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Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disorder that 
primarily affects the joints, and in severe cases, can damage other major organs, 
particularly in susceptible individuals. Management of RA primarily relies on 
disease-modifying anti-rheumatic drugs (DMARDs) often used in conjunction 
with low-dose steroids; however, outcomes are frequently suboptimal, resulting 
in significant physical and psychological impact. Biological agents have shown 
promise for non-responsive RA patients. Nevertheless, the precise underlying 
mechanism of RA remains unclear. Systemic and local levels of IL-37 and IL-38, 
anti-inflammatory cytokines, are elevated in RA patients. Intriguingly, these levels 
decrease in individuals experiencing remission, correlating with the Disease 
Activity Score (DAS28) and histopathological findings. In animal models, 
exogenous IL-37 and IL-38 demonstrate protective effects against RA 
development, while depletion of either cytokine exacerbates the disease in 
vivo. These  findings suggest that the elevated IL-37 and IL-38 represent a 
compensatory response to the substantial inflammation in affected joints, 
attempting to mitigate dysregulated host immunity, albeit unsuccessfully. 
These data offer potential insights for developing novel, more effective RA 
therapies through precision medicine approaches. 
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Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory disorder caused by autoimmune 
dysfunction and primarily affects the joints (1). Although the exact aetiology remains 
unclear, RA is believed to result from immune dysregulation triggered by environmental 
factors in genetically predisposed individuals. Certain alleles—such as HLA-DRB1, DRB1, 
DRB1, and DRB1—have been associated with increased susceptibility to RA (2). While RA 
predominantly targets joint cartilage (3), it can also involve extra-articular organs, 
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including the skin, eyes, lungs, heart, and blood vessels (4). Early 
diagnosis is crucial for halting or delaying disease progression 
through timely intervention aimed at achieving remission (5). 

Treatment strategies for RA aim to induce remission or reduce 
disease activity. Disease-modifying anti-rheumatic drugs 
(DMARDs), such as methotrexate, are commonly prescribed in 
combination with short-term, low-dose glucocorticoids to broadly 
suppress immune responses mediated by T cells, B cells, and 
monocytes/macrophages (1, 6). While many patients respond well 
to initial treatment, a subset fails to achieve remission and requires 
second-line therapies, such as biological agents targeting TNF, IL-6 
receptors, and CD80 (7). However, long-term use of monoclonal 
antibodies is associated with undesirable adverse effects, including 
allergic reactions and increased malignancy risk (8). In this context, 
Traditional Chinese Medicine (TCM), particularly in China, has 
shown potential in reducing side effects and enhancing therapeutic 
outcomes (9). Despite advances in treatment, severe RA can still 
lead to physical disability and remains a significant clinical 
challenge (6). 

Clinically, RA often presents with tender, swollen joints— 
particularly in the fingers—as well as fatigue, fever, and loss of 
appetite (10) likely reflecting systemic immune dysregulation (11). 
Disease activity is commonly assessed using the Disease Activity Score 
28 (DAS28), which evaluates 28 joints based on swelling, tenderness, 
patient global assessment, and erythrocyte sedimentation rate 
(ESR) (12). 

The pathogenesis of RA involves synovial fibroblast hyperplasia 
and infiltration of the synovial membrane by T and B lymphocytes 
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and macrophages, leading to cartilage destruction and bone erosion 
(6, 13). These immune cells secrete pro-inflammatory cytokines— 
such as IL-6, IL-1b, and TNF—that sustain a chronic inflammatory 
environment (11). 

Understanding the immunological mechanisms underlying RA 
is crucial for developing more effective therapies. This mini-review 
focuses on the roles of IL-37 and IL-38 in RA pathogenesis, 
particularly in relation to macrophage polarisation, and explores 
their potential as therapeutic targets in precision medicine. While 
IL-36, IL-37, and IL-38 have been broadly investigated in both 
osteoarthritis (OA) and RA (14), this review examines IL-37 and IL
38 in RA more specifically, highlighting their emerging roles and 
therapeutic promise (Figure 1). 
IL-37 and IL-38 

IL-37 and IL-38, members of the IL-1 superfamily (15), are key 
regulators of immune homeostasis. Although structurally related to 
pro-inflammatory IL-1 family cytokines, both IL-37 and IL-38 
exhibit predominantly anti-inflammatory properties and are 
expressed across a broad range of organs and tissues. This 
widespread expression underscores their potential for systemic 
influence on immune regulation. 

