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CD1-restricted T cells constitute an unconventional arm of immunity that 
recognises lipid antigens, a feature particularly pertinent to Mycobacterium 
tuberculosis (Mtb), a pathogen with a lipid-rich cell wall. Unlike classical MHC-

restricted responses, CD1-mediated lipid antigen presentation includes donor-
unrestricted T cell responses, offering a promising pathway for universally 
protective tuberculosis (TB) vaccines. This review explores the biology of CD1 
isoforms, the functional diversity of CD1-restricted T cell subsets, and their roles 
in TB immunity. We discuss Mtb’s lipid antigens, mechanisms of CD1 trafficking 
and antigen presentation, immune evasion strategies, and emerging translational 
insights. By highlighting key knowledge gaps and future directions, we argue that 
harnessing CD1-restricted T cells could unlock novel vaccine strategies against 
the world’s leading infectious killer. 
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Introduction 

In 2023, 10.8 million people fell ill with tuberculosis (TB), and 1.25 million died, 
making it the world’s leading cause of death from an infectious disease. The causative agent, 
Mycobacterium tuberculosis (Mtb), is estimated to infect around a quarter of the global 
population (1). Although TB primarily affects the lungs, it can also manifest in other parts 
of the body (2). The disease is highly contagious, disproportionately affects those living in 
poverty, and is costly and time-consuming to treat, all of which contribute to its immense 
global health burden (3). Compounding these challenges, the emergence of antibiotic-
resistant Mtb strains poses a growing threat to TB control efforts (2). 

Host immune responses to TB have traditionally focussed on peptide antigens 
presented by MHC class I and class II molecules, which are well studied in the context 
of conventional T cell immunity. However, these molecules are encoded by some of the 
most polymorphic genes in the human genome (4), resulting in substantial inter-individual 
variability in immune responses to Mtb (5, 6). 
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Mtb has a complex and lipid-rich cell wall, known as the 
mycolyl-arabinogalactan-peptidoglycan complex (7). Around 6% 
of the Mtb genome is dedicated to lipid metabolism (8), and lipids 
constitute approximately 40% of the cell envelope by weight (9). 
This unusual lipid composition underpins the pathogen’s virulence 
and resistance to antibiotics (10–15). Indeed, some of the most 
effective TB drugs, such as isoniazid, act by inhibiting Mtb lipid 
biosynthesis (8). 

Importantly, these lipid components of the Mtb cell wall can be 
presented by CD1 molecules, a family of non-classical antigen-
presenting molecules, to activate CD1-restricted T cells and initiate 
antimicrobial immune responses (8). Unlike MHC molecules, CD1 
proteins are virtually non-polymorphic, meaning that the responses 
they elicit are genetically unrestricted and shared across the 
population (16, 17). This feature makes CD1 an attractive target 
for broadly effective TB vaccines, capable of overcoming the genetic 
variability that hampers conventional MHC-restricted vaccine 
approaches (18). 

Despite their potential, CD1-restricted T cells remain 
underexplored in TB research, in part due to the technical 
challenges associated with studying them. However, harnessing 
these unconventional T cell responses may offer a novel strategy 
to enhance the efficacy of future TB vaccines (19). CD1-restricted T 
cell activation in TB appears to occur via two distinct but potentially 
complementary mechanisms. The first involves direct recognition 
of mycobacterial lipid antigens, such as mycolic acid, glucose 
monomycolate (GMM), or phosphomycoketides, presented by 
CD1 molecules on infected antigen-presenting cells (20–22). The 
second involves infection- or inflammation-induced remodelling of 
host lipid metabolism, leading to enhanced presentation of 
stimulatory self-lipids by CD1 and activation of autoreactive T 
cells (23). For instance, Toll-like receptor (TLR) signalling has been 
shown to promote the presentation of endogenous lipids such as 
sulfatide and GM1 (23), and in the case of CD1d-restricted iNKT 
cells, Brennan et al. (2011) demonstrated that microbial sensing by 
antigen-presenting cells (APCs) can induce self-lipid switching that 
drives T cell activation even in the absence of microbial antigens 
(24).  Clarifying  the relative importance of these pathways  is
essential for rational vaccine design and for maximising the 
potential of CD1-targeted immunity. 
 

Mechanisms of lipid antigen 
presentation by CD1 molecules 

CD1 molecules are a family of non-polymorphic, non-classical 
MHC class I-like antigen-presenting molecules encoded on 
chromosome 1. They are specialised for the presentation of both 
self- and foreign lipid antigens to T cells. Based on sequence 
similarities, CD1 isoforms are classified into three groups: group 
1 molecules (CD1a, CD1b, and CD1c), which are expressed 
exclusively by antigen-presenting cells (25) and  cortical
thymocytes, where they likely contribute to thymic selection of 
CD1-restricted T cells (26). CD1d, the sole member of group 2, is 
expressed across a broader range of immune cells (27). In contrast, 
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CD1e, the only group 3 molecule, is restricted to intracellular 
compartments. CD1e localises to late endosomal compartments 
and facilitates lipid loading onto other CD1 isoforms (28). 
Structurally, CD1 molecules share homology with MHC class I 
molecules. Each CD1 molecule comprises a heavy chain with a1 
and a2 domains forming the antigen-binding groove, structured as 
two antiparallel a-helices over a b-pleated sheet, and an 
immunoglobulin-like a3 domain with a transmembrane region 
and a short cytoplasmic tail anchoring the molecule to the 
membrane. Like MHC class I molecules, CD1 molecules associate 
non-covalently with b2-microglobulin. Lipid antigens bind within 
deep hydrophobic channels, with their polar headgroups exposed at 
the solvent interface for recognition by the T cell receptor (TCR). 
Differences in the size and shape of the antigen-binding grooves 
among CD1 isoforms facilitate the presentation of a wide range of 
lipid antigens (29–35). 

CD1 molecules are synthesised in the endoplasmic reticulum 
(ER), where they associate with b2-microglobulin and undergo 
glycosylation, promoting interaction with ER chaperones such as 
calnexin, ERp57, and calreticulin (36–38). During biosynthesis, 
CD1 molecules bind endogenous lipids; some of these lipids 
stabilise the molecule, while others may be antigenic (39, 40). 
Following trafficking through the Golgi apparatus, CD1 molecules 
are transported to the plasma membrane. 

Once at the cell surface, most CD1 molecules (excluding CD1a) 
are internalised via a clathrin-dependent pathway mediated by 
adaptor protein complex 2 (AP2), which recognises a tyrosine-
based motif within their cytoplasmic tails (41–44). In contrast, 
CD1a lacks a tyrosine-based motif and is internalised independently 
of clathrin and AP2, through a Rab22a- and ADP-ribosylation 
factor 6 (ARF6)-dependent mechanism (45). After internalisation, 
CD1a and CD1c recycle predominantly through the early endocytic 
system back to the plasma membrane. CD1b and CD1d also recycle 
but, owing to differences in their sorting motifs, can additionally 
engage adaptor protein complex 3 (AP3) within sorting endosomes, 
facilitating trafficking through late endosomal and lysosomal 
compartments (46–48). CD1c can access both early and late 
endocytic pathways, giving it the most widespread distribution 
among CD1 isoforms within the endosomal system (41). 

Endocytic compartments are enriched with exogenous lipids 
delivered via macropinocytosis (49), mannose receptors (50), 
langerin (51), and the low-density lipoprotein receptor (52). 
Within these compartments, internalised CD1 molecules 
encounter a variety of endogenous and exogenous lipid antigens. 
Lipid exchange is facilitated by CD1e and saposins, small non-
enzymatic proteins found in lysosomes (28, 53–55). Thus, 
internalisation and trafficking through the endosomal system are 
crucial for the acquisition and presentation of lipid antigens (30). 
However, emerging evidence suggests that CD1a, possibly due to 
the more open structure of its binding groove, may also facilitate 
lipid exchange directly at the cell surface under neutral pH 
conditions (56, 57). 

