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Background: Osteomyelitis (OM) is a debilitating infectious disease characterized
by inflammation of the bone and bone marrow. Emerging evidence suggests that
multiple forms of programmed cell death (PCD) contribute to its pathogenesis.
However, the specific roles and interactions of these PCD types in OM remain
largely undefined.

Methods: Microarray-based transcriptome datasets related to OM were retrieved
from the Gene Expression Omnibus (GEO) database. Thirteen PCD modalities
were defined from the literature and specialized databases, including classical
forms (e.g., apoptosis, autophagy) and non-classical forms (e.g., cuproptosis,
entosis, ferroptosis). Gene Set Variation Analysis (GSVA) was used to evaluate
pathway activities in OM, and their associations with immune infiltration,
inflammation-related gene expression, and diagnostic value were
systematically assessed. Weighted gene co-expression network analysis
(WGCNA) was performed to identify essential modules and hub genes. A
diagnostic model was constructed using machine learning with SHapley
Additive exPlanations (SHAP), and candidate genes were validated in clinical
peripheral blood samples using polymerase chain reaction (PCR).

Results: Eight core PCD pathways were significantly associated with OM, mainly
represented by apoptosis, autophagy, and non-classical forms such as
cuproptosis and entosis. By integrating WGCNA with SHAP analysis, five hub
genes (SORTYZ, KIF1B, TMEM106B, NPC1, and ATP6VOB) were identified as key
diagnostic candidates. gPCR validation confirmed their significantly different
expression between OM patients and healthy controls, supporting their utility
as diagnostic biomarkers for early detection and treatment stratification.
Conclusions: This study provides a comprehensive landscape of PCD
involvement in OM, identifies novel diagnostic biomarkers, and highlights
potential therapeutic targets for clinical intervention.

osteomyelitis, programmed cell death, transcriptome profiling, biomarkers,
machine learning
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1 Background

OM is a debilitating infectious disease characterized by
inflammation of the bone and bone marrow, affecting individuals
of all ages worldwide (1, 2). With an estimated annual incidence of
21.8 cases per 100,000 person-years in the United States, OM poses
a substantial healthcare burden, particularly among older adults
and individuals with diabetes. Its pathogenesis is complex and
multifactorial, with microbial infections—especially those caused
by Staphylococcus aureus—being the primary contributors (3).
Disease progression typically involves a cascade of pathological
processes, including infection-induced immune responses, release
of inflammatory cytokines, tissue necrosis, and disruption of bone
remodeling (4).

Among the various biological mechanisms implicated in OM,
PCD has emerged as a critical factor. As a tightly regulated process,
PCD plays an essential role in maintaining tissue homeostasis and
eliminating damaged or infected cells (5). It involves a series of
orchestrated steps—sensing, activation, execution, and clearance—
that ensure orderly and efficient cell death (6, 7). Since the concept
of “apoptosis” was first introduced by Kerr, Wyllie, and Currie in
1972, research into PCD has expanded substantially, revealing
multiple non-apoptotic forms of cell death, such as ferroptosis,
pyroptosis, necroptosis, and parthanatos, which may also
contribute to OM pathology (8, 9).

Recent studies have demonstrated that Staphylococcus aureus
can manipulate host PCD pathways, such as necroptosis and
pyroptosis pathways, to evade immune clearance and induce
persistent bone tissue damage (10). Moreover, ferroptosis plays a
critical role in the bone loss associated with chronic OM, which is
driven primarily by iron release and oxidative stress (11). Emerging
evidence suggests that ferroptosis-related genes possess significant
diagnostic potential in this disease and are closely linked to patterns
of immune infiltration (12). Furthermore, a diagnostic model based
on autophagy- and immune-related genes has successfully
identified two molecular subtypes characterized by distinct
immune infiltration profiles, offering new insights into the
pathogenesis and personalized immunotherapy of OM (13).