Notably, IL-37 and IL-38 are expressed in immune cells such as 
natural killer (NK) cells, B lymphocytes, and monocytes, suggesting 
direct roles in modulating immune cell function (16). Their 
presence in barrier tissues—including keratinocytes and epithelial 
FIGURE 1 

(A) The protective role of IL-37 in RA: Increased proinflammatory mediators in the joints of RA patients stimulate IL-37 secretion from leucocytes via 
the NF-kB pathway. IL-37 subsequently promotes the polarisation of M2 macrophages while inhibiting M1 macrophages. This anti-inflammatory 
response reduces proinflammatory cytokine levels and pyroptosis in joint cells, ultimately leading to a decreased DAS28 score. This effect can be 
further enhanced by the addition of disease-modifying antirheumatic drugs. (B) The protective role of IL-38 in RA. Increased proinflammatory 
mediators in the joints of RA patients stimulate IL-38 secretion from leucocytes via STAT1, STAT3, p38 MAPK, ERK1/2, and NF-kB. IL-38 subsequently 
promotes the proliferation of Treg and NK cells, followed by the polarisation of M2 macrophages and inhibition of M1 macrophages. Consequently, 
anti-inflammatory response reduces proinflammatory cytokine levels in joint tissues, ultimately leading to a decreased DAS28 score. The effect can 
be further enhanced by the addition of disease-modifying antirheumatic drugs. These clinical manifestations could also be improved with 
exogenous IL-37 or IL-38 in vivo, suggesting their potential as promising therapeutic targets. 
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cells—also indicates a role in maintaining local immune balance at 
sites of pathogen entry or environmental exposure (17). In addition, 
these cytokines are found in parenchymal organs such as the heart, 
lungs, intestines, urogenital system, and skin (18), as well as in 
secondary lymphoid tissues like the spleen and tonsils (19), 
highlighting their broad involvement in tissue homeostasis and 
inflammatory regulation across diverse physiological settings. 

IL-37 attenuates inflammation by suppressing both innate and 
adaptive immune responses (20), including antigen-specific 
responses of the adaptive immune system (21). This dual 
suppression leads to an overall dampening of host immune 
reactivity (20), which can be protective against excessive 
inflammation (22) but must be tightly regulated to avoid 
compromising pathogen defence. The immunoregulatory effects of 
IL-37 have been implicated in a range of chronic inflammatory and 
immune-mediated diseases. In cancer, IL-37 may influence the 
tumour microenvironment and has been reported to suppress 
tumour growth under certain conditions (23). In inflammatory 
bowel diseases, such as Crohn’s disease, IL-37 helps modulate 
excessive  immune  responses  contributing  to  intestinal  
inflammation (23). Pre-clinical studies in IL-37 transgenic animals 
and human data further support its athero-protective roles, including 
reduced development of atherosclerotic lesions and decreased 
atheroma formation (24), often accompanied by increased 
production of other anti-inflammatory mediators that facilitate 
vascular inflammation resolution. 

IL-38 also plays a critical role in immune regulation by helping 
to balance pro- and anti-inflammatory responses (25). A unique 
aspect of IL-38 biology is its release from apoptotic cells, suggesting 
a role in dampening inflammation during tissue remodelling or 
cellular turnover (26). Once released, IL-38 acts directly on 
inflammatory macrophages—central players in innate immune 
activation—by suppressing their pro-inflammatory functions (26). 
Loss or dysfunction of IL-38 can disrupt this regulatory balance, 
contributing to a pro-inflammatory microenvironment and 
promoting disease development and progression (25), e.g. in viral 
infection (27) or psoriasis (28). 

Mechanistically, IL-38 downregulates the production of key 
pro-inflammatory cytokines, including IL-6, TNF, CCL5, and 
CXCL10 (29). These effects are mediated through modulation of 
intracellular signalling pathways such as STAT1, STAT3, p38 
MAPK, ERK1/2, and NF-kB (29), offering molecular insight into 
its anti-inflammatory action. Such regulatory effects have been 
demonstrated in vivo, including in the NOD/SCID murine model 
of allergic asthma (29). 
 