T cell responses to Mtb infection are unusual in that multiple T 
cell subsets recognise lipid antigens, many of which are derived 
from the Mtb cell wall and are presented by CD1 molecules (58). It 
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is thought that the distinctive composition of the Mtb cell wall, 
together with the intracellular lifestyle of the bacilli, converges with 
CD1 loading pathways to promote lipid antigen presentation (26, 
58, 59). Accordingly, CD1-restricted lipid presentation is 
considered a key element in the initiation and modulation of 
immune responses against Mtb. 
́

CD1-restricted T cells in tuberculosis 
immunity 

Both ab and gd T cells have been shown to recognise lipid 
antigens presented by CD1 molecules. Despite the non-polymorphic 
nature of the CD1 system, the repertoire of CD1-restricted TCRs in 
humans is highly diverse (60–63). Increasing evidence highlights the 
importance of both ab and gd T cell subsets in host immune 
responses to Mtb infection (64–67). 

Although ab T cells are far more frequent in the blood, gd T 
cells have gained significant research interest, particularly in the 
context of infection (68). gd T cells normally account for 
approximately 4% of circulating T cells (69), but during infections 
such as TB, they can expand dramatically, representing up to 50% of 
the peripheral T cell pool (70–74). In fact, gd T cells constitute the 
highest frequency of Mtb-reactive T cells in human peripheral 
blood (75). Hoft et al. (1998) demonstrated that gd T cells were 
the most dramatically expanded population following stimulation 
of PBMCs from Bacille Calmette-Guerin (BCG)-vaccinated 
individuals with mycobacterial antigens. These gd T cells also 
exhibited helper functions, supporting mycobacteria-specific CD4 
+ and CD8+ T cell responses (76). Moreover, gd T cells have been 
shown to promote dendritic cell maturation, further linking them to 
the orchestration of both adaptive and innate immunity (77). 

Human Vd1 T cells have been reported to recognise all CD1 
isoforms (64, 65, 78–85) whereas  Vd2 T cells predominantly 
recognise butyrophilins due to their TCRs usually containing the 
canonical Vg9 chain (86–89). While Vd2 T cells dominate the gd T 
cell compartment in the blood of healthy individuals (90), TCR 
sequencing studies reveal that during active TB, the proportion of 
Vd1 T cells increases markedly, resulting in codominance of Vd1 
and Vd2 populations (16). In the lungs of TB patients, the gd T cell 
repertoire is often highly skewed, dominated by locally expanded 
Vd1 T cell clones (16). Given their abundance, elucidating the 
functional roles of Vd1 T cells could significantly enhance our 
understanding of protective immunity to TB. Furthermore, due to 
their potent cytotoxicity and ability to exhibit immunological 
memory, Vd1 T cells represent an attractive target for next-
generation TB vaccine strategies (16, 65, 91–95). 

Pioneering studies by Porcelli et al. (1998) provided direct 
evidence of CD1-restricted T cell responses. From healthy donor 
samples, they generated two T cell lines, BK6 (expressing an 
abTCR) and IDP2 (expressing a gdTCR), both of which lacked 
CD4 and CD8 expression. Both lines could lyse the MOLT-4 T cell 
line in a CD1-dependent but MHC-independent manner (64). Lysis 
by BK6 was blocked by anti-CD1a antibodies, while lysis by IDP2 
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was blocked by anti-CD1c antibodies, demonstrating restriction by 
CD1a and CD1c, respectively. Blocking experiments confirmed that 
responses were TCR-mediated through the TCR-CD3 complex. 
Moreover, both T cell lines lysed mouse hybridoma and 
rhabdomyosarcoma cell lines transduced to express CD1a or 
CD1c, respectively, further confirming CD1 restriction (64). 

Subsequent work by Rosat et al. (1999) described the generation 
of two CD8+ abTCR-expressing T cell lines, CD8–1 and CD8-2, by 
stimulating PBMCs with Mtb lysates. CD8–1 specifically lysed 
CD1c-transfected target cells pulsed with Mtb lysates, while CD8– 
2 specifically lysed CD1a-transfected targets, with responses 
inhibited by blocking antibodies against CD1c and CD1a, 
respectively (96). Lysis was dependent on Mtb-derived lipid 
antigens, as no lysis occurred when target cells were pulsed with 
non-mycobacterial lysates or left untreated. Additionally, CD8–1 
and CD8–2 secreted IFN-g and TNF-a in response to Mtb antigen, 
but not Th2 or regulatory cytokines such as IL-4 or IL-10 (96). 
However, it is important to note that these responses were 
measured against Mtb lysate-pulsed APCs rather than live Mtb-

infected cells, which may present distinct antigens. 
Sieling et al. (2000) generated three CD4+ abTCR-expressing T 

cell lines (LCD4.1, LCD4.2, and LCD4.3) from the skin lesions of 
leprosy patients (97). These T cells released IFN-g in response to 
Mycobacterium leprae sonicate-pulsed dendritic cells (DCs), but not 
untreated DCs. Blocking experiments demonstrated that LCD4.1 
responses were CD1c-restricted, while LCD4.2 and LCD4.3 were 
CD1b-restricted. Antigen specificity studies revealed that LCD4.2 
recognised phosphatidylinositol mannoside and LCD4.3 recognised 
mycolic acid. Importantly, anti-CD4 blocking antibodies inhibited 
responses of MHC class II-restricted control T cells, but not LCD4.1 
or LCD4.3, indicating that CD4 co-receptor engagement is not 
essential for CD1-restricted T cell activation (97). 

By the early 2000s, strong evidence supported a role for CD1-
restricted T cells in the immune response to Mtb. However, it 
remained unclear whether these cells expanded following Mtb 
exposure or differed in frequency between healthy and TB-
infected individuals. Using PBMCs from PPD-positive and PPD-
negative individuals, Ulrichs et al. (2003) demonstrated that T cells 
from PPD-positive individuals exhibited greater proliferation and 
IFN-g secretion in response to Mtb lipid extracts, and these 
responses were largely CD1-dependent (98). CD3+ cell depletion 
abrogated IFN-g production, confirming T cell involvement. 
Notably, CD1-restricted T cell responses were reduced or absent 
in active TB patients, suggesting that effective CD1-mediated 
immunity may be important for controlling Mtb infection, or that 
CD1-restricted T cells might migrate into infected lung tissue 
during active disease. Immunomagnetic separation further 
revealed that these responses were stronger in CD4+ compared to 
CD8+ T cells (98). 

Kawashima et al. (2003) extended these findings by 
demonstrating that following BCG vaccination, CD8+ but not 
CD4+ T cells mounted CD1-restricted IFN-g responses against 
BCG-infected dendritic cells. Responses by CD4+ T cells were 
dependent on MHC class II and unaffected by anti-CD1 blockade 
(99). Given that CD4+ T cell responses are essential for effective TB 
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immunity (100–107), optimising TB vaccines to elicit robust CD4+ 
CD1-restricted memory T cell responses may be critical for 
achieving durable protection. 

One of the major obstacles to studying CD1-restricted T cells is 
that mice lack group 1 CD1 molecules. To address this, Felio et al. 
(2009) developed a transgenic mouse model expressing human 
CD1a, CD1b, and CD1c. In response to Mtb infection, these mice 
generated CD1-restricted T cell responses characterised by 
cytotoxicity, IFN-g production, and memory formation (108). 

