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Radiation pneumonitis (RP) is a prevalent complication associated with lung cancer 
radiotherapy; nonetheless, its effects on lung cancer immunotherapy and the 
underlying biological mechanisms remain inadequately elucidated. Utilizing mouse 
models of RP and orthotopically lung cancer, we witnessed immunotherapy­

enhanced liver metastasis of lung cancer within the context of RP, accompanied by 
increased neutrophil infiltration of the primary tumor. Analysis of metabolic 
adaptations driven by the inflammatory microenvironment during treatment 
revealed that RP and immunotherapy act synergistically to exacerbate lipid 
metabolic dysregulation and oxidative stress. Integrating clinical validation with 
single-cell RNA sequencing data from a multicenter lung adenocarcinoma cohort, 
we demonstrated that elevated oxidative stress scores within tumor tissue were 
significantly associated with both diminished response to immunotherapy and 
unfavorable clinical outcomes. These findings coincided with alterations in the 
tumor immune microenvironment, notably a marked increase in neutrophils and 
activated mast cells. This investigation highlights that RP is not merely a toxicity but 
an active modulator of the tumor-immune-metabolism landscape. By dissecting 
the RP-ICB-metabolism axis, we have elucidated a novel mechanism underlying 
immunotherapy resistance, offering new insights into the rational design of 
optimized radioimmunotherapy. 
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1 Introduction 

Lung cancer persists as the most prevalent malignancy and leading 
cause of cancer-related mortality worldwide (1, 2). Radiotherapy and 
immune checkpoint inhibitors (ICB) have emerged as pivotal therapies 
for lung cancer, demonstrating synergistic effects when combined 
across early to advanced disease stages (3, 4). However, this 
combination is tempered by exacerbated toxicities, particularly 
pneumonitis—a life-threatening inflammatory complication (5–7). 
Our prior work revealed that ICB amplifies radiation pneumonitis 
(RP) severity through the gdT/IL-17/neutrophil axis, while both our 
clinical data and prior studies consistently link treatment-related 
pneumonitis to diminished progression-free survival in lung cancer 
patients receiving combinatorial radioimmunotherapy (8–10). 
Preclinical study indicates no impact of RP or ICI-related 
pneumonitis on tumor metastasis, but radioimmunotherapy-related 
pneumonitis promotes it (our unpublish data). These findings 
underscore the urgent need to elucidate how treatment related 
pneumonitis dynamically reshape tumor microenvironment (TME) 
to drive therapeutic resistance and metastatic progression, thus identify 
potential therapeutic targets to mitigate these effects. 

Emerging evidence implicates metabolic reprogramming as a 
hallmark of RP pathogenesis (11, 12). Wiebe et al. identified radiation-
induced perturbations in serine and histidine metabolism within 
inflamed lungs, metabolites that may orchestrate immunoinflammatory 
cascades (13). Furthermore, metabolic signatures in lung adenocarcinoma 
correlate significantly with ICB responsiveness and survival outcomes (14, 
15). These findings collectively posit that pneumonitis-associated 
metabolic dysregulation may propagate into tumor niches, yet whether 
and how such metabolic crosstalk impacts treatment efficacy remains 
unexplored. Resolving this knowledge gap demands systematic 
interrogation of spatiotemporal metabolic rewiring at the treatment 
related pneumonitis -tumor interface. 

This study integrated orthotopic lung cancer mouse models with RP 
induction to dissect microenvironment-driven metabolic adaptations 
during ICB. We demonstrated that immunotherapy, in the context of 
RP, may synergistically polarize tumors toward a lipid-peroxidation­
enriched state, exacerbate oxidative stress, and fuel liver metastasis. We 
retrieved a set of oxidative stress-related genes (OSRGs) from the 
Genecards database (https://www.Genecards.org). Clinical validation 
across multicentric cohorts and single-cell RNA sequencing (scRNA­
seq) analyses revealed that elevated OSRGs scores inversely correlated 
with immunotherapy response and prognosis in lung adenocarcinoma 
(LUAD) patients. By unraveling the RP-ICB-metabolism axis, this 
work not only deciphers a previously unrecognized mechanism of 
immunotherapy resistance but also provides actionable targets to refine 
combinatorial radioimmunotherapy strategies. 
2 Materials and methods 

2.1 Cell culture 

Lewis lung carcinoma (LLC) cells (gift from C. Li, Chinese 
University of Hong Kong) were confirmed mycoplasma-negative 
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(Beyotime, China) and cultured in Dulbecco’s Modified Eagle 
Medium (Gibco, USA) supplemented with 10% fetal bovine 
serum (Gibco, Brazil) and 1% penicillin/streptomycin (Fdbio 
science, China) at 37°C with 5% CO2. 
2.2 Experimental animals 

