorized for every patient. The AA genotype is homozygous
for the inhibitory haplotype A (composed of 3DL3, 2DL3, 2DP1,
2DL1, 3DP1, 2DL4, 3DLI, 2DS4 and 3DL2). Haplotype B or Bx
genotype includes any combination of KIR other than those
mentioned above.

Plasma determination of cytokines

Plasma cytokine levels were determined in samples that were
stored at -80 °C. To measure IL-15 plasma levels, the human IL-15
Quantikine ELISA Kits (R&D Systems) was used following the
manufacturer’s guidelines. The optical density was measured in a
Varioskan Flash fluorimeter (Thermo Fisher Scientific), and the
standard curve along with non-linear regression and log-log line
modeling was conducted using GraphPad Prism v.9.3.1 software. To
measure TGF-f3 plasma levels, the Luminex MILLIPLEX TGF-beta 1
Single Plex MAGNETIC Bead Kit (Merck) was used, according to the
manufacturer’s guidelines. TGF-3 levels were quantified using
Luminex® 200™ (Merck) and evaluated with XPONENT® software.
To determine GDF-15 plasma levels, Elecsys GDF-15 (Roche) was
utilized, following the manufacturer’s guidelines. For quantification,
the electrochemiluminescence was measured using a cobas e 801
analytical unit (Roche) immunoassay analyzer.

Statistical analysis and data representation

For the analysis of panel 1 the sample size was SI n=44; S2
n=42; S3 n=40; $4 n=38; S5 n=33; S6 n=29. For the analysis of panel
2 the sample size was S1 n=33; S2 n=33; S3 n=32; S4 n=32; S5 n=25;
S6 n=22. For the analysis of panel 3 the sample size was S1 n=15; S2
n=15; S3 n=12; S4 n=15; S5 n=10; S6 n=11. Non-parametric
Wilcoxon matched-pairs signed-rank test was used to determine
significant differences among groups. Correlograms were used to
visualize correlations between different variables, with the Pearson
correlation coefficient indicated by square size and heat scale.
Kaplan-Meier analysis of progression-free survival was performed
by dividing the NHL cohort into two groups based on the median
value of the variable under analysis. Survival analyses were
restricted to the NHL cohort due to statistical power
considerations. The limited patient numbers in the Hodgkin
Lymphoma and other cancers groups (n=8 each) were insufficient
to detect true differences or associations with adequate statistical
significance and robustness. The analyses were performed using R
(version 4.3.1), a language and environment for statistical
computing (R Foundation for Statistical Computing using
ggplot2, tidyr and readxl packages). GraphPad Prism v.9.3.1 was
also used for graphical representation.
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Results

Immature and activated NK cells with a
decidual-like phenotype expand following
autoHSCT

NK cell phenotypic changes occur during immune system
reconstitution after autoHSCT (21, 25, 26, 28, 29). In this study,
we have analyzed NK cell reconstitution in a cohort of adult patients
with hematological malignancies undergoing autoHSCT. Fifty-
seven patients were recruited in the Hematology Services of the
Cruces University Hospital and the Donostia University Hospital.
Peripheral blood samples were collected at multiple time points:
before autoHSCT (S1), after reaching leucocyte recovery (>1000
leukocytes/ul, typically around day 12 post-autoHSCT, S2) and 30
days (S3), 100 days (S4), 180 days (S5) and a year (S6) after
autoHSCT (Supplementary Figure S1A). The clinical
characteristics of patients are described in Table 1. Following
autoHSCT, the absolute number of NK cells significantly declined
from S1 to S2, followed by an increase at S3, which was sustained
until S6 (Figure 1A). However, the proportion of NK cells among
total lymphocytes remained unchanged during reconstitution. NK
cells were identified based on CD56 and NKp80 expression, while
excluding other lineage markers (CD3, CD14, CD19, and CD123),
as illustrated in Supplementary Figure S1B. We further categorized
NK cells into two subsets based on CD56 expression: CD56°7¢™

CD56%™. Our analysis revealed a post-autoHSCT increase in the
bright

and

more immature CD56 NK cell subset and a concomitant
decrease in CD56%™ NK cells (Figure 1B).