Although most mammals possess group 1 CD1 genes, muroid 
rodents (mice and rats) are an exception (109–112). Thus, guinea 
pigs, which express CD1b and CD1c, have also been used as an 
alternative model. Hiromatsu et al. (2002) showed that guinea pigs 
immunised with Mtb lipids generated CD1-restricted T cell 
responses that were cytotoxic and exhibited immunological 
memory (113). In subsequent studies it was shown that 
immunised guinea pigs had reduced lung pathology as well as 
reduced bacterial burden in the lungs and spleen following Mtb 
infection (114). Together, these findings highlight the importance of 
CD1-restricted T cells in immunity to Mtb and underscore their 
potential as targets for future TB vaccine development. Additional 
details on CD1  genes across various mammalian species are 
provided in Table 1. 
CD1a-restricted responses to 
infection 

CD1a is highly expressed by Langerhans cells (LCs) and plays 
an important role in generating T cell responses in the skin and at 
other mucosal sites (51, 116). Unlike other CD1 isoforms, CD1a 
may be capable of lipid exchange at the plasma membrane under 
neutral pH conditions, possibly due to the more open structure of 
its binding groove. CD1a molecules are also stabilised by exogenous 
lipids present in serum (56, 57). 

LCs are a specialised subset of dendritic cells critical for 
initiating and regulating immune responses in the skin. Hunger 
et al. (2004) compared the expression of dendritic cell markers on 
LCs and conventional DCs. LCs exhibited higher expression of 
langerin (CD207), CD58, and CD1a, whereas DCs expressed higher 
levels of CD86, CD11c, CD1b, and HLA-DR; expression of CD14, 
CD80, CD83, and CD1c was similar between the two populations 
(51). Using CD1a+ LC-like DCs derived from leprosy patients, two 
CD1a-restricted abTCR-expressing T cell clones, B2.1 and B2.11, 
were generated. Both clones were double-negative (DN) for CD4 
and CD8, and they proliferated in response to CD1a+ LC-like DCs 
pulsed with Mycobacterium leprae extracts. Their responses were 
specifically inhibited by anti-CD1a, but not anti-CD1b or anti-
CD1c, blocking antibodies, confirming CD1a restriction (51). 

Interestingly, B2.1 and B2.11 also responded to extracts from M. 
tuberculosis, Mycobacterium smegmatis, and Mycobacterium phlei, 
but not to extracts from Mycobacterium avium, Nocardia, 
Aspergillus, or  Rhodococcus species, suggesting recognition of a 
specific exogenous lipid antigen present in a subset of bacterial 
species. These clones expanded and secreted IFN-g when co-
Frontiers in Immunology 04
cultured with LC-like DCs but showed only limited responses to 
monocyte-derived DCs (MoDCs), highlighting the superior ability 
of LCs to stimulate CD1a-restricted T cell responses (51). Langerin 
is involved in pathogen sensing (117) and in the formation of 
Birbeck granules (118). Given the differences in langerin expression 
between LCs and DCs, Hunger et al. investigated its role in CD1a-
restricted responses. Pre-treatment of LC-like DCs with anti-
langerin antibodies before, but not after, pulsing with M. leprae 
extracts inhibited T cell proliferation, suggesting that langerin is 
involved in the uptake, processing, or presentation of lipid 
antigens (51). 

In parallel, Moody et al. (2004) used a CD1a-restricted abTCR 
transfected J.RT3-T3.5 T cell reporter line to screen Mtb lipid 
fractions  for  antigens  (119).  High-performance  l iquid  
chromatography and mass spectrometry identified a series of 
related stimulatory lipids. Further structural analysis using 
nuclear magnetic resonance and mass spectrometry revealed the 
antigen as a lipopeptide, named didehydroxymycobactin, likely an 
intermediate in the mycobactin biosynthetic pathway of the Mtb 
cell wall. Importantly, Mtb-infected MoDCs, but not uninfected 
cells, could present this antigen to activate the CD1a-restricted 
reporter line, confirming that didehydroxymycobactin is naturally 
processed and presented during infection (119). 
CD1b-restricted responses to 
infection 

Among the group 1 CD1 molecules, CD1b is unique in its 
ability to present lipid antigens with very long acyl chains, such as 
mycolic acid (120). CD1b-restricted T cells are the best 
characterised of all group 1 CD1-restricted populations, and 
extensive studies have established their role in responses to 
Mtb infection. 

The first evidence of CD1 antigen presentation came from 
Porcelli et al. (1992), who generated a CD1b-restricted T cell line 
from abTCR-expressing double-negative (DN) T cells cultured 
with Mtb extract-pulsed MoDCs. These T cells lysed Mtb-

infected, CD1b-transfected C1R cells, but not cells transfected 
with CD1a, CD1c, or empty vectors, demonstrating CD1b 
restriction (121). 

Building on this, Beckman et al. (1994) identified mycolic acid 
as a lipid antigen presented by CD1b using organic phase separation 
and T cell proliferation assays. A CD1b-restricted T cell clone, DN1, 
specifically recognised mycolic acid derivatives, including 6,6’-
trehalosedimycolate, but not irrelevant lipids, suggesting TCR-
mediated recognition (21). Further studies expanded the 
catalogue of CD1b-presented antigens. Sieling et al. (1995) 
identified lipoarabinomannan as a mycobacterial lipid recognised 
in a CD1b-dependent manner by DN ab T cells derived from 
leprosy patients and healthy donors, with these T cells capable of 
lysing antigen-pulsed monocytes and secreting IFN-g (122). 

Similarly, Stenger et al. (1997) showed that CD1b-restricted T 
cells from TB patients and healthy donors could lyse Mtb-infected 
macrophages in a CD1-dependent manner. Distinct cytotoxic 
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mechanisms were observed: DN T cells relied on Fas-FasL 
interactions, while CD8+ T cells used granule-mediated killing. 
Importantly, CD8+ T cells, but not DN T cells, significantly reduced 
intracellular Mtb growth, likely via granulysin secretion (123, 124). 

The identification of specific mycobacterial lipid antigens 
continued with Moody et al. (1997), who demonstrated that the 
LDN5 T cell clone recognised GMM presented by CD1b (22). 
Gilleron et al. (2004) later characterised Ac2SGL, a sulfoglycolipid, 
as a potent CD1b-restricted antigen stimulating IFN-g and 
granulysin secretion by CD8+ T cells, leading to reduced Mtb 
growth. Responses to Ac2SGL required endosomal processing and 
were absent in PBMCs from PPD-negative individuals, suggesting 
selective expansion with prior Mtb exposure (125). Layre et al. 
(2009) identified glycerol monomycolate (GroMM) as another 
CD1b-presented antigen using the Z5B71 T cell clone. IFN-g 
responses to GroMM were observed in BCG-vaccinated and 
latent TB individuals, but absent in active TB, suggesting 
defective memory responses during disease (126). 

Montamat-Sicotte et al. (2011) further demonstrated that 
mycolic acid-specific CD1b-restricted T cells were enriched in TB 
patients, including at the site of infection (bronchoalveolar lavage 
fluid), and persisted long after treatment, indicating durable 
memory responses. Interestingly, BCG vaccination alone did not 
generate strong mycolic acid-specific memory T cells, possibly due 
to differences in mycolic acid structure between Mtb and BCG 
strains (127–129). 