Female C57BL/6N mice (5–6 weeks old, Zhejiang Weitong Lihua) 
were housed in a specific pathogen-free setting (23 ± 1°C, 55% 
humidity, 12-hour light/dark cycle) with ad libitum access to 
irradiated chow and autoclaved water. All procedures complied with 
ARRIVE guidelines and were approved by the Animal Ethics 
Committee of Shenzhen Third People’s Hospital (Protocol #2024-001). 
2.3 RP model 

Radiation delivery was performed using an X-RAD SmART 
Irradiator (Precision X-ray, North-Branford, CT, USA), equipped 
with cone-beam computed tomography (CBCT) capabilities, 
delivering 225-kV photon beams at a dose rate of 4.62 Gy/min. 
Mice were randomly assigned to receive either sham irradiation (0 
Gy) or 24 Gy in three daily fractions (8 Gy/fraction) to the left lung. 
2.4 Orthotopic lung cancer model 
establishment 

Six days post-radiation, 3.75×104 LLC cells in 25 mL PBS/

Matrigel (ABW, Shanghai, China; 1:1 v/v) were stereotactically 
injected into the left lung parenchyma. Tumor growth was 
confirmed by computed tomography (CT) scan at day 6. 
2.5 Immunotherapy and monitoring 

Anti-mouse PD-1 (Bio X Cell, West Lebanon, NH, USA) was 
administered intraperitoneally (200mg/mouse, i.p., twice weekly) 
starting at day 7 post-implantation. Tumor volume (V) was 
calculated using the formula V = p/6 × L × W × H from CT scan 
at day 14 and 21, based on the tumor’s maximum length (L), width 
(W), and height (H) (16). 
2.6 Histopathology, immunohistochemistry 
and immunofluorescence 

RP was assessed at 7 days post-tumor implantation (pre­
immunotherapy). Left lungs were fixed in 10% neutral-buffered 
formalin (Solarbio, China) for 24 hours, paraffin-embedded, 
sectioned at 4mm thickness, and stained with hematoxylin & 
eosin (H&E). RP severity was graded by two board-certified 
pathologists (blinded to treatment groups) based on the 
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percentage of lung parenchyma affected: 1 score, less than 25%; 2 
score, 25-50%; 3 score, more than 50% (8). 

Neutrophil quantification was performed post-treatment 
completion through standardized Ly6G immunohistochemistry. 
Tissue sections underwent EDTA-based antigen retrieval (pH 9.0, 
98°C), sequential blocking (3% H2O2-methanol/5% BSA), overnight 
anti-Ly6G antibody incubation (Servicebio GB11229, 1:400, 4°C), 
and PV-9000/DAB detection (Zhongshan Goldenbridge, China) 
with hematoxylin counterstain. Five random fields of view were 
photographed at 40x, and quantitatively analyzed for Ly6G-positive 
area percentage using ImageJ 1.54m software. 

Arginase 1 (Arg1) is a well-established marker of the pro-tumor 
phenotype of neutrophils (17). To quantify Arg1+ Ly6G+ cells in 
tumor tissue following immunotherapy, we performed tyramide 
signal amplification (TSA) immunofluorescence staining. Briefly, 
after antigen retrieval and blocking, tissue sections were incubated 
overnight with the anti-Arg1 antibody (Servicebio GB115724, 
1:2500, 4°C). The following day, secondary antibody (Servicebio 
GB23303, 1:500) and TSA reagent (Servicebio G1223, 1:500) were 
sequentially added. Subsequently, after repeat antigen retrieval and 
blocking, the sections were incubated overnight with the anti-Ly6G 
antibody (Servicebio GB11229, 1:500, 4°C). On the third day, 
secondary antibody (Servicebio GB22403, 1:200) and DAPI 
(Servicebio G1012) were sequentially applied. The number of 
Arg1+Ly6G+cells was then quantified in three fields under 20X 
magnification using an LSM900 confocal laser scanning microscope 
(ZEISS, Germany). 

In addition, liver samples were prepared for paraffin 
embedding. Serial sections were examined, and the section 
exhibiting the maximal cross-sectional area of the liver was 
selected for H&E staining. Liver metastases in this section were 
then quantified. 
 

2.7 Untargeted metabolomics profiling 

Tumors (n = 6–7/group) were snap-frozen in liquid nitrogen, 
homogenized in 80% ice-cold methanol (−20°C) and centrifuged 
(14,000 rpm, 15 min, 4°C). Lyophilized supernatants were 
reconstituted in 50% ice-cold methanol and analyzed using an 
ACQUITY UPLC System I Class (Waters, USA) coupled to a Q-
Exactive Plus high-resolution mass spectrometer (Thermo Fisher 
Scientific, Germany). Chromatographic separation was performed 
on a T3 column (100 × 2.1 mm, 1.8 µm) at 40°C with a mobile phase 
of (A) 5 mM ammonium acetate/5 mM acetic acid in water and (B) 
acetonitrile, delivered at 0.3 mL/min. The gradient program was as 
follows: 5% B (0-0.3 min), 5-70% B (0.3–2 min), 70-99% B (2-6.2 
min), 99% B (6.2-7.5 min), 99-5% B (7.5-8.0 min), 5% B (8.0­
10.0 min). 