Given the observed shift towards an immature NK cell
phenotype, we analyzed the expression of the maturation markers
NKG2A and CD57. The percentage of NKG2A+ NK cells increased
shortly after transplantation (from S1 to S2), while CD57+ NK cells
increased at later time-points (>100 days, S4 and S5) (Figure 1C).
Co-expression analysis of NKG2A and CD57 within NK cell subsets
confirmed that the most immature CD56°"8"" NK cells
predominantly exhibited a NKG2A+CD57- phenotype. Notably,
these NKG2A+CD57- constituted the most frequent subset among
total and CD56"™ NK cells at all time points (Supplementary
Figure S2). Their frequency in CD56*™ NK cells increased after
S1 but gradually declined after S3, while the proportion of
terminally differentiated NKG2A-CD57+ NK cells increased.

Previous reports indicate that genes associated with activation
and several receptors are differentially expressed in adult MM
patients undergoing autoHSCT (27). Among these, the decidual
NK cell markers CD9, CD151, and CD49a (38-40) were of
particular interest. In this study, we observed a transient increase
in NK cells expressing CD9, CD151 and CD49a at S2, returning to
pre-transplant levels by S6 (Figure 1D and Supplementary Figure
S3A). Further analysis of CD9 and CD151 expression revealed that
the CD9+CD151+ NK cell subset increased fourfold at S2 compared
to S1, whereas the CD9- subset decreased proportionally
(Supplementary Figure S3B), suggesting that CD9 is a
predominant marker in this characteristic decidual-like phenotype
post-autoHSCT. Since decidual NK cells are characterized by higher
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FIGURE 1

NK cell numbers and phenotype dynamics after autoHSCT. Boxplot graphs illustrating NK cell analysis at six time points: before autoHSCT (S1), after
reaching leucocyte recovery (more than 1000 leukocytes/pl, typically around day 12 after autoHSCT) (S2), 30 days (S3), 100 days (S4), 180 days (S5),
and one year after autoHSCT (S6). (A) Absolute NK cell counts (left) and percentage of NK cells within lymphocytes (right). (B) Percentages of
CD56P"9" and CD569™ NK cell subsets. (C) Frequencies of NKG2A+ (left) and CD57+ (right) NK cells. (D) Percentages of CD9+ (left) and CD151+
(middle) NK cells and median fluorescence intensity (MFI) of CD49a (right). (E) MFI of CD38 (left), and frequencies of HLA-DR+ (middle) and CD26+
(right) NK cells. (F) MFI of CD31 (left) and LAIR-1 (right) on NK cells. (G) Frequencies of CD160+ (left) and NKG2C+ (middle) NK cells and MFI of
CD229 (middle) and 2B4 (right). Boxplots display the median and interquartile range (IQR; 25-75th percentiles), with whiskers indicating the
minimum and maximum values. Statistical significance was determined by comparing each sample to S2 (blue) using the Wilcoxon matched-pairs
signed-rank test: *p < 0.05, **p < 0.01, ***p < 0.001; non-significant values were not indicated. (H, 1) UMAP projection of CD56+ NK cell
populations (Pop) identified by FlowSOM clustering tool for the specified markers from panels 1 (H) and 2 (1). Fluorescence intensity of each Pop is
indicated in the column-scaled z-score, and bar graphs illustrate Pop distributions across time points (S1-S6). Comparisons were made with S2 using
the Wilcoxon matched-pairs signed-rank test (*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant).

Frontiers in Immunology 06 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1629118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Astarloa-Pando et al.

CD56 expression (39), we analyzed the MFI of CD56 in populations
expressing CD9 and CD151. CD56 MFI increased at S2
(Supplementary Figure S3C), with CD9+CDI151- NK cells
displaying the highest CD56 expression (Supplementary Figure
S3D). This aligns with previous reports indicating that CD9 is a
specific marker of decidual and decidual-like NK cells, whereas
CD151 is also expressed on peripheral NK cells (39, 41).