The development of CD1b tetramers revolutionised the study of 
CD1b-restricted T cells. Kasmar et al. (2011) showed that GMM-

loaded CD1b tetramers specifically stained the LDN5 T cell clone 
and rare T cells in TB patient PBMCs, which were predominantly 
CD4+ (130). Rhijn et al. (2013) used tetramers to isolate and 
characterise CD1b-GMM specific T cell clones. High-affinity 
clones, called germline-encoded mycolyl lipid-reactive (GEM) T 
cells, all shared a TRAV1-2–TRAJ9 a-chain signature and 
expressed predominantly CD4. TCR sequencing confirmed that 
both a- and b-chains contributed to antigen specificity. GEM T 
cells expanded in TB patients, supporting their role in immune 
responses to Mtb (131). In contrast, LDN5-like T cells, expressing 
TRAV17 and TRBV4-1, represented a second group of GMM-

specific T cells with more diverse TCR usage and coreceptor 
expression (132). 

Functional evidence for CD1b-mediated protection came from 
Busch et al. (2016), who showed that lipoarabinomannan-specific 
CD1b-restricted T cells from latent TB individuals inhibited Mtb 
growth in MoDCs, and that these T cells produced granulysin, a 
molecule essential for direct killing of Mtb (124, 133). 

Most recently, Sakai et al. (2024) identified trehalose 
monomycolate (TMM) as a novel CD1b-presented antigen. Using 
CD1b tetramers and single-cell RNA and TCR sequencing, they 
showed that TMM-specific T cells upregulate cytotoxic molecules 
such as granzyme B, perforin, and granulysin. These T cells 
expanded in TB patients and recognised TMM from multiple 
mycobacterial species but required the trehalose headgroup for 
TCR recognition (134). Cryo-electron microscopy revealed the 
Frontiers in Immunology 05 
ternary structure of the CD1b-TMM-TCR complex, providing 
detailed molecular insights into lipid antigen recognition. 

Finally, Zhao et al. (2015) generated a transgenic mouse model 
expressing human CD1a, CD1b, CD1c, and a DN1 TCR specific for 
mycolic acid. In this model, DN1 T cells reduced Mtb burden after 
adoptive transfer, highlighting the protective capacity of CD1b-
restricted T cells during TB infection (135). Together, these findings 
establish CD1b-restricted T cells as key contributors to host defence 
against Mtb and highlight their potential as targets for next-
generation TB vaccines. 
CD1c-restricted responses to 
infection 

Among the group 1 CD1 molecules, CD1c is the most widely 
expressed and exhibits the broadest distribution throughout the 
endocytic system (25, 27, 41, 60, 66, 136, 137). This extensive 
trafficking enables CD1c to survey a diverse range of lipid antigens. 
Moreover, unlike other CD1 isoforms, CD1c lipid loading is 
independent of compartment acidification, a process that Mtb 
actively inhibits to evade phagocytic destruction, giving CD1c a 
potential advantage in infection settings (41, 138). 

Both ab and gd T cells can recognise lipid antigens presented by 
CD1c. Despite the non-polymorphic nature of the CD1 system, the 
repertoire of CD1c-restricted TCRs is highly diverse (60–67). 

Moody et al. (2000) first demonstrated that lymphocytes from 
individuals with prior Mtb exposure and positive PPD skin tests 
showed significantly greater proliferation and activation in response 
to synthetic isoprenoid glycolipids, structurally similar to Mtb 
antigens, in a CD1c-dependent manner. These findings provided 
the first evidence of CD1c-mediated lipid-specific memory T cell 
responses in infectious disease (66). 

Building on this, Matsunaga et al. (2004) investigated the CD1c-
restricted T cell line CD8-1 [previously described by Rosat et al. 
(96)]. They demonstrated that CD8–1 cells proliferated in response 
to CD1c-transfected C1R cells pulsed with Mtb or BCG whole lipid 
extracts, as well as with mannosyl-b-1-phosphoisoprenoids, a 
family of Mtb lipid antigens presented by CD1c (66). Disruption 
of the pks12 gene in Mtb abrogated the synthesis of mannosyl-b-1-
phosphoisoprenoids, and lipid extracts from pks12 knockout strains 
failed to activate CD8–1 T cells. Mass spectrometry confirmed the 
absence of mannosyl-b-1-phosphoisoprenoids in the mutant 
strains, establishing pks12 as essential for their biosynthesis (8). 
Among these antigens, mannosyl-b1-phosphomycoketide (MPM) 
is now recognised as a major target for CD1c-restricted T cell 
responses in Mtb-exposed individuals (20). 

Further work by Ly et al. (2013) expanded the repertoire of 
known CD1c-presented Mtb lipids. Using fractionated lipid extracts 
and the DN6 CD1c-restricted T cell line as a reporter, they 
identified a novel antigen, C32 phosphomycoketide (PM), a fully 
saturated C32 alkylphosphate structurally related to MPM (20). 
DN6 T cells were strongly activated by PM-pulsed MoDCs, but not 
by extracts from pks12-deficient Mtb, confirming PM as a natural 
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mycoketide antigen. Notably, DN6 responded to both PM and 
deglycosylated forms of MPM, suggesting that antigen processing 
by APCs, involving removal of b-linked mannose units, can 
influence CD1c-restricted T cell recognition. Plate-bound CD1c 
experiments further confirmed distinct modes of recognition by 
different T cell clones (20). 

Currently, PM and MPM remain the only two natural CD1c-
presented Mtb lipid antigens that have been clearly identified (20, 
60, 66, 139, 140). Further antigen discovery will likely be important 
for optimising TB vaccines aimed at targeting CD1c-restricted T 
cell responses. 

To address antigen stability, Reijneveld et al. (2021) synthesised 
an MPM analogue, MPM-3, designed to resist enzymatic hydrolysis 
during antigen processing. In vitro immunisation with MPM-3 
expanded MPM-specific T cells that demonstrated dual reactivity 
towards both MPM and MPM-3. These findings suggest that MPM-

3 could serve as a more stable vaccine component for inducing 
robust CD1c-restricted T cell responses (141). 
CD1d-mediated responses to 
mycobacteria 

CD1d presents lipid antigens to natural killer T (NKT) cells, 
including invariant NKT (iNKT) cells and some Vd1 T cells (79, 
142). NKT cells are a distinct population of abTCR-expressing T 
cells that co-express natural killer (NK) markers such as CD94 and 
CD161 (143). In humans, iNKT cells, also referred to as type 1 NKT 
cells, are defined by expression of a semi-invariant Va24-Ja18 TCR 
(144, 145), whereas type 2 NKT cells possess a more diverse TCR 
repertoire  (146) .  The  synthet ic  glycosphingol ipid  a-
galactosylceramide (a-GalCer), originally isolated from a marine 
sponge, binds CD1d and strongly activates iNKT cells by engaging 
their TCR with high affinity (147–149). The development of CD1d-
a-GalCer tetramers enabled detailed characterisation of iNKT cells 
in both mice and humans (150, 151). Importantly, a-GalCer does 
not activate type 2 NKT cells, providing a selective tool for studying 
iNKT biology. Much of our understanding of CD1d-restricted 
immunity stems from iNKT cell research, largely because both 
CD1d and iNKT cells are conserved across mice and humans (152), 
unlike group 1 CD1 molecules, which are absent in murine models. 

While iNKT cells were first investigated in the context of cancer, 
where a-GalCer treatment reduced tumour metastases and 
improved survival in mouse models (153), they have also been 
implicated in protection against Mtb infection. Chackerian et al. 
(2002) showed that a-GalCer administration prolonged survival 
and reduced lung bacterial burden in Mtb-infected CD1d-sufficient, 
but not CD1d-deficient mice, demonstrating a CD1d-dependent 
protective effect (154). 