IL-37 in RA 

Circulating IL-37 is significantly upregulated in patients with 
RA compared to healthy controls (30, 31), with levels correlating 
positively with disease severity and decreasing in patients in 
remission (30, 31). With an area under the curve (AUC) of 
0.7789, IL-37 also shows promise as a diagnostic biomarker for 
RA, further supporting its involvement in disease development (30, 
Frontiers in Immunology 03 
31). These findings implicate IL-37 in RA pathogenesis, although 
the precise mechanisms driving its upregulation remain unclear. As 
an anti-inflammatory cytokine, elevated IL-37 levels may reflect a 
compensatory response to heightened systemic inflammation— 
mirrored by increased CCP, ESR, and IL-17 levels (32). However, 
in genetically or environmentally predisposed individuals, this 
response may be inadequate (33), particularly when persistent 
inflammatory triggers such as tobacco use sustain synovial 
inflammation and joint damage (33). 

To further validate IL-37 expression, mRNA levels have been 
measured in synovial cells and peripheral blood mononuclear cells 
(PBMCs) from RA patients. Synovial cell mRNA is considered a 
more accurate marker of local immune activity than circulating 
cytokine levels. IL-37 mRNA is significantly upregulated in both 
synovial cells and PBMCs and correlates with high DAS28 scores 
(5–9) (30, 31). Immunohistochemical analysis further confirms 
increased IL-37 expression in RA synovial tissue relative to 
healthy controls (34). These findings are supported by other 
studies reporting elevated IL-37 mRNA and protein levels in 
PBMCs of patients with active RA, while no significant 
differences are observed in those in remission (35). This likely 
reflects successful inflammatory control. Notably, circulating IL-37 
decreases following glucocorticoid treatment and correlates with 
reductions in CRP, ESR, and disease activity (35). 

Given the central role of Th17 cells and IL-17 in RA 
pathogenesis (36), the relationship between IL-37 and IL-17 has 
also been examined. IL-37 inhibits IL-17 expression in CD4+ T cells 
from RA patients and reduces Th17 polarisation in vitro following 
LPS and PMA stimulation, suggesting that IL-37 may regulate 
aberrant immunity via Th17 cell-driven IL-17 production (35). 
Additionally, plasma IL-37 levels positively correlate with IL-17A, 
TNF, and DAS28 scores, and are modulated in response to 
DMARD therapy (37). These associations merit further validation 
in vivo and in human samples, particularly through joint biopsies 
and PBMC analysis in patients receiving DMARDs and/or 
biological therapies (1). 

Despite its anti-inflammatory properties, the elevation of IL-37 
in RA presents a paradox. IL-37 is produced mainly by CD3+ and 
CD4+ T cells and functions both intra- and extra-cellularly (38). 
One proposed mechanism involves inhibition of the TNF-mediated 
NF-kB/Gasdermin D (GSDMD) signalling pathway, thereby 
reducing pyroptosis in fibroblast-like synoviocytes (39), although 
the requirement for NF-kB activation in GSDMD-mediated

pyroptosis remains uncertain. 
Supporting its anti-inflammatory function, recombinant 

human IL-37 (rhIL-37) suppresses IL-17, IL-1b, and  IL-6
production in PBMCs from healthy individuals following 
inflammatory  stimulation  (35).  In vivo ,  intra-articular  
administration of rhIL-37 in collagen-induced arthritis (CIA) 
mice reduces disease severity and local cytokine expression. 
Similarly, rhIL-37 downregulates pro-inflammatory cytokines in 
murine macrophage cell lines, and IL-37 transgenic mice show 
reduced LPS-induced inflammation via SMAD signalling (34). 
Altogether, while IL-37 elevation in RA may represent an 
endogenous attempt to counteract inflammation, this response 
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may be insufficient in susceptible individuals. Nonetheless, its 
downregulation following effective therapy supports a role in 
disease modulation and progression, highlighting IL-37 as a 
potential therapeutic target in RA. 

Taken together, current evidence suggests that IL-37 expression 
in both the systemic circulation and joint tissue reflects a host 
attempt to suppress chronic inflammation. In individuals with high 
inflammatory burden or reduced regulatory capacity, this response 
may be overwhelmed. Nevertheless, the continued expression of IL
37—and of IL-38, discussed below—suggests an ongoing 
immunological effort to contain disease activity. 