Analyses of activation markers revealed a transient increase in
CD38 expression at S2, along with a rise in HLA-DR+ and CD26+
NK cells (Figure 1E, Supplementary Figure S4A), all of which are
indicative of NK cell activation (42-44). Additionally, inhibitory
receptors expression levels were upregulated at S2, including CD31,
LAIR-1 (Figure 1F, Supplementary Figure S4B) and NKG2A
(Figure 1C, a maturation marker, which is also an inhibitory
receptor). Conversely, regarding activating receptors, the
proportions of CD160+ and NKG2C+ NK cells decreased at S2,
as well as the MFI of CD229 and 2B4 (also known as CD244)
(Figure 1G, Supplementary Figure S4C).

Further analysis of additional receptors revealed an increase in
CD55 expression, a potential inhibitory receptor and decidual NK
cell marker in mice (45, 46) at S2 (Supplementary Figure S5).
Previous reports have shown that expression of genes encoding for
chemokine receptors, such as CCR5 and CCR7, was altered after
autoHSCT in MM patients (27). In our study, the expression of
CCR5, a homing receptor for infected tissues and tumors (47, 48),
was upregulated at S2 (Supplementary Figure S5), while other
chemokine receptors remained unchanged (data not shown).
Interestingly, inhibitory receptor Siglec-7, which is associated with
a highly functional NK cell subset (49, 50), exhibited a unique trend,
decreasing at S2 (Supplementary Figure S5), in contrast to other
inhibitory receptors. Activating receptor CD226 (DNAM-1)
remained unchanged, whereas CD8, a marker linked to NK cell
cytotoxicity (51), increased at S2, primarily in the CD56""" NK
cell subset (Supplementary Figure S5).

To complement our supervised analysis, we conducted
unsupervised clustering using uniform manifold approximation
and projection (UMAP) and FlowSOM methodologies
(Figures 1H, I). Among CD56+ NK cells, the analysis identified 8
distinct NK cell populations (or Pops) based on the expression of 5
(NKG2A, CD31, CD9, CD56, CD57) and 9 (CD57, CD160, CD229,
CD55, CD38, LAIR-1, CD8, HLA-DR and CD26) surface markers
analyzed in panel 1 and 2, respectively (Supplementary Table S1). In
panel 1 (Figure 1H), we observed a significant increase in Pop 1 at
S2, characterized by high expression of NKG2A, CD31, CD9, and
CD56, but low CD57 expression. Conversely, Pop 4 and Pop 6
frequencies decreased at S2, with Pop 6 displaying higher CD57
levels. In panel 2 (Figure 1I), Pop 3 increased at S2, and is
characterized by low CD57, CD229, and CD160 levels but high
CD26, CD55, HLA-DR, CD38, and LAIR-1 expression. In contrast,
Pop 7, characterized by high CD160 expression, decreased at S2.
Additionally, Pop 6 decreased while Pop 5 increased after S4,
coinciding with CD57 recovery. These unsupervised analysis
confirmed the findings from our supervised approach.

Taken together, our results demonstrate that early after
autoHSCT, NK cells acquire a more immature, activated, and
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decidual-like phenotype, with a receptor repertoire skewed toward
an inhibitory profile. This is reflected by the transient increase in the
expression of inhibitory receptors and the concurrent decrease in
activating receptors.

Plasma cytokine profile following
autoHSCT

We have previously observed that certain cytokines present
immediately after autoHSCT may contribute to the acquisition of a
decidual-like phenotype by NK cells (28). To investigate the
influence of these cytokines on other markers, we quantified their
plasma levels and analyzed their correlation with the expression of
previously studied receptors in NK cells. Consistent with previous
findings in both adult and pediatric patients (24, 26, 28), we
observed a significant increase in IL-15 plasma levels shortly after
autoHSCT in this cohort (Figure 2A). Next, correlation analyses
were performed between flow cytometry data and plasma cytokine
levels, although in Figure 2B we only displayed those correlations
that yielded statistically significant results. Furthermore, IL-15
levels at S2 positively correlated with the expression of CD55,
HLA-DR and CD26 (Figure 2B). Given that these markers are
also upregulated at S2, this suggests that elevated IL-15 levels may
contribute, at least partially, to the activation phenotype of NK cells
at this time point.