Subsequent studies identified microbial lipid antigens presented 
by CD1d. Fisher et al. (2004) demonstrated that phosphatidylinositol 
mannoside (PIM), a lipid isolated from BCG, could stimulate murine 
iNKT cells via CD1d presentation. Using CD1d-transfected B cell 
lymphoma cells pulsed with PIM, they observed IFN-g secretion from 
Va14-Ja281 transgenic mouse splenic T cells, a response abrogated 
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by anti-CD1d blocking antibodies. These responses were absent with 
untransfected B cells, confirming CD1d restriction. Moreover, CD1d-
PIM tetramers could stain murine iNKT cells similarly to CD1d-a-
GalCer tetramers (155). 

Investigations in humans revealed that iNKT cell clones stained 
by both CD1d-PIM and CD1d-a-GalCer tetramers also secreted 
IFN-g and lysed CD1d-transfected HeLa cells pulsed with PIM. No 
lysis was observed when untransfected HeLa cells were used, 
confirming CD1d-restricted recognition. These findings identify 
PIM as a mycobacterial lipid antigen capable of activating human 
iNKT cells (155). Beyond recognition of foreign lipids, iNKT cells 
can also be activated by stress-induced self-lipid antigens. Brennan 
et al. (2011) showed that TLR stimulation of dendritic cells triggers 
lipid remodelling, promoting presentation of endogenous agonists 
on CD1d and enhancing iNKT activation in the absence of 
microbial lipid antigens. This ‘self-lipid switching’ provides a key 
mechanism by which innate immune cues can modulate CD1d-
restricted T cell responses during infection (24). Functional studies 
further demonstrated a role for iNKT cells in controlling Mtb 
infection. Sada-Ovalle et al. (2008) showed that murine iNKT 
cells upregulated the activation marker CD69 upon contact with 
Mtb-infected macrophages, but not uninfected controls. 
Splenocytes from wild-type, but not iNKT-deficient, mice were 
able to reduce Mtb growth in infected macrophages. Furthermore, 
splenocytes failed to control Mtb growth when infected 
macrophages lacked CD1d, demonstrating the necessity of CD1d-
mediated presentation. Pure iNKT cell lines were sufficient to 
inhibit Mtb growth when cultured with infected macrophages, 
and adoptive transfer of iNKT cells into irradiated, Mtb-infected 
mice significantly reduced bacterial burden in both lungs and 
spleen (156). 

Collectively, these findings suggest that CD1d-restricted iNKT 
cells can contribute to anti-Mtb immunity. However, conflicting 
results exist. One study found no significant difference in survival 
between wild-type and CD1d-deficient mice infected with Mtb, 
suggesting that CD1d-restricted responses may not be essential for 
protection (157). Thus, while evidence supports a role for iNKT 
cells in immunity to Mtb, their contribution may vary depending on 
the infection model and experimental conditions. 
Autoreactivity is an intrinsic feature of 
CD1 biology 

An unusual feature of CD1-restricted T cells is their frequent 
autoreactivity. Although thymic selection minimises self-reactivity 
in conventional T cells, CD1-autoreactive T cells are nevertheless 
abundant in healthy individuals (26). 

De Jong et al. (2010) showed that T cells from all 14 healthy 
donors tested exhibited reactivity towards CD1a-expressing K562 
cells, whereas responses to CD1b, CD1c, or CD1d were less 
common. Blocking with anti-CD1a antibodies confirmed CD1a 
restriction. CD1a-autoreactive T cells, comprising approximately 
2% of circulating T cells, were predominantly CD4+, produced IFN-
g, IL-22, and sometimes IL-13, but often lacked IL-2 production. 
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Many expressed cutaneous lymphocyte antigen (CLA), suggesting 
skin homing. T cells isolated from skin biopsies similarly showed 
CD1a reactivity, with stronger responses when stimulated by 
Langerhans cells (158). 

De Lalla et al. (2011) independently confirmed that CD1 
autoreactivity is relatively frequent. Single-cell cloning revealed that 
around 10% of both CD4+ and DN abT cells were self-reactive to 
CD1 molecules, predominantly CD1a and CD1c. TCR repertoire 
analysis showed high diversity among self-reactive clones, contrasting 
with the invariant TCRs of iNKT cells (159). CD1c-autoreactive T 
cells were functionally heterogeneous: CD4+ clones were more likely 
to secrete TNF-a, DN clones secreted GM-CSF, and some clones 
produced both Th1 and Th2 cytokines. Importantly, CD1a- and 
CD1c-autoreactive clones demonstrated cytotoxicity against target 
cells expressing their cognate CD1 isoforms without exogenous 
antigen, indicating intrinsic autoreactive killing potential (159). 
Beyond classical Th1 cytokines, CD1-autoreactive T cells can 
secrete a broad range of effector molecules, including GM-CSF, IL-
13, IL-22, and IL-5 (158–160). For example, CD1c- and CD1b-
autoreactive T cell clones have been shown to produce polyfunctional 
responses that include both Th1 and Th2 cytokines, and in some 
cases, GM-CSF and IL-22, which can enhance antigen presentation, 
promote monocyte recruitment, and contribute to mucosal barrier 
integrity (159, 160). IL-13 and IL-5, though traditionally associated 
with Th2 responses, may modulate inflammation or tissue repair in 
TB lesions. These findings suggest that CD1-restricted T cells may 
play diverse immunomodulatory roles during TB infection, beyond 
direct cytotoxicity or classical macrophage activation. 

Despite their prevalence, CD1-restricted self-reactive T cells rarely cause 
pathology, suggesting regulatory mechanisms are in place. Nevertheless, 
associations with autoimmune diseases have been reported. CD1c+ antigen-
presenting cells infiltrate lesions in Graves’ disease and Hashimoto’s 
thyroiditis, and T cells capable of lysing CD1c+ targets have been isolated 
from thyroid tissue (161). In systemic lupus erythematosus (SLE), DN T 
cells reactive to CD1c can produce IL-4 and IFN-g, and may support IgG 
production by CD1c+ B cells (162). In rheumatoid arthritis, synovial fluid 
contains increased numbers of activated CD1c+ dendritic cells that 
stimulate CD4+ T cells, although CD1c restriction was not definitively 
proven (163). Autoreactivity has also been implicated in multiple sclerosis 
(MS). Shamshiev et al. (1999) found increased frequencies of T cells reactive 
to brain-derived glycolipids in MS patients. Two T cell clones recognised 
monosialo-ganglioside GM1 presented by CD1b, and responses were 
blocked by anti-CD1b antibodies, implicating CD1b in autoreactive 
responses against myelin components (164). 

Recent mechanistic studies have further clarified how CD1 
autoreactivity may be regulated. De Jong et al. (2014) 
demonstrated that CD1a-autoreactive T cells, such as clone 
BC2, recognised CD1a loaded with endogenous lipids from the 
epidermis, including squalene from sebaceous glands. These 
findings suggest that spatial separation of self-lipids, for 
example, lipids located beyond T cell access in healthy skin, 
helps prevent inappropriate activation (165). Moreover, Betts 
et al. (2017) showed that the contact dermatitis agent 2,4-
dinitrochlorobenzene (DNCB) activates CD1a-autoreactive T 
cells ,  suggesting  environmental  exposures  can  tr igger  
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pathological autoreactive responses. In functional studies, 
DNCB-treated CD1a+ APCs stimulated a polyfunctional 
cytokine response from autoreactive T cells (166). 

Guo et al. (2018) engineered K562 cells to express high levels of 
CD1c and used them to stimulate peripheral blood T cells without 
exogenous antigen (167). Activated T cells upregulated CD154 and 
showed enrichment of TRBV4+ TCRs, specifically TRBV4-1. 
Responses were blocked by anti-CD1c antibodies. When TRBV4-
1+ TCRs were transduced onto Jurkat cells, they responded to 
CD1c-expressing targets, confirming CD1c autoreactivity (167). 