Mass spectrometry data were recorded in both positive (+4000 
V) and negative (-2800 V) ion modes, converted to mzXML format 
and analyzed for peak extraction, retention time adjustment, 
metabolite annotation, and quantification. Gene Set Enrichment 
Analysis (GSEA) was performed using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database to assess intergroup 
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metabolic pathway differences. To identify significant metabolic 
alterations, we employed a combination of univariate and 
multivariate statistical analyses. Initially, t-tests were performed to 
evaluate the statistical significance of intergroup differences in 
metabolite abundance. Subsequently, partial least squares 
discriminant analysis (PLS-DA) was conducted, and variable 
importance in projection (VIP) scores were extracted for each 
metabolite. Significantly altered metabolites were defined as those 
with fold change (FC) > 1.20 or < 0.83, VIP > 1, and P-value < 0.05. 
Significantly altered metabolites were then used for the KEGG 
enrichment analysis. 
2.8 ROS detection 

LLC cells (1 × 105/well) were treated for 24 hours with linoleic 
acid (low-dose: 50 mM; high-dose: 100 mM; Sigma-Aldrich, 
Germany). Intracellular ROS was visualized using a ROS Assay 
Kit (Beyotime, China) and imaged via confocal laser scanning 
microscopes (Carl Zeiss, Germany). 
2.9 Transcriptomic data acquisition 

Public datasets included two scRNA-seq datasets related to 
immunotherapy in LUAD: GSE207422 (Gene Expression 
Omnibus [GEO], https://www.ncbi.nlm.nih.gov/geo) and

HRA002509 (Zenodo, https://zenodo.org/). Bulk RNA-seq 
datasets comprised TCGA-LUAD (The Cancer Genome Atlas 
[TCGA], https://portal.gdc.cancer.gov), GSE30219, GSE31210, 
GSE72094, GSE126044, GSE207422, OAK, and POPLAR, with 
the latter four being immunotherapy cohorts. OAK and POPLAR 
were obtained from previous study (18). By searching the 
Genecards database with the term “oxidative stress”, we identified 
1663 OSRGs with a relevance score ≥ 3. Detailed gene information 
is available in Supplementary Table 1. 
2.10 OSRGs score development 

Two scRNA-seq datasets (GSE207422 and HRA002509) were 
integrated using Seurat v4. Low-quality cells (<200 genes/cell) and 
genes expressed in <3 cells were filtered. Batch effects were 
mitigated during integration using the SCTransform method 
(https://github.com/ChristophH/sctransform) with default

parameters. Following integration, principal component analysis 
was performed on the scaled and centered data, and the top 30 
principal components were used for dimensionality reduction via 
Uniform Manifold Approximation and Projection (UMAP). Cells 
were annotated based on the expression of known marker genes 
from the original publications. 

Based on pathologic response to immunotherapy, patients were 
classified as responders (major pathologic response, MPR) or non-
responders (non-MPR, NMPR). We identified differentially 
expressed genes (DEGs) significantly upregulated (logFC > 0.25, 
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adjusted P value < 0.05) in each cell subset of non-responders 
relative to responders. By intersecting these DEGs (GSE207422 and 
HRA002509) and the OSRGs gene set, we identified OSRGs 
potentially linked to immunotherapy response. The optimal 
modeling algorithm was explored and validated across six bulk 
RNA-seq cohorts (TCGA-LUAD, GSE30219, GSE31210, 
GSE72094, OAK, POPLAR) using 118 machine learning 
algorithms. Random survival forest (RSF) analysis of TCGA­
LUAD data (R software, randomForestSRC package) was then 
used to assess the relationship between the selected genes 
and prognosis. 
2.11 OSRGs score-immune correlation 

The AUCell algorithm quantified OSRGs activity in cell 
subpopulations and tumor tissue spatial transcriptomic sections. 
Correlations between OSRGs score and immunotherapy response 
were validated in four bulk RNA-seq cohorts (GSE126044, 
GSE207422, OAK, POPLAR), and neutrophil infiltration in the 
TME was assessed via CIBERSORT in TCGA-LUAD cohort. LUAD 
patients were stratified into high/low OSRGs score groups (median 
cutoff) across four cohorts (TCGA, GSE31210, OAK, and 
POPLAK). Kaplan-Meier analysis evaluated survival differences. 
Immune cell fractions (22 subsets) were deconvoluted using 
CIBERSORT in TCGA-LUAD databases, and pathway activity 
was profiled via the R package ‘GSVA’ (v 1.30.0). 
2.12 Statistical analysis 