Despite these advances, the complex interactions among
different PCD pathways in OM remain poorly understood.
Elucidating the molecular crosstalk among apoptosis, necroptosis,
pyroptosis, and ferroptosis is critical for developing new therapeutic
strategies. Using high-throughput sequencing and WGCNA,
researchers have identified several key regulatory molecules

Abbreviations: OM, Osteomyelitis; PCD, programmed cell death; GSVA, gene
set variation analysis; PCR, polymerase chain reaction; WGCNA, weighted gene
coexpression network analysis; SHAP, SHapley additive explanations; GEO, Gene
Expression Omnibus; SVA, Surrogate variable analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes pathways; GO, Gene Ontology; ROC,
Receiver operating characteristic; LDCD, Lysosome-dependent cell death; PLS,
Partial least squares; RF, random forest; DTS, Decision Tree; SVM, Support
Vector Machine; Logistic, Logistic Regression; KNN, K-nearest neighbors;
XGBoost, extreme gradient boosting; GBM, Gradient boosting machine;
NeuralNet, Neural Network; glmBoost, Generalized Linear Model Boosting.
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associated with OM. The present study aimed to establish a
molecular signature based on core PCD-related molecules to
predict disease severity, bone destruction, and inflammatory
responses in OM patients. Our findings reveal the heterogeneity
of OM patients and contribute to the assessment of clinical
prognosis and the discovery of novel therapeutic targets.

2 Materials and methods
2.1 Data acquisition

The primary datasets utilized in this study were derived from
microarray-based mRNA expression profiles (GSE30119, GSE6269,
and GSE16129) obtained from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). The study cohort comprised
peripheral blood samples from 124 patients diagnosed with OM
and 79 healthy control subjects. The overall workflow is illustrated
in Figure 1. The detailed characteristics and additional information
regarding these datasets are summarized Supplementary Table S1.

The key regulatory genes associated with 13 distinct PCD
modalities were curated from multiple sources, including the
KEGG (14), GeneCards (15), Molecular Signatures Database
(MSigDB) (16), Reactome (17), and relevant review articles (18).
A comprehensive set of 884 genes was compiled, covering
alkaliptosis (7 genes), apoptosis (136 genes), autophagy (151
genes), cuproptosis (14 genes), disulfidoptosis (4 genes), entosis
(15 genes), ferroptosis (64 genes), lysosome-dependent cell death
(255 genes), necroptosis (27 genes), NETosis (17 genes), oxeiptosis
(26 genes), parthanatos (9 genes), and pyroptosis (27 genes).
Clinical data from patients with OM were collected from the
Department of Limb Orthopedics and Reconstructive Surgery,
Second General Hospital of Fuzhou.

2.2 Data preprocessing

For the microarray-based mRNA expression profiles, batch
effects were corrected via the surrogate variable analysis (SVA)
algorithm (19). During SVA batch correction, the disease status
(OM vs. control) was retained in the model as a biological covariate
to avoid removing meaningful biological signals. Principal
component analysis (PCA) and heatmap visualizations were
subsequently performed to assess and illustrate the sample
distribution patterns.

2.3 Pathway and functional enrichment
analysis

Pathway and functional enrichment analyses were conducted
via the R package “clusterProfiler” (20), including enrichment for
KEGG pathways (21) and GO terms (22). In addition, gene set
enrichment analysis (GSEA) (23) was performed to explore
potential biological pathways. Terms with adjusted p values less
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gene overlap among pathways. Potential crosstalk between PCD

subtypes was considered during interpretation. GSVA was
performed using the GSVA R package (24).

2.4 Pathway activity calculation

GSVA, an unsupervised and non-parametric method, was
applied to assess pathway-level changes in gene expression across

2.5 Construction of the coexpression

via WGCNA

individual samples. GSVA allows for quantification of gene set

enrichment at the sample level. In our analysis, enrichment scores
for each pathway were calculated independently, while allowing
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network and identification of key modules

To identify PCD-related gene modules based on pathway
enrichment scores from GSVA, we applied WGCNA (25). The
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goodSamplesGenes function was used to assess data quality, cluster
samples, and eliminate outliers. To ensure scale-free topology, the
optimal soft-thresholding power was determined using the
pickSoftThreshold function. Gene modules were identified via the
dynamic tree-cutting method, with the minimum module size set at
100 genes, a threshold supported by precedent in the literature (25).

2.6 Receiver operating characteristic curve
analysis

ROC curve analysis was performed to evaluate the diagnostic
efficacy of the 13 PCD pathways and core death-related genes (26).

2.7 Analysis of immune cell proportions

We employed single-sample gene set enrichment analysis
(ssGSEA) to estimate immune cell proportions. Feature gene
panels for immune cell types were obtained from published
sources (27, 28). The GSVA R package (24) was used to convert
the expression matrix of individual genes into an immune cell-type
score matrix.