Further mechanistic insights have come from studies of lipid 
antigen structure. Cotton et al. (2021) found that sphingomyelins 
with long unsaturated acyl chains (e.g., 42:2 sphingomyelin) inhibit 
CD1a-TCR interactions by protruding from the antigen-binding 
groove and sterically blocking TCR engagement, whereas shorter 
chain sphingomyelins are permissive. Thus, specific endogenous 
lipids can negatively regulate CD1a autoreactivity (23). 

Structural studies also support a model of direct CD1 recognition 
without lipid co-recognition. Wun et al. (2018) solved the structure of 
an autoreactive CD1c-restricted TCR bound to CD1c presenting a 
fully sequestered endogenous lipid. The TCR contacted CD1c itself 
rather than the presented lipid, consistent with “CD1-as-antigen” 
recognition. These findings explain how high frequencies of 
autoreactive CD1c-restricted T cells can exist without constant 
activation, provided regulatory mechanisms are intact (136). 

Several broader mechanisms are also thought to limit 
autoreactive responses: 
� Inhibitory lipid loading: Endogenous lipids with bulky head 
groups, such as phosphatidylcholine or sphingomyelin, may 
block TCR access to CD1 molecules (23). 

� Tissue-specific CD1 expression: Although CD1c is expressed 
on B-cells, group 1 CD1 molecules are expressed relatively 
sparsely in the peripheral blood, restricting opportunities for 
autoreactive encounters (136, 168). 

� TCR internalisation: In CD1b-transgenic mice, autoreactive 
CD1b-restricted T cells showed reduced surface TCR 
expression compared to wild-type mice, suggesting that 
downregulation of TCR levels may suppress autoreactivity 
in vivo (169). 
Together, these mechanisms contribute to immune tolerance, 
preventing frequent autoreactivity from manifesting as autoimmune 
disease. Importantly, autoreactivity does not necessarily equate to 
autoimmunity, and controlled self-reactivity may even have physiological 
roles yet to be fully defined. 
CD1-autoreactive T cells: are they 
really so evil? 

Despite their association with autoimmune diseases, CD1-
autoreactive T cells have been conserved throughout human 
evolution, suggesting they may play beneficial roles in immunity. 
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CD1c is expressed on several haematological malignancies, 
including B cell acute lymphoblastic leukaemia (B-ALL) and 
acute myeloid leukaemia (AML) in both adults and children 
(170). Lepore et al. (2014) isolated CD1c-autoreactive T cell 
clones from healthy donors and found that these clones secreted 
GM-CSF and IFN-g in response to CD1c-transfected THP1 and 
C1R cells in a CD1c-dependent manner. Lipid extraction and 
fractionation of THP1 cells identified a stimulatory lipid, later 
determined by mass spectrometry as methyl-lysophosphatidic 
acid  (mLPA).  Synthetic  mLPA  analogues  loaded  onto  
recombinant CD1c similarly activated CD1c-autoreactive T cells, 
confirming mLPA as an endogenous immunogenic ligand. 

Functionally, mLPA-specific T cell clones secreted IFN-g in 
response to co-culture with CD1c+ AML cells, but not with healthy 
monocytes. Despite lower CD1c expression on some AML cells 
compared to monocytes, stronger T cell activation was observed 
against the leukaemic cells, suggesting increased mLPA 
presentation. Similarly, B-ALL cells induced greater IFN-g 
secretion compared to normal B cells despite similar CD1c 
expression  levels.  Direct  quantification  showed  mLPA  
accumulation was significantly higher in leukaemic cells than in 
healthy cells. 

mLPA-specific T cells preferentially killed B-ALL and AML 
cells while sparing most normal B cells and monocytes. Killing was 
CD1c-dependent, as blocking antibodies abrogated cytotoxicity. In 
vivo ,  mLPA-specific  T  cells  prolonged  survival  in  an  
immunodeficient mouse model grafted with CD1c+ MOLT-4 
leukaemia cells. Furthermore, healthy donor T cells transduced 
with mLPA-specific TCRs acquired the ability to recognise and 
respond to CD1c+ target cells, demonstrating the therapeutic 
potential of CD1c-autoreactive TCRs (170). Beyond cancer, CD1-
autoreactive T cells have also been shown to contribute to 
antimicrobial immunity. Vincent et al. (2005) generated 15 group 
1 CD1-restricted T cell clones by stimulating CD4-depleted T cells 
with CD1-expressing MoDCs and lipid extracts from Mtb, E. coli, or  
Yersinia enterocolitica. All clones were CD8+ abTCR+ T cells that 
proliferated in response to CD1-expressing MoDCs without 
additional stimulation, demonstrating autoreactivity. These T cells 
were highly cytotoxic against CD1-transfected HeLa and C1R cells, 
as well as MoDCs. Cytokine profiling showed expression of IFN-g, 
GM-CSF, IL-5, and IL-13, and functional responses were abrogated 
by CD1-blocking antibodies. Moreover, CD1a- and CD1b-

restricted TCRs transduced into Jurkat cells conferred both self-
reactivity and enhanced responses to microbial lipids, highlighting 
dual specificity for self- and foreign antigens (160). 

Similarly, Roy et al. (2016) identified CD1c-restricted gd T cells 
through CD1c-PM tetramer staining of human PBMCs. Sorted 
lines predominantly expressed the Vd1 TCR chain, confirming that 
Vd1 cells are the main gd T cell population recognising CD1c (65, 
78). Upon transduction of Vd1+ TCRs into Jurkat cells, 
spontaneous activation was observed, indicating low-level 
autoreactivity towards endogenous CD1c ligands. These TCR-
transduced Jurkat cells responded more strongly when stimulated 
with PM, demonstrating dual reactivity to both endogenous and 
microbial lipid antigens. Binding studies confirmed that different 
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lipids modulated TCR engagement: some TCRs bound more 
strongly to CD1c presenting self-lipids, while others preferred 
microbial lipids (78). 

Following on from previous work (169), Bagchi et al. (2016) 
demonstrated that a CD1b-autoreactive T cell line, which 
recognises phospholipids, secreted IL-2 in response to plate-
bound CD1b protein loaded with lipids extracted from normal 
cells, indicating autoreactivity. However, IL-2 secretion was 
significantly higher when CD1b was loaded with lipids extracted 
from the T lymphoblast cell line MOLT-4, suggesting that cancer 
cell-derived lipids are more immunogenic. Furthermore, these T 
cells were able to lyse CD1b-transfected, but not wild-type, murine 
RMA-S T cell lymphoma cells, confirming CD1b-restricted 
recognition and cytotoxicity (171). 

In follow-up experiments, mice were inoculated with either 
wild-type or CD1b-transfected RMA-S tumour cells, alongside 
CD1b-autoreactive T cells. On day 14, mice were sacrificed, and 
tumour size was measured. Tumour growth was significantly 
reduced in mice that received CD1b-transfected RMA-S cells and 
CD1b-autoreactive T cells, suggesting that these T cells can mediate 
anti-tumour immunity in a CD1b-dependent manner. In contrast, 
no reduction in tumour size was observed in mice inoculated with 
wild-type RMA-S cells, confirming that the protective effect was 
specifically mediated by CD1b recognition (171). Collectively, these 
findings suggest that CD1-autoreactive T cells, rather than being 
solely pathogenic, may have beneficial roles in immune surveillance. 
Based on this evidence, CD1-autoreactive T cells could contribute 
to host defence against both tumours and infections and may play a 
previously underappreciated role in the immune response to 
infectious diseases such as tuberculosis (Figure 1). 
TLR signalling modulates CD1-
autoreactive T cell responses during 
infection 

TLR stimulation can influence the functional responses of CD1-
autoreactive T cells, linking innate immune sensing to adaptive 
lipid-specific immunity. De Libero et al. (2005) investigated two 
CD1a-restricted T cell clones specific for sulfatide and two CD1b-
restricted clones specific for monosialo-ganglioside GM1 (172). 
When co-cultured with immature DCs infected with E. coli, B. 
subtilis, S. aureus, or BCG, all four clones secreted IFN-g. Similarly, 
stimulation of DCs or CD1-transfected THP1 cells with the TLR4 
agonist LPS or the TLR2 agonist Pam3Cys significantly enhanced 
IFN-g production by these CD1-autoreactive clones. Responses 
were CD1-dependent, as blocking antibodies abrogated T cell 
activation, and were not observed in MHC class II-restricted or 
gd T cell clones under identical conditions (172). 