Statistical analyses used Mann-Whitney U tests for group 
comparisons (P < 0.05), with data presented as mean ± SEM 
(standard error of the mean). Analyses were performed in 
GraphPad Prism 8 (San Diego, California, USA) and R v4.3.1. 
3 Results 

3.1 Immunotherapy promotes liver 
metastasis of lung cancer under RP 

The animal experimental workflow was illustrated in Figure 1A. 
Mice receiving fractionated left lung radiation exhibited marked 
histopathological features of RP at 7 days post-tumor implantation, 
including significant diffuse congestion, alveolar wall thickening, 
and inflammatory cell infiltration (Figure 1B). Tissue injury scores 
were significantly elevated in irradiated lungs compared to 
unirradiated lungs (Figure 1C). These findings established an 
experimental basis for our subsequent investigation of the impact 
of RP on lung cancer immunotherapy. 

Longitudinal CT imaging revealed no significant difference in 
primary tumor volume between the two groups at baseline or week 
1 post-treatment (Figures 1D-F). By week 2, mice in the RP + anti-PD­
1 group showed suppressed primary tumor growth (P < 0.05, 
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Figure 1G), and endpoint tumor-bearing lung weight was reduced in 
the RP + anti-PD-1 group (Figure 1H). However, mice in the RP + 
anti-PD-1 group developed significantly higher incidence (70.00% vs. 
36.36%, P > 0.05) and burden (1.09 ± 1.76 vs. 9.90 ± 11.52, P < 0.05)  of  
liver metastases (Figures 1I, J). Consequently, survival outcomes were 
comparable between  the anti-PD-1  group and  the RP  +  anti-PD-1
group (median survival: 34 vs. 35 days, P > 0.05,  Figure 1K). 
3.2 Immunotherapy induces unique tumor 
metabolic reprogramming in the context 
of RP 

PLS-DA revealed distinct separation between two groups before 
and after immunotherapy (Figure 2A). Untargeted metabolomics 
identified 1943 metabolites across tumor tissue, predominantly 
lipids and lipid-like molecules, organic acids and derivatives, and 
organoheterocyclic compounds. The partial metabolic profiles of 
tumor tissues were shown in Figure 2B. Immunotherapy induced 
significant alterations in the metabolic landscape of tumor tissues 
independent of RP. 

Immunotherapy alone upregulated 128 metabolites (e.g., 
sorbitol, ergothioneine, lysophosphatidylcholine [LPC P-18:0], 
uridine5-diphosphate, and sclareol) and downregulated 206 
metabolites (e.g., naringenin, guanosine-5’-monophosphate, 
lysophosphatidylglycerol [LPG 18:0, LPG 18:1], and L-
Tryptophan) (Figure 2C). Top 5 enrichment pathways of 
differential metabolites included glycerophospholipid metabolism, 
nucleotide metabolism, pyrimidine metabolism, alpha-linolenic 
acid metabolism, and linoleic acid metabolism (Figure 2D). GSEA 
further revealed activation of ascorbate/aldarate metabolism and 
unsaturated fatty acids biosynthesis in tumor tissues after 
immunotherapy (Figure 2E), alongside suppression of alpha­
linolenic acid metabolism, aldosterone synthesis and secretion, 
arachidonic acid metabolism, and phenylalanine, tyrosine and 
tryptophan biosynthesis (Figure 2F). 

In RP mice (Figure 2G), metabolic changes induced by 
immunotherapy were more abundant, with 239 upregulated 
metabolites (e.g., L-kynurenine, prostaglandin E2, histamine, 
lysophosphatidic acid [LPA O-18:0], cis-8,11,14,17-Eicosatetraenoic 
acid), and 200 downregulated metabolites (e.g., guanosine-5’­
monophosphate, glutamine, 7-Oxocholesterol, LPG 16:2, LPG 17:0). 
Pathway analysis revealed unique enrichment in glycerophospholipid 
metabolism, arachidonic acid metabolism, inflammatory mediator 
regulation of TRP channels, choline metabolism in cancer, and 
linoleic acid metabolism (Figure 2H). GSEA demonstrated activation 
of biosynthesis of unsaturated fatty acids, histidine metabolism, arginine 
biosynthesis, arginine and proline metabolism, and alanine, aspartate 
and glutamate metabolism in tumor tissues after immunotherapy 
(Figure 2I), concurrent with suppression of alpha-linolenic acid 
metabolism, aldosterone synthesis and secretion, nucleotide 
metabolism, vascular smooth muscle contraction, and phenylalanine, 
tyrosine and tryptophan biosynthesis (Figure 2J). These results 
indicated that immunotherapy may trigger more pronounced and 
distinct metabolic reprogramming in the RP microenvironment. 
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FIGURE 1 