From an immunological perspective, IL-37 may also influence 
RA pathogenesis by modulating macrophage polarisation, 
specifically the balance between pro-inflammatory (M1) and anti-
inflammatory (M2) subsets (22, 40). Although direct evidence in 
RA is limited, recombinant IL-37 reduces pro-inflammatory 
cytokine production in macrophages (41). In calcified heart 
valves, IL-37 expression correlates positively with the presence of 
M2 and negatively with M1 macrophages, suggesting it may 
suppress M1 polarisation via the Notch1 pathway (42). Further 
studies are needed to clarify IL-37’s role in macrophage regulation 
during RA, which are discussed in the final section. 
IL-38 in RA 

Studies have shown significantly elevated circulating IL-38 levels in 
patients with RA compared to healthy controls, with higher levels 
correlating with increased disease activity, as measured by DAS28 
scores and objectively, using ultrasonography, further supporting these 
clinical associations (43). This clinical presentation is accompanied by a 
marked upregulation of circulating IL-38, along with elevated levels of 
pro-inflammatory cytokines such as IL-1b, IL-17, IL-6, and TNF. 
Moreover, analyses of plasma IL-38 protein and PBMC mRNA 
levels have revealed a significant correlation between IL-38 mRNA 
and protein expression, confirming the consistency of its upregulation 
in active RA (43, 44). This pattern likely reflects the host’s attempt to 
counteract persistent local and systemic inflammation in patients with 
active disease. Notably, elevated IL-38 levels, together with those of pro-
inflammatory mediators, show strong correlations with DAS28 scores, 
swollen joint count, and tender joint count (43, 44). These observations 
suggest that increased IL-38 expression may represent a compensatory 
—though ultimately insufficient—response to ongoing inflammation, 
particularly in genetically or environmentally predisposed individuals. 

Beyond these clinical associations, IL-38 also shows promise as 
a diagnostic marker. An AUC value of 0.84 supports its potential 
utility not only in reflecting disease activity and therapeutic 
response but also as a possible therapeutic target (43, 44). The 
elevated IL-38 levels observed in RA patients—paralleling the 
compensatory IL-37 response discussed earlier—may indicate an 
endogenous anti-inflammatory mechanism that becomes 
inadequate in severe or treatment-resistant cases. 

Supporting this hypothesis, IL-38 levels are significantly higher 
in RA patients who test positive for anti-cyclic citrullinated peptide 
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(anti-CCP) antibodies compared to seronegative individuals, 
aligning with the established diagnostic and prognostic value of 
anti-CCP (43, 44). Moreover, IL-38 levels decline following six 
months of treatment with DMARDs, reinforcing its association 
with disease activity and treatment response (43, 44). Its differential 
expression between RA and OA further underscores its specific 
involvement in immune-mediated joint pathology (14). 

While these findings are based on systemic measurements— 
likely reflecting IL-38 production by M2 macrophages (22) - direct 
evidence from the site of inflammation remains scarce. Synovial 
biopsies from RA patients would provide more specific insight, 
particularly if collected longitudinally before and after treatment. 
However, such sampling is often limited by ethical and practical 
constraints. An alternative strategy involves analysing joint tissues 
from RA cohorts using post-mortem human samples obtained from 
morgue collections, as previously described in studies of heart tissue 
(45, 46). This approach may provide more objective and temporally 
informative data, particularly in relation to therapeutic 
interventions and their correlation with disease history. This 
approach could be enhanced by advanced histopathological and 
multiplex immunohistochemical techniques (47), providing 
valuable mechanistic insight into the pathogenesis of RA. 

Together, these data support the concept that RA progression 
involves a complex interplay between pro- and anti-inflammatory 
responses. IL-38 upregulation likely reflects an intrinsic effort to 
counterbalance inflammation. However, in individuals with 
persistent or treatment-refractory disease, this compensatory 
mechanism may fail to control disease progression. It remains 
unclear whether IL-38 exerts its effects in an autocrine or 
paracrine manner within inflamed joint tissues (48). Addressing 
this question will require spatial immunophenotyping, such as 
multiplex immunostaining (47), to localise M1 and M2 
macrophages and other immune cell populations in the synovium 
under various disease states to further investigate the underlying 
immunological mechanism. 