Mechanistically, LPS and Pam3Cys stimulation modestly 
increased CD1 and co-stimulatory molecule expression (B7.1, 
CD40) on DCs and THP1 cells. More strikingly, infection or TLR 
stimulation induced increased synthesis of the self-lipid antigens 
sulfatide and monosialo-ganglioside GM1, suggesting that 
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infection-driven changes in lipid metabolism enhance CD1-

restricted T cell activation by elevating the abundance of 
stimulatory self-lipids (172). This mechanism is mirrored in the 
CD1d–iNKT cell axis, where TLR activation of dendritic cells drives 
lipidome remodelling and presentation of stimulatory self-lipids, 
enabling iNKT activation in the absence of microbial antigens (24). 
Earlier work from the same group showed that microbial infection 
can activate iNKT cells via CD1d-mediated presentation of 
endogenous lipids, further supporting TLR-induced self-lipid 
switching as a general mechanism of CD1-restricted immunity 
(174). Zeissig et al. (2012) similarly demonstrated that hepatitis B 
virus infection alters hepatocyte lipid composition to generate 
CD1d-presented lysophospholipids, triggering NKT cell activation 
(175). Together, these findings highlight a broader mechanism by 
which pathogen sensing promotes autoreactive T cell responses 
through enhanced self-lipid presentation. 

Li et al. (2011) further explored this phenomenon using a 
transgenic mouse model expressing group 1 CD1 molecules and a 
CD1b-autoreactive TCR (169). Treatment of bone marrow-derived 
DCs with Pam3Cys, LPS, or Listeria monocytogenes infection 
resulted in heightened secretion of IFN-g and IL-17A from 
CD1b-autoreactive T cells compared to untreated controls. 
Following in vivo challenge with Listeria monocytogenes, CD1b-
autoreactive T cells upregulated the activation marker CD69 and 
contributed to a reduced bacterial burden in the liver and spleen, 
compared to non-transferred controls. These findings suggest that 
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TLR2 and TLR4 signalling can amplify CD1b-autoreactive T cell 
responses during infection, promoting pathogen clearance (169). 
This highlights a model in which inflammation-driven upregulation 
of CD1 expression and stress lipid synthesis can activate CD1-
autoreactive T cells, even in the absence of strong pathogen-derived 
lipid presentation. For a more extensive discussion on how TLR 
pathways intersect with CD1-restricted T cell immunity, we refer 
readers to the comprehensive review by Moody et al. (2006) (176). 
Mtb infection influences CD1 
expression 

During the late 1990s and early 2000s, a series of studies 
investigated how mycobacterial infection affects CD1 molecule 
expression by APCs. 

Stenger et al. (1998) infected human adherent mononuclear 
cells (AMNCs) treated with GM-CSF and IL-4 with live Mtb and 
measured group 1 CD1 expression by flow cytometry. No 
significant changes were observed at 4 hours post-infection; 
however, by 24 hours, reduced staining of all group 1 CD1 
isoforms was evident, and by 48 hours, expression was 
undetectable (177). Quantitative RT-PCR confirmed a substantial 
decrease in group 1 CD1 mRNA levels in infected cells compared to 
controls. Notably, infection with heat-killed Mtb did not reduce 
CD1 expression, indicating that live bacilli are necessary for this 
RE 1 FIGU

Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb infection. Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb 
infection. Mtb lipid-specific T cells become cytotoxic and secrete IFN-g and TNF-a (96, 113, 123, 134) in response to Mtb lipid antigens presented by 
CD1 molecules on infected APCs. CD1-autoreactive T cells can also become cytotoxic and secrete IFN-g in response to either Mtb lipid or stress-
induced self-lipid antigens presented by CD1 molecules on infected APCs (78, 160). While Mtb can gain access to the cytosol, it predominantly 
resides in the phagosome, where it is sensed by innate receptors and processed for antigen presentation. TLR signalling enhances these responses 
by upregulating CD1 expression, costimulatory molecules, and presentation of stimulatory self-lipids. Specifically, TLR2 and TLR4, which recognise 
Mtb lipoproteins and cell wall components, are shown in the figure. These receptors bridge innate sensing of Mtb with adaptive CD1-restricted T cell 
responses. Secreted IFN-g and TNF-a can stimulate macrophages to enhance antimicrobial functions (172, 173). Image created using BioArt. 
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effect. Using a transwell system, the authors demonstrated that 
soluble factors alone were insufficient to mediate CD1 
downregulation, suggesting that direct interactions between live 
Mtb and host cells are required (177). 

Giuliani et al. (2001) further explored the effects of 
mycobacteria on CD1 expression. They found that infection with 
live BCG inhibited the GM-CSF-induced upregulation of group 1 
CD1 molecules, particularly CD1b. In contrast to Stenger et al., 
heat-killed BCG also suppressed CD1b expression, attributed to 
alternative mRNA splicing mechanisms. Interestingly, using a 
transwell system, they observed that soluble factors secreted by 
BCG-infected AMNCs could reduce CD1b expression in adjacent 
uninfected cells, suggesting a mechanism of bystander suppression 
not observed with Mtb (178). 

Wen et al. (2013) later demonstrated that CD1c mRNA levels 
are reduced in PBMCs from TB patients compared to healthy 
controls (179). An inverse correlation between CD1c expression 
and miR-381-3p levels was identified, suggesting post-
transcriptional regulation. Binding of miR-381-3p to the 3’ 
untranslated region of CD1c was confirmed using a luciferase 
reporter assay. Overexpression of miR-381-3p in DCs decreased 
CD1c expression, while inhibition of miR-381-3p restored it. 
Furthermore, BCG infection increased miR-381-3p levels and 
decreased CD1c expression, effects reversible with miR-381-3p 
inhibition. Importantly, blocking miR-381-3p enhanced CD1c-
restricted T cell responses to BCG, suggesting that miR-381-3p 
inhibitors could be therapeutically useful to improve vaccine-
induced CD1-mediated immunity (179). 

Given that mycobacteria have coevolved with innate immune 
systems (180), it is plausible that downregulating group 1 CD1 
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molecule expression represents an immune evasion strategy, 
limiting recognition by CD1-restricted T cells. These findings 
collectively suggest that modulation of CD1 expression by 
mycobacteria could impair host immunity, and that targeting 
these pathways could lead to improved vaccine strategies capable 
of eliciting more robust CD1-restricted memory responses (177– 
179). Given Mtb’s ability to modulate CD1 expression, it is essential 
that future vaccine strategies account for these evasion mechanisms. 