Immunotherapy promotes liver metastasis of lung cancer under radiation pneumonitis. (A) Experiment flowchart. C57BL/6N mice received 
fractionated left lung radiotherapy (anti-PD-1 group: sham irradiation [0Gy×3 fractions]; RP+anti-PD-1 group: 8Gy×3 fractions). Six days post-
radiotherapy, 3.75 × 104 LLC cells were orthotopically injected into the left lung. Tumor establishment was confirmed by CT imaging at day 6 post-
implantation. Then mice were sacrificed for pneumonitis assessment (n = 8-12/group). Anti-PD-1 therapy was injected intraperitoneally twice weekly 
for two weeks at day 7. CT imaging was performed once a week during the treatment. (B) Representative H&E-stained lung sections pre­
immunotherapy. Scale bar, 200 µm (upper), 50 µm (lower). (C) Semiquantitative pneumonitis scoring. (D) Longitudinal CT imaging (red arrows: 
primary tumors). (E-G) Tumor volumes dynamics pre-treatment, 1 week, and 2 weeks post- immunotherapy. (H-J) Tumor-bearing lung weight, the 
number of liver metastases, and representative H&E-stained liver sections (yellow dashed lines: metastatic foci; scale bar: 2 mm). (K) Kaplan-Meier 
survival curves. Data represent mean ± SEM. ns, not significant, *P<0.05, ***P<0.001, ****P<0.0001 (Mann-Whitney U Test). 
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FIGURE 2 

Radiation pneumonitis potentiates immunotherapy-induced metabolic rewiring in lung tumors. (A) Partial Least Squares Discrimination Analysis of tumor 
metabolites shows distinct clustering between anti-PD-1group (A1Ca: pre-treatment; A2Ca: post-treatment) and RP + anti-PD-1 group (B1Ca: pre­
treatment; B2Ca: post-treatment). (B) Representative metabolic profiles of the two groups. (C, D) Volcano plots and KEGG enrichment analysis (top 20 
pathways) of significantly altered metabolites in the anti-PD-1 group (post- vs. pre-immunotherapy). (E, F) Up- and down-regulated pathways by Gene 
Set Enrichment Analysis (GSEA) using the KEGG database in the anti-PD-1 group (post- vs. pre-immunotherapy). (G, H) Volcano plots and KEGG 
enrichment analyses (top 20 pathways) of differential metabolites in the RP + anti-PD-1 group (post- vs. pre-immunotherapy). (I, J) Up- and down-
regulated pathways by GSEA in the RP + anti-PD-1 group (post- vs. pre-immunotherapy). FDR, false discovery rate; NSE, normalized enrichment score. 
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3.3 Immunotherapy synergizes with RP to 
promote oxidative stress 

Metabolomic  profi l ing  of  tumors  at  2  weeks  post­
immunotherapy revealed profound metabolic rewiring in RP + 
anti-PD-1 mice compared to anti-PD-1 group (Figure 3A). A total 
of 120 metabolites were significantly elevated, while 59 metabolites 
were decrease. KEGG enrichment analysis identified lysosome, 
retrograde endocannabinoid signaling, neuroactive ligand-
receptor interaction, purine metabolism, and the FoxO signaling 
pathway as top altered pathways (Figure 3B). 

Among the above 120 upregulated metabolites, 57 were also 
significantly elevated compared with the RP + anti-PD-1 group pre­
immunotherapy, with seven metabolites—phosphatidylcholine (PC 
(18:1/14:0)), PC(18:0/20:5), PC(P-18:1/20:4-OH), PC(20:3/20:3), 
PC(18:3/18:2), PC(20:3/16:0), and cis-8,11,14-Eicosatrienoic acid 
—enriched in linoleic acid metabolism (Figure 3C). Furthermore, 
oxidation stress-related lipids, including hydroxy fatty acids, LPCs, 
branched fatty acid esters of hydroxy fatty acid (FAHFA), and 
epoxydocosapentaenoic acid were predominant (Figure 3D). This 
evidence indicates that the synergistic effect of immunotherapy and 
RP lead to severe dysregulation of lipid metabolism and 
pronounced oxidative stress response in the tumor tissue. 
3.4 Linoleic acid upregulates ROS in LLC 
cells 

Given the enrichment of linoleic acid metabolism in RP + anti­
PD-1 group post-immunotherapy, we interrogated its functional 
role in driving oxidative stress. As expected, LLC cells treated with 
high-dose linoleic acid had significantly higher intracellular ROS 
levels compared to both control and low-dose linoleic acid 
(Figure 3E), supporting linoleic acid metabolism as a latent driver 
of redox imbalance in lung cancer cells. 
3.5 Determination of the OSRGs score 
system 