In contrast, plasma levels of TGF-J significantly decreased at S2
(Figure 2A). Additionally, we observed a negative correlation
between plasma levels of TGF-f at S2 and the expression of
LAIR-1, as well as a non-significant trend suggesting that TGF-[3
might counteract the effect of IL-15 on CD55, HLA-DR and CD26
expression (Figure 2B). Lastly, we examined the plasma levels of
growth differentiation factor 15 (GDF-15) and found a significant
increase at S2 (Figure 2A). GDF-15 levels positively correlated with
the expression of CD55 and HLA-DR (Figure 2B), further
supporting its potential involvement in shaping the post-
transplant NK cell phenotype.

KIR expression increases following
autoHSCT

KIRs regulate the ability of NK cells to recognize and kill tumor
cells. KIR-ligand genotypes have been associated with patient
outcomes in neuroblastoma (36), and changes in KIR expression
have been observed following HSCT (25, 27). Therefore, we
investigated KIR expression in our cohort. First, we analyzed the
KIR haplotypes of the patients (Supplementary Table S2). We then
assessed KIR expression exclusively in patients carrying the genes
encoding the analyzed KIRs. Overall, we observed a transient
increase in the percentage of KIR3DL1+, KIR2DL2/L3/S2+,
KIR2DL1+ and KIR2DS4+ NK cells early after autoHSCT,
predominantly within the CD56"" NK cell subset (Figures 3A-
D). However, no association was found between KIR expression
and disease progression (data not shown).
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FIGURE 2

Plasma cytokine levels change early after autoHSCT and correlate with NK cell markers. (A) Violin plots depicting IL-15, TGF-B, and GDF-15 plasma
(***p < 0.001, ****p < 0.0001). (B) Correlogram showing Pearson correlation coefficients between flow cytometry markers and cytokine plasma

levels at S1 (pre-autoHSCT), S2 (leukocyte recovery, around day 12), and S3 (30 days post-autoHSCT). Medians are indicated in red (S1 n=52; S2
n=>51; S3 n=44) and IQR (25th—-75th percentiles) in green. Comparisons with S2 were performed using the Wilcoxon matched-pairs signed-rank test

levels at S2. *p < 0.05, **p < 0.01; non-significant values not shown.
increase in KIR-expressing cells at S2 (Figure 3G). These findings

suggest that KIR expression is transiently upregulated in immature

During NK cell differentiation, CD56%™ NK cells progressively
NK cells early after autoHSCT at S2.

lose NKG2A expression while acquire CD57 and KIR (52). To

further investigate this process, we analyzed the number of

expressed KIRs (KIR3DLI, KIR2DL2/L3/S2 and KIR2DL1) across
NK cell phenotype impacts NK cell
function and correlates with progression-

free survival in NHL patients undergoing

autoHSC

To assess the clinical relevance of our findings, we first
performed correlation analyses between the expression of markers
that significantly changed after autoHSCT and relapse in the largest
subcohort of patients with NHL (diffuse large B-cell lymphoma,
follicular lymphoma, and mantle cell lymphoma) (Table 1)

different NK cell subsets. No significant changes in KIR expression
were observed on total NK cells after transplantation (Figure 3E).
However, within the CD56""8" subset, we detected a significant
increase in the frequency of cells expressing one, two and tree KIRs
at S2 (Figure 3F). Also, and given the altered maturation status of
NK cells after autoHSCT (Figure 1E), particularly within the
CD56%™ subset, we examined KIR expression across different
maturation stages. Immature CD56%™ NK cells (NKG2A+CD57-)
exhibited lower KIR expression compared to mature (NKG2A-
CD57+) CD56%™ NK cells (Figure 3G). Notably, both immature
NKG2A+CD57- and NKG2A+CD57+ subsets showed a significant
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undergoing autoHSCT. However, no significant correlation was
observed (data not shown). We then conducted Kaplan-Meier
analysis, which revealed that NHL patients with lower frequencies
of immature NKG2A+CD57- NK cells or higher frequencies of
mature CD57+ NK cell subset at S3 exhibited significantly
improved progression-free survival (PFS) (Supplementary Figures
S6A, B). Additionally, we observed a trend suggesting that patients
with lower levels of GDF-15 at S2 tended to have better PFS,
although this association did not reach statistical significance
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(Supplementary Figure S6C). Given the clinical heterogeneity and
limited sample size of our cohort, these findings require validation
in larger, more homogeneous patient populations.