2.8 Enhancing model interpretability with
SHAP

Multiple machine learning algorithms were evaluated, including
partial least squares (PLS), random forest (RF), decision tree (DT),
support vector machine (SVM), logistic regression, k-nearest
neighbors (KNN), extreme gradient boosting (XGBoost), gradient
boosting machine (GBM), neural network, and generalized linear
model boosting (glmBoost). To enhance interpretability, we used
SHAP, which assigns each feature a contribution value to the
model output.

2.9 Clinical sample collection and PCR
validation

2.9.1 Patient recruitment and eligibility criteria

Adult patients (=18 years) with clinically, radiologically, and
microbiologically confirmed OM were recruited from the
Department of Limb Orthopedics and Reconstructive Surgery,
Second General Hospital of Fuzhou. Diagnosis was established by
clinical manifestations, magnetic resonance imaging (MRI) or
computed tomography (CT), and positive microbiological
cultures. Written informed consent was obtained.

Inclusion criteria: (1) age 218 years; (2) clinically, radiologically,
and microbiologically confirmed OM; (3) no acute critical illness.

Exclusion criteria: (1) malignancy, autoimmune disorders, or
metabolic/hereditary bone disease; (2) acute systemic infection
unrelated to OM; (3) immunosuppressive therapy or systemic
corticosteroid use within 6 months; (4) co-infection with other
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infectious diseases; (5) severe hepatic/renal dysfunction, poorly
controlled diabetes, pregnancy, or lactation.

2.9.2 Sample collection and RNA extraction

Peripheral blood (2 mL) was collected into EDTA tubes from 10
OM patients and 10 matched healthy controls. Total RNA was
extracted using TRIzol reagent (Invitrogen, USA) per
manufacturer’s instructions. RNA concentration and purity
(A260/A280) were measured with a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, USA), ensuring
values of 1.8-2.0.

2.9.3 cDNA synthesis and qPCR

One microgram of total RNA was reverse transcribed using the
PrimeScript RT reagent kit (Takara Bio, Japan). Quantitative PCR
was performed with Taq PCR Master Mix (Tiangen Biotech, China)
on a Bio-Rad T100 thermal cycler. GAPDH served as an internal
control. Primer sequences are in Supplementary Table S3.
Thermocycling: 95°C 5 min, 40 cycles of 95°C 10 s, 60°C 30 s,
72°C 30 s, followed by melt curve analysis. PCR products were
verified by 2% agarose gel electrophoresis (Invitrogen) and
visualized on a Gel Doc XR+ system (Bio-Rad, USA).

2.9.4 Laboratory equipment

Key instruments included: high-speed refrigerated centrifuge
(H1850R, Xiangyi, China), ultra-low temperature freezer (DW-
86L500, AUCMA, China), water bath (DK-8D, Jinghong, China),
biological safety cabinet (HF1200LC, Likang, China), analytical
balance (NBL-214e, AE ADAM, UK), and ultrapure water system
(WP-UP-YJ-10, Watepur, China).

2.10 Statistical analysis

Statistical analyses were performed using R software (version
4.2.1; https://www.r-project.org/). For two-group comparisons,
either the Wilcoxon rank-sum test or Student’s ¢ test was applied.
Correlation analyses were conducted via Pearson’s or Spearman’s
method, depending on data type. All tests were two-tailed, with
p <0.05 considered statistically significant.

3 Results

3.1 Dysregulated gene expression
highlights enhanced immune and
inflammatory pathways in OM

To ensure comparability across datasets, three OM-related
transcriptome datasets were merged and normalized after batch
effect removal using the SVA algorithm. PCA and box plots
confirmed the effective elimination of batch effects
(Supplementary Figure Sla-d).

Differential expression analysis identified 915 DEGs between
OM and control groups (p < 0.05, |logFC| > 0.585), with 450
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Identification and enrichment analysis of DEGs between OM and control groups. (A) Heatmap visualizing the expression patterns of DEGs across
samples. (B) Volcano plot displaying significantly up- and downregulated DEGs (|logFC| > 0.585). (C, D) GO and KEGG enrichment analyses
highlighting biological processes and pathways associated with immune and inflammatory responses.

upregulated and 465 downregulated genes (Figures 2A, B). GO
enrichment highlighted processes associated with cytoskeletal
organization (e.g., small GTPase-mediated signaling), cell
adhesion and migration (e.g., vascular transport, focal adhesion),
and signaling regulation (e.g., phospholipid binding, actin
binding) (Figure 2C).

KEGG analysis further revealed enrichment in