We integrated two scRNA-seq cohorts of immunotherapy-treated 
LUAD patients (GSE207422, n=15; HRA002509, n=19), resolving 
eight major cell types—epithelial cells, endothelial cells, fibroblasts, T 
cells, B cells, macrophages, mast cells, and neutrophils (Figures 4A, B). 
Comparative analysis of NMPR versus MPR  identified 944 
(GSE207422, Supplementary Table 2) and 1493 (HRA002509, 
Supplementary Table 3) significantly regulated DEGs, respectively 
(Figures 4C, D). Intersecting these DEGs with 1663 OSRGs yielded 
99 candidate genes potentially implicated in immunotherapy-driven 
redox regulation (Figure 4E). Machine learning optimization across 
118 algorithms identified CoxBoost + RSF as the optimal model (mean 
C-index = 0.678) (Figure 4F; Supplementary Figure 1, Supplementary 
Table 4). Then final OSRGs score was derived from 14 genes: OSRGs 
score = 0.182 ×  LDHA + 0.129  ×  ITGB1 + 0.473 × PPIA + 0.034  ×  
KRT8 + 0.098 × DDIT4 + 0.171 × FURIN + 0.102  ×  ADM + 0.188  ×  
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TIMP1 + 0.090 × PABPC1 + 0.084 × CFL1 - 0.026  ×  GAPDH - 0.141  ×  
GPX3 - 0.026  ×  KRT18 - 0.185  ×  CXCR4 (Figure 4G; 
Supplementary Figure 2). 
3.6 High OSRGs score predicts 
immunotherapy resistance and immune 
dysfunction 

In scRNA-seq cohorts, the highest OSRG scores were observed 
in macrophages and fibroblasts (Supplementary Figure 3). OSRGs 
scores of tumor cells were significantly elevated in non-responders 
compared to responders (P < 0.0001, Figures 5A, B). Furthermore, 
this redox imbalance extended to tumor-infiltrating neutrophils, T 
cells, and macrophages (P < 0.0001, Figures 5A, B), suggesting 
broad impairment of anti-tumor immunity. Simultaneously, 
analysis of spatial/bulk RNA-seq among immunotherapy cohorts 
also revealed a relevance between high OSRGs score in tumor tissue 
and adverse immunotherapy response (Figures 5C, D). Correlation 
analysis revealed a positive association (R = 0.38, P < 0.0001) 
between OSRGs score and neutrophil infiltration in the TME 
(Figure 5E). Consistent with this, our in vivo experiments 
detected a marked increase in tumor-infiltrating neutrophils and 
the pro-tumor phenotype in the RP + anti-PD-1 group, alongside 
unbalanced oxidative stress (Figures 5F-I). These findings suggest 
that the interplay between oxidative stress and neutrophils may 
contribute to immunotherapy resistance. 
3.7 High OSRGs score correlates with TME 
disorder and poor survival in LUAD 

Stratification by median OSRGs score revealed divergent TME 
composition between high- and low-score LUAD patients. As 
depicted in Figure 6A, high-OSRGs tumor exhibited elevated 
infiltration of neutrophils, activated mast cells, activated dendritic 
cells, activated memory CD4+ T cells, and resting NK cells, 
alongside reduced activated NK cells, follicular helper T cells, 
naive B cells, memory B cells, monocytes, and resting dendritic cells. 

Functional enrichment analysis linked high-OSRGs scores to 
activation of response to oxidative stress, glycolysis, and EMT 
(Figures 6B-D; Supplementary Table 5). Oxidative stress may 
reshape TME into a hostile yet permissive niche that paradoxically 
accelerates clonal selection of evolved cancer cells. Critically, LUAD 
patients with high-OSRGs scores had significantly worse prognoses in 
the TCGA, GSE31210, OAK, and POPLAR datasets (Figures 6E-H). 
4 Discussion 

Metabolomic profiling has emerged as a critical tool for 
deconstructing therapy-induced perturbations in tumor 
ecosystems. By integrating preclinical models with clinical 
cohorts, we demonstrate that anti-PD-1 therapy synergized with 
RP markedly aggravates oxidative stress to establish lipid 
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FIGURE 3 

Immunotherapy synergized with radiation pneumonitis to promote oxidative stress. (A) Volcano plots of differential metabolites between RP + anti­
PD-1 (B2Ca) and anti-PD-1 (A2Ca) groups post-immunotherapy. (B) Top 20 enriched KEGG pathways of the above differential metabolites. (C) Venn 
plot showing the intersection of metabolites significantly upregulated in the RP+ anti-PD-1 group post-immunotherapy compared with before 
treatment and metabolites significantly upregulated in (A). (D) Relative levels of 14 oxidative stress-related metabolites pre- and post­
immunotherapy in both groups. (E) Confocal imaging of ROS in LLC cells treated with linoleic acid. Scale bar, 100 µm. *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001 by one-way ANOVA Test. FAHFA, branched fatty acid esters of hydroxy fatty acid; LPC, lysophosphatidylcholine; LPE, 
lysophosphatidylethanolamine. 
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peroxidation-enriched niches in lung cancer TME, which may 
facilitate hepatic metastasis. High-OSRGs score associates with 
poor immunotherapy response and adverse survival of LUAD 
patient. Our findings position RP not merely as a toxicity but as 
an active modulator of the tumor-immune-metabolic axis, with 
potential implications for combinatorial radioimmunotherapy. 
Frontiers in Immunology 09
Dysregulated lipid metabolism, a hallmark of cancer, plays a 
crucial role in the process of tumor metastasis (19). Metabolic 
abnormalities enhance the survival capabilities of cancer cells, 
enabling them to adapt to adverse microenvironments (20). 
Furthermore, lipid metabolic reprogramming accelerates tumor 
progression by promoting immune evasion in cancer cells (21). 
FIGURE 4 