Our data indicate that inhibitory receptors such as LAIR-1 are
upregulated, while activating receptors downregulated at S2
(Figure 1). Based on these findings, we hypothesized that the
altered receptor repertoire observed at S2 might affect NK cell
function. To test this hypothesis, we performed in vitro functional
assays using patient-derived PBMCs (S1-S3) and agonist antibodies
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against LAIR-1 inhibitory receptor in a previously described P815-
based degranulation assay (37) (see Materials and Methods). We
tested the inhibitory effect of LAIR-1 in CDI16-mediated
degranulation. At S2, NK cell CD16-mediated degranulation
significantly decreased (Figures 4A, B), coinciding with increased
LAIR-1 expression (Figure 1F). Moreover, we observed a negative
correlation between LAIR-1 upregulation and the degranulation
capacity, although this did not reach statistical significance
(Figures 4C, D). These findings suggest that increased expression
of inhibitory receptors may contribute to impaired NK cell function
early after autoHSCT.

Discussion

In this study, we have investigated the reconstitution of NK cells
in adult patients with various hematological malignancies following
autoHSCT. We analyzed phenotypic alterations in NK cell subsets,
measured plasma cytokine levels relevant to NK cell function,
conducted in vitro functional assays to explore the impact of

10.3389/fimmu.2025.1629118

these phenotypic changes, and performed data analysis to identify
potential prognostic biomarkers and elucidate mechanisms
underlying NK cell phenotype modulation early after autoHSCT.
Previous studies have reported substantial changes in the NK cell
surface phenotype and the transcriptome following autoHSCT (25-
28). Our findings reveal a shift towards a decidual-like, immature
and activated phenotype, with an increased expression of inhibitory
receptors and a reduction in activating receptors early after
autoHSCT in lymphoma patients. This activated and decidual-
like phenotype is characterized by an upregulated expression of
CD56, CD9, CD49a, CD151, CD38, and HLA-DR shortly after
autoHSCT. Furthermore, plasma cytokine levels were associated
with these phenotypic changes, and the in vitro experiments suggest
that some of these alterations may modulate NK cell function.
Specifically, LAIR-1’s increased expression early after autoHSCT is
able to inhibit CD16-mediated degranulation (Figure 4). Collagen is
the ligand of LAIR-1 (53, 54). Interestingly, the upregulation of
collagen expression by tumor cells and/or tumor stroma could lead
to the downregulation of anti-tumor responses mediated by LAIR-1
expressed on NK cells (55, 56). This suggests that in certain specific
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response to antibodies stimulation (see Materials and Methods). (A) Degranulation ratio is calculated according to the formula: percentage of
CD107a+ NK cells in the presence of anti-LAIR-1 and anti-CD16 antibodies/percentage of CD107a+ NK cells in the presence of isotype control and
anti-CD16 antibodies. Each point represents an individual patient (n=7). Comparisons with S2 were using Wilcoxon matched-pairs signed-rank test.
(B) Representative degranulation (CD107a) data from a patient. (C) Correlogram depicting the Spearman correlation between LAIR-1 expression ratio
(MFI of LAIR-1 at S2/MFI LAIR-1 at S1) and the degranulation ratio at S2. (D) Correlogram showing the Spearman correlation between LAIR-1
expression ratio (MFI of LAIR-1 at S3/MFI LAIR-1 at S1) and degranulation ratio at S3
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circumstances, the increased expression of LAIR-1 following
autoHSCT may have a role in controlling tumor growth.
However, we have not seen a correlation between relapse and
expression levels of LAIR-1 in our cohort. Undoubtedly, more
studies in similar and other cohorts (perhaps in patients with
solid tumors undergoing autoHSCT) are required to properly
assign a role to LAIR-1 overexpressing NK cells in tumor control
following autoHSCT. Regarding 2B4, it has been previously shown
to deliver an inhibitory signal in decidual NK cells due to deficient
expression of the signaling lymphocyte activation molecule
(SLAM)-associated protein (SAP) at both mRNA and protein
levels (57). However, in our study, we considered 2B4 an
activating receptor because we are examining peripheral blood
NK cells, not decidual NK cells. Furthermore, supporting our
interpretation, our previous data on peripheral blood NK cells
showed no significant change in SH2DIA, the gene encoding
SAP, transcript levels in the S2 sample compared to S1 and S3
(27). This strongly suggests that, in the context of autoHSCT in
peripheral blood, 2B4 primarily functions as an activating receptor.