Further supporting IL-38’s local role, studies have shown that 
IL-38 is significantly upregulated in the synovial tissue of RA 
patients, as demonstrated by immunohistochemistry and ELISA 
(49). While Liang et al. (43), reported elevated circulating IL-38 
levels in RA, Takenaka et al. found no significant differences among 
RA, OA, and healthy controls in the circulation. These 
discrepancies may be due to differences in methodology, sample 
size, or patient demographics. Nonetheless, synovial IL-38 appears 
to better reflect local disease activity, especially during active flares, 
and its expression diminishes during remission (43), reinforcing its 
putative anti-inflammatory role. 

The protective function of IL-38 has also been demonstrated in 
animal models. In experimental arthritis, IL-38 expression increases 
in the arthritic joints of wild-type (WT) mice, consistent with 
findings in human RA (43, 44, 49). In contrast, IL-38 knockout 
(KO) mice exhibit more severe disease, with higher clinical scores, 
greater histopathological damage, and increased levels of IL-6 and 
IL-1b in joint tissues (49). These findings confirm a protective role 
for IL-38, particularly in the early stages of arthritis in the animal 
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model. Furthermore, administration of rIL-38 in these models 
alleviates disease severity (48), characterised by reduced M1 
macrophage infiltration and decreased production of Th17
associated cytokines—highlighting its regulatory effect through 
differential macrophage polarisation and subsequent cytokine 
production. Although the precise role of IL-38 in macrophage 
polarisation within RA remains to be fully clarified, emerging 
evidence suggests that IL-38 promotes the transition from M1 to 
M2 macrophages (22) by inhibiting NLRP3 inflammasome 
activation and promoting anti-inflammatory cytokine release (50). 

Further investigations using both animal models and human 
tissues are needed to better elucidate the immunomodulatory 
functions of IL-38 and its potential as a therapeutic target in RA. 
Despite the IL-38 KO animal RA model having shown its anti-
inflammatory benefits, caution is warranted when translating 
findings from murine models to human RA. Additionally, 
differences in body size, disease chronicity, and treatment 
protocols limit the direct applicability of animal data to the 
human condition. Moreover, IL-38 overexpression in mice does 
not significantly prevent cartilage or bone destruction, likely due to 
the shorter disease duration in animal models compared to the 
chronic progression of human RA (43, 44). Nevertheless, in vitro 
studies  provide  additional  mechanistic  insights:  IL-38  
overexpression reduces IL-6, TNF, and IL-23 production in THP

1 monocytic cells. Similar anti-inflammatory effects have been 
observed in primary macrophages and synovial fibroblasts derived 
from RA patients (43, 44). These findings are consistent with earlier 
reports that IL-38 suppresses Candida albicans-induced IL-17 
production in PBMCs (51). 

At the signalling level, IL-38 exerts its effects via the IL-36 
receptor (IL-36R), where it inhibits recruitment of the IL-1 receptor 
accessory protein (IL-1RAcP), potentially favouring the binding of 
inhibitory receptor complexes instead (43, 44), This disruption 
blocks MyD88 activation, thereby attenuating downstream NF-kB 
and MAPK signalling pathways and suppressing inflammatory 
cytokine production (52). 
Future developmental strategies in IL
37 and/or IL-38 application in RA 

To investigate the therapeutic potential, safety, and translational 
feasibility of recombinant human IL-37 and IL-38 (rhIL-37/38) in 
RA, we propose a comprehensive two-stage experimental 
framework integrating in vitro, in vivo, and ex vivo approaches. 
Stage one: in vitro functional 
characterisation 

The efficacy and cytotoxicity of rhIL-37 and/or rhIL-38 in vitro 
will be evaluated using human primary monocytes isolated from 
peripheral blood mononuclear cells (PBMCs) or fibroblasts, with 
source protocols based on established methods (53). A key objective 
Frontiers in Immunology 05 
is to assess the capacity of these cytokines to modulate macrophage 
polarisation—promoting anti-inflammatory M2 differentiation 
while inhibiting pro-inflammatory M1 polarisation—under 
inflammatory conditions such as lipopolysaccharide stimulation. 