Development and validation of the OSRGs score system. (A, B) UMAP plots of two immunotherapy-related LUAD scRNA-seq datasets (GSE207422 
and HRA002509), depicting eight major cell subpopulations. (C, D) Manhattan plot of significantly upregulated genes in non-responders across cell 
subset. Red dots indicate genes shared by ≥ 2 cell subsets; top-ranked genes per subset are annotated. (E) Venn diagram of differentially expressed 
genes from GSE207422, HRA002509, and OSRGs set. (F) C-index of OSRGs score system among 118 machine learning algorithms across six 
cohorts. (G) Random survival forest analysis ranks top 14 prognostic OSRGs. LUAD, lung adenocarcinoma; OSRGs, oxidative stress-related genes; 
UMAP, Uniform Manifold Approximation and Projection. 
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FIGURE 5 

OSRGs scores correlate with immunotherapy resistance and neutrophil infiltration in LUAD. (A) Violin plots of OSRGs scores across cell 
subpopulations in the GSE207422 datasets. (B) Violin plots of OSRGs scores across cell subpopulations in the HRA002509 datasets. (C) OSRGs 
scores in tumor tissue sections from responder and non-responder. (D) Violin plots depicting OSRGs scores in tumor tissue from responder and 
non-responder validated across the GSE126044, GSE207422, OAK, and POPLAR datasets. (E) Correlation analysis between tumor tissue OSRGs 
score and neutrophil infiltration in the TCGA-LUAD dataset (A–D): NS, not significant, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (F) 
Immunohistochemical staining and (G) quantitative analysis of tumor-infiltrated neutrophil in anti-PD-1 group and RP + anti-PD-1 group mice. Scale 
bar, 50 µm. (H) Immunofluorescence images and (I) quantitative analysis of Arg1 (red) and Ly6G (green) co-expressing cells in the TME of anti-PD-1 
group and RP + anti-PD-1 group mice. Scale bar, 50 µm. Data represent mean ± SEM. **P<0.01, ****P<0.0001 (Mann-Whitney U Test). LUAD, lung 
adenocarcinoma; MPR, major pathologic response; NMPR, non-MPR; OSRGs, oxidative stress-related genes; TCGA, The Cancer Genome Atlas; 
UMAP, Uniform Manifold Approximation and Projection. 
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Increased levels of lipid peroxidation are observed in exhausted T 
cells, tumor-promoting macrophages, and immunosuppressive 
neutrophils (22). Our study revealed elevated levels of lipid 
peroxidation, and linoleic acid derivatives within polyunsaturated 
PC, in tumor tissue within the RP microenvironment following 
immunotherapy. These metabolites were previously reported to be 
linked to progression in ovarian and hepatocellular carcinoma (23, 
24). Mechanistically, cytochrome P450-mediated oxidation of 
linoleic acid generates bioactive epoxy fatty acid and pro-
inflammatory oxylipins (e.g., 13-HODE and 9-HODE), which 
induce angiogenesis and foster cellular migration (25). 
Furthermore, consistent with the findings of our study, excess 
linoleic acid activated oxidative stress (26, 27). These insights 
illustrate the close relationship between oxidative stress and 
tumor metastasis. In addition, adding immunotherapy to RP also 
Frontiers in Immunology 11 
significantly boosted LPC and LPE in tumor tissues, indicating 
oxidative stress-mediated cell membrane damage. Zhang et al. 
demonstrates that LPC inhibits human lung cancer cell 
proliferation and induces tumor cell death, leading to reduced 
tumor growth and sizes in mice (28). These findings align with 
our observation of reduced tumor size and weight in the RP + anti­
PD-1 group. 