The cytokine milieu plays a crucial role in shaping the NK cell
phenotype in cancer patients undergoing autoHSCT. Correlation
analyses (Figure 2B) indicated that the increased expression of
activation markers such as HLA-DR and CD26, as well as receptors
like CD55, could be driven, at least in part, by elevated IL-15 levels
at S2 (Figure 2A). This aligns with previous studies, highlighting the
importance of IL-15 in NK cell activation (28, 43, 58-60).
Conversely, TGF- exhibited a tendency to counteract the effects
of IL-15 (Figure 2B); however, IL-15 appeared dominant, as marker
expression correlated more strongly with IL-15 than TGF-3 levels,
in agreement with prior findings (28).

High frequencies of circulating CD9+ NK cells have been
associated with poor cancer prognosis (61-64), suggesting that
CD9 could serve as a prognostic biomarker in cancer patients.
While CD9+ NK cells have been linked to prognosis in other cancer
settings, our findings, coupled with our previous observations in
MM and pediatric oncology patients, suggest that the robust
expansion of this subset following autoHSCT is a phenomenon
occurring independently of the specific underlying malignancy (27,
28). Furthermore, we believe that our data suggest that NK cell
dynamics, at least for the parameters investigated in this article, are
primarily influenced by the auto-HSCT procedure rather than by
disease-specific heterogeneity, a finding supported by our previous
work (26-28). Nevertheless, larger and more homogeneous patient
cohorts will be necessary to establish CD9+ NK cells as a definitive
prognostic biomarker.

In our cohort of hematological cancer patients, we observed that
NK cells with an immature phenotype (NKG2A+CD57-) were most
frequent at S2, whereas the more mature subset (NKG2A-CD57+)
had the lowest frequencies at this time point, followed by a gradual
increase, reaching peak levels at S5 and S6. This aligns with
established NK cell developmental models, in which NK cells
progressively lose NKG2A and acquire CD57 expression as they
mature (29, 52). Immature CD56"8" and NKG2A+CD57- NK
cells expressing KIR expanded at S2 (Figure 3), consistent with
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previous observations in pediatric oncologic patients (28). These
cells may represent NK cells that have upregulated CD56 expression
in response to IL-15 stimulation (58).

Identifying novel prognostic biomarkers is of significant clinical
relevance. We observed that NHL patients with lower frequencies of
immature NKG2A+CD57- NK cells or higher frequencies of mature
CD57+ NK cells at day +30 after autoHSCT (S3) exhibited superior
PFS (Supplementary Figures S6A, B). This contrasts with previous
findings in MM patients, where lower frequencies of mature CD57
+NKG2A- NK cells were associated with improved clinical
outcomes (26). These discrepancies may stem from differences in
malignancies (MM vs. lymphomas) and conditioning regimens
(melphalan 200 mg/m* vs. BEAM chemotherapy). In lymphomas,
NKG2A-expressing NK cells may contribute to poorer prognosis
due to potential inhibition by HLA-E expressing tumor cells
(65, 66).

Finally, we observed a trend suggesting that NHL patients with
lower GDF-15 levels at S2 tended to have improved PFS
(Supplementary Figure S6C). GDF-15 has been implicated in NK
cell inhibition in inflammation, pregnancy, and various cancers
(67). Furthermore, serum levels of GDF-15 has been proposed as a
biomarker in patients with cancer (68, 69). Although the
mechanism of GDF-15 in cancer has long remained elusive,
recent studies have demonstrated that it impairs LFA-1-mediated
adhesion of T cells to activated endothelial cells, which is a crucial
step for T cell extravasation (70). A similar inhibitory effect on NK
cell trafficking is plausible; however, further studies are required to
confirm this hypothesis.

Despite these findings, our results should be interpreted with
caution due to the relatively small and heterogeneous nature of our
cohort. Further studies involving larger and more homogenous
patient populations will be required to validate these observations
and confirm their clinical relevance. Nevertheless, our results
provide understanding into the dynamics of the NK cell pool
reconstitution following autoHSCT and may help to develop
therapeutic strategies for cancer patients undergoing this treatment.
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