Functional readouts will include proliferation (Ki67 
expression), apoptosis (via flow cytometry using markers such as 
Annexin V or PI), and cytokine profiling of the supernatants using 
ELISA to quantify both pro- and anti-inflammatory mediators. 
Cytotoxicity will be systematically assessed through titration-based 
assays including Hoechst 33342 and propidium iodide staining (54). 
These studies will be conducted in parallel on PBMCs from both RA 
patients and healthy controls to identify optimal inhibitory 
concentrations with minimal off-target effects. 
Stage two: in vivo and ex vivo validation 

Following optimisation of dosage and exposure time in vitro, in 
vivo studies will assess the pharmacokinetics, therapeutic efficacy, 
and systemic safety of exogenously administered IL-37 and IL-38 in 
RA animal models (43, 44). Methodology will involve the use of 
multiplex immunohistochemistry (47) to quantify and localise M1 
and M2 macrophages in RA tissue (22), assess their interaction with 
other immune subsets, and evaluate changes under various 
conditions. Such experiments should be extended to human RA 
samples for translational relevance. This may yield valuable insights 
into the development of safer and more effective biologics for RA 
treatment. These experiments will aim to define the minimal 
effective dose and treatment window for maximal suppression of 
disease progression. Safety profiling will involve histopathological 
examination of major organs and imaging-based evaluation of 
therapeutic outcomes (55). 

Ex vivo validation will subsequently be performed using human 
biopsy or resected joint tissue samples to confirm cytokine 
bioactivity in a more clinically relevant environment (56). All 
studies involving human-derived samples will be conducted under 
approved ethical guidelines. 
Translational considerations: delivery and 
clinical applicability 

Although IL-37 has shown protective roles in RA, its 
pharmacokinetics in vivo remain poorly characterised, and it is 
unclear whether endogenous IL-37 or IL-38 can be sufficiently 
upregulated in response to immunogenic triggers. Therefore, 
effective delivery strategies are critical. These may include gene 
gun-mediated expression (57), recombinant protein administration 
(58), or viral vector-based systems (59). Each method will be 
comparatively assessed for safety, bioactivity, and tissue 
penetration, beginning with in vitro testing, followed by in vivo 
validation in animal models (60), and ex vivo studies in human 
tissues (61). Emerging localised delivery platforms such as 
hydrogels also show promise for enhancing IL-38 bioavailability 
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in arthritic joints and warrant further exploration (62). These 
investigations will inform the selection of the most appropriate 
delivery platform for therapeutic application. 
 

Biomarker potential and clinical translation 

Initial evidence suggests that IL-37 and IL-38 levels in PBMC — 
both in serum and circulating leukocytes—correlate with disease 
severity in RA (30, 31, 43, 44). Notably, IL-38 expression in synovial 
tissue exhibits even stronger associations with disease activity (43, 
44). These findings provide a foundation for the development of 
multiplexed biomarker platforms to monitor disease progression 
and treatment response. Such biomarkers could greatly enhance our 
mechanistic understanding of RA and guide personalised 
therapeutic strategies. 

Together, this multi-tiered approach will not only establish the 
therapeutic viability and safety of rhIL-37/38 but also clarify 
optimal delivery methods, identify predictive biomarkers, and 
support their translational potential in the management of RA. 
Pre-clinical validation of these cytokines is a critical step towards 
future clinical trials and eventual clinical application  in
refractory RA. 
Conclusion 

IL-37 and IL-38 contribute to immune regulation in RA, 
primarily by suppressing proinflammatory pathways and 
modulating macrophage polarisation. IL-37 acts early by 
inhibiting NF-kB and MAPK signalling, while IL-38 limits Th17 
responses and promotes regulatory T-cell function. However, their 
protective effects may be insufficient in chronic or severe RA. Both 
cytokines represent promising therapeutic targets due to their roles 
in shifting macrophages from a pro- to anti-inflammatory state. 
Future strategies could include cytokine-based therapies, local 
delivery systems, or bioactive compounds from traditional 
Chinese medicine. To facilitate readers’ understanding, a 
schematic figure (Figure 1) has been added to illustrate the 
interaction of IL-37 and IL-38 with host immunity in RA patients. 
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