In the following section, we review the current landscape of TB 
vaccine development and explore how targeting CD1-restricted 
immunity could offer new opportunities for protection. 
TB vaccine development 

Developing a more effective vaccine remains one of the most 
promising strategies to control TB and limit the rise of antibiotic-
resistant strains. The only currently available TB vaccine, BCG, 
contains an attenuated form of Mycobacterium bovis (181). 
Although BCG is widely administered and offers relatively high 
protection against childhood TB meningitis and miliary TB, it 
provides limited protection against pulmonary TB in adults and 
adolescents, the major drivers of Mtb transmission (18, 182–184). 
Furthermore, BCG is contraindicated in immunocompromised 
individuals, including those with untreated HIV infection, due to 
the risk of disseminated BCG infection (185). 

Several new TB vaccine candidates have entered clinical trials in 
recent years. One strategy involves viral-vectored vaccines such as 
MVA85A, based on a modified vaccinia Ankara virus expressing 
Mtb antigen 85A. Despite encouraging preclinical data, MVA85A 
TABLE 1 Number of CD1 genes across different mammalian species. 

Common name Binomial species name Genome 

Number of genes 

CD1a CD1b CD1c CD1d CD1e Total CD1 

Alpaca Vicugna pacos vicPac2 1 1 1 1 1 5 

Bonobo Pan paniscus panPan1 1 1 1 1 1 5 

Chimpanzee Pan troglodytes panTro4 1 1 1 1 1 5 

Dog Canis lupus CanFam3 9 1 1 1 1 13 

Elephant Loxodonta africana loxAfr3 1 2 1 1 1 6 

Horse Equus caballus equCab2 9 2 2 1 2 16 

Human Homo sapiens hg38 1 1 1 1 1 5 

Megabat Pteropus vampyrus pteVam1 3 1 1 0 1 6 

Microbat Myotis lucifugus myoLuc2 17 2 0 5 2 26 

Mouse Mus musculus mm10 0 0 0 2 0 2 

Panda Ailuropoda melanoleuca ailMel1 8 1 1 1 1 12 

Pig Sus scrofa susScr3 2 1 1 1 2 7 

Rabbit Oryctolagus cuniculus oryCun2 5 2 0 1 2 10 

Rhesus macaque Macaca mulatta rheMac3 2 1 1 1 1 6 
CD1 gene counts were identified using BLAST-based genome searches. Data are adapted from Reinink et al. (2016) which systematically analysed CD1 gene families across mammalian 
genomes (115). 
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failed to provide protection in Phase IIb clinical trials in infants and 
adults, marking a major disappointment as the first new TB vaccine 
candidate to undergo an efficacy trial in over 80 years (186–188). 

Subunit vaccines have also been explored. H56:IC31 is a fusion 
protein combining Ag85B, ESAT-6, and Rv2660c, the latter 
preferentially expressed during Mtb latency (189). In mice, a BCG 
prime followed by an H56:IC31 boost reduced lung bacterial burden 
after Mtb challenge (190). In cynomolgus macaques, H56:IC31 
boosting after BCG vaccination delayed progression to active TB, 
extended survival, and reduced pathology (191). Early-phase 
human trials showed that H56:IC31 was well tolerated and 
induced robust IgG and antigen-specific CD4+ T cell responses in 
both Mtb-infected and uninfected individuals (192, 193). However, 
in a Phase IIb trial, although immunogenic, H56:IC31 unexpectedly 
showed higher TB incidence among vaccinees (5.8%) compared to 
placebo (3.4%) (194). 

Another prominent candidate is M72/AS01E, a recombinant 
fusion protein vaccine combining the Mtb antigens PepA and 
PPE18. PepA is thought to function as a serine protease (195), 
while PPE18 may interact with TLR2, inducing immunosuppressive 
IL-10 responses (196–198), and promoting Mtb survival (199). 
However, PPE18 exhibits substantial structural variability across 
strains (200), raising concerns about antigenic consistency. The 
Phase IIb trial of M72/AS01E was hailed as a breakthrough by the 
WHO, demonstrating approximately 50% protection against 
progression to active TB three years post-vaccination (201). 
Nevertheless, injection-site reactogenicity led to delayed 
recruitment in some Phase II trials (202), and the moderate 
efficacy suggests further vaccine improvements are still needed. 

One limitation of viral-vectored, subunit, and recombinant 
fusion vaccines is their narrow antigenic focus. None of 
MVA85A, H56:IC31, or M72/AS01E can generate CD1-restricted 
memory responses to Mtb lipids. However, future formulations 
could incorporate immunogenic lipid antigens to elicit CD1-
restricted immunity. Morgun et al. (2023) developed a 
nanoparticle-based TB vaccine containing both mycolic acid and 
the protein antigen Ag85B. In mice, this formulation activated 
adoptively transferred DN1 T cells (specific for mycolic acid) and 
Ag85B-specific T cells in vivo. Additionally, human mycolic acid-
specific T cells responded to the same nanoparticles in vitro, 
highlighting the potential of subunit vaccine platforms that 
combine lipid and protein antigens to elicit broad CD1- and 
MHC-restricted T cell responses (203). 

Whole-cell vaccines offer broader antigen presentation, 
including lipid antigens (99). MTBVAC, a live attenuated Mtb 
strain with deletions in phoP and fadD26, genes essential for 
virulence lipid synthesis, is currently in Phase III trials (204–209). 
Another candidate, VPM1002, is a recombinant BCG expressing 
listeriolysin O from Listeria monocytogenes and lacking urease C. 
This enables phagosome acidification and cytosolic antigen release, 
enhancing immunogenicity (187, 210–216). 

However, because both Mtb and BCG have been shown to 
downregulate CD1 expression and impair CD1-restricted T cell 
responses (177–179), MTBVAC and VPM1002 may still have 
limited capacity to induce optimal CD1-restricted memory. 
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Identifying and reversing the mechanisms by which mycobacteria 
suppress CD1 expression could offer a route to improving future 
vaccines. It also remains unclear whether optimal CD1-restricted 
responses should be elicited by including defined mycobacterial 
lipids as vaccine immunogens, or by leveraging innate activation to 
drive self-lipid presentation and autoreactive T cell activation. Both 
approaches merit investigation. 

Importantly, CD1 molecules are non-polymorphic, meaning 
immune responses to CD1-presented antigens are shared across 
genetically diverse human populations. Thus, targeting CD1-
restricted responses may enable broader and more universal 
vaccine coverage (18). Furthermore, lipid antigens are less prone 
to mutational escape compared to peptides presented by classical 
MHC molecules, as alterations to essential lipid biosynthetic 
pathways often compromise bacterial viability (170). 

Given the major advances in TB vaccine development in recent 
years, there is real hope that new immunisation tools capable of 
providing better global protection are within reach. Targeting CD1-
restricted T cell responses offers a promising strategy to boost future 
vaccine efficacy against TB, the world’s leading infectious killer 
(1, 19). 
Conclusions 

CD1-restricted T cells offer a compelling yet underutilised 
opportunity to transform TB vaccine development. Their capacity 
to recognise lipid antigens via non-polymorphic CD1 molecules 
allows for genetically unrestricted, population-wide immune 
responses (17, 18). While pathogen-specific (20–22, 66, 97, 119, 
122, 125, 126, 129–134, 155) and autoreactive (78, 160, 169, 172) 
CD1-restricted T cells can both contribute to antimicrobial defence, 
Mtb’s ability to downregulate CD1 expression presents a key 
challenge (177–179). Current vaccines fail to engage lipid-specific 
memory responses, revealing a critical gap. Future strategies that 
incorporate immunogenic lipid antigens, restore CD1 expression 
(179), and selectively expand protective CD1-restricted T cell 
subsets may deliver the next leap in TB vaccine efficacy. 
Integrating CD1-targeted immunity could move us closer to 
durable, universal protection against TB. 
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