Oxidative stress is pivotal in tumor biology, driving genomic 
instability, inflammation, and angiogenesis, crucial for tumor 
growth and spread (29–31). Oxidative stress can activate protein 
kinase A in tumor cells, lead to the phosphorylation of RING finger 
protein 25, and subsequently mediate E-cadherin ubiquitination 
and degradation, ultimately promoting hepatocellular carcinoma 
metastasis (32). Furthermore, tumor stem cells exhibit a more 
robust antioxidant defense system compared to tumor cells (33), 
FIGURE 6 

OSRGs score stratifies TME features and prognosis in LUAD. (A) Violin plots of immune cell deconvolution analysis of TCGA-LUAD samples stratified 
by median OSRGs score. (B-D) Pathway activity heatmap (GOBP, KEGG, and HALLMARK) across TCGA-LUAD cohort comparing high vs. low OSRGs 
groups. (E-H) Kaplan-Meier survival curves demonstrating reduced survival in high OSRGs patients across four cohorts (TCGA, GSE31210, OAK, and 
POPLAK datasets). LUAD, lung adenocarcinoma; GOBP, Gene Ontology Biological Process; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
OSRGs, oxidative stress-related genes; TCGA, The Cancer Genome Atlas; TME, tumor microenvironment. NS, not significant, *P<0.05, **P<0.01, 
***P<0.001. 
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suggesting that a moderate oxidative stress microenvironment may 
facilitate the acquisition of stem-like properties in tumor cells and 
promote metastasis. In light of these mechanisms, we hypothesize 
that the oxidative stress induced by RP in synergy with 
immunotherapy may enhance the invasive and metastatic 
potential of tumor cells through the aforementioned biological 
processes. Our machine learning-derived OSRGs score analysis 
detects a close link between oxidative stress and immunotherapy 
resistance as well as patient survival. The association between 
oxidative stress and unfavorable patient outcomes was also 
established in gastric cancer, colorectal cancer, and glioblastoma 
(34–36). Strategies targeting ROS clearance and disrupting redox 
adaptation have shown promise in suppressing metastasis (37). For 
instance, fangchinoline, by promoting the degradation of NADPH 
oxidase 4 to reduce cytoplasmic ROS levels, reverses EMT and 
inhibits the invasion and migration of lung cancer cells (38). Its 
anti-tumor effects have been validated in animal models. The 
glutathione peroxidase mimic Ebselen has demonstrated 
inhibitory effects on colorectal cancer in both cellular and animal 
studies (39). Similarly, brusatol, a potent inhibitor of antioxidant 
response element transcription factor, can promote the 
ubiquitination of nuclear factor erythroid 2-related factor 2, 
thereby suppressing its anti-oxidative stress capacity, inhibiting 
metastasis, reversing drug resistance in animal tumor models, and 
enhancing the efficacy of chemotherapy (40). However, inhibiting 
antioxidant-related genes may cause adverse effects in normal cells. 
Therefore, careful titration of these inhibitors in combination with 
radiotherapy or immunotherapy is crucial to achieve optimal 
synergistic anti-tumor effects while minimizing toxicity to normal 
tissues. Future research should focus on developing more targeted 
redox modulators to achieve precise intervention within TME, 
thereby maximizing efficacy and reducing toxicity. 

Tumors with high OSRGs scores exhibit a neutrophil-dominated 
TME characterized by lower immune cell infiltration and elevated 
tumor purity (41, 42). Consistently, in our study, high-OSRGs scores in 
LUAD tumor tissue accompany increased neutrophils and poor 
immunotherapy response. Concordantly, tumor-infiltrating 
neutrophils increased in the RP + anti-PD-1 group compared to the 
anti-PD-1 group. The multifaceted roles of tumor-associated 
neutrophils (TANs) remain a complex area requiring further 
exploration. TANs promote resistance through multiple mechanisms: 
secreting immunosuppressive cytokines to inhibit cytotoxic T 
lymphocyte activity, releasing neutrophil extracellular traps to shield 
tumors from immune surveillance, and directly escorting circulating 
tumor cells to promote cell cycle progression and accelerate metastasis 
(43–47). Recent work further implicates BHLHE40-driven glycolytic 
reprogramming in polarizing neutrophils toward a pro-tumor 
phenotype (48), highlighting metabolic targeting as a therapeutic 
strategy. Coincidentally, we also observed an increased pro-tumor 
phenotype of neutrophils within the severely dysregulated lipid 
metabolism TME. This also may contribute to RP-mediated 
immunotherapy resistance in lung cancer.  

This study also has certain limitations. While our research is 
grounded in metabolomics, we are unable to simultaneously 
integrate transcriptomic data due to sample limitations. This limits a 
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comprehensive elucidation of the molecular mechanisms through 
which RP influences lung cancer immunotherapy efficacy. Therefore, 
future research will build upon these findings and strive to mitigate the 
impact of treatment-related adverse events on efficacy. 

In summary, this study reveals that immunotherapy, in 
conjunction with RP, promotes widespread and complex lipid 
metabolic dysregulation in tumor tissues, including elevated levels 
of oxidative stress-related lipids, and enhances liver metastasis in lung 
cancer. Furthermore, high-OSRGs scores in tumor tissues are likely 
associated with increased neutrophil infiltration in the TME, 
immunotherapy resistance, and poor patient prognosis. These 
findings provide a rationale for investigating the mechanisms by 
which RP modulates immunotherapy efficacy and for exploring 
oxidative stress-targeted strategies to optimize radioimmunotherapy 
outcomes in lung cancer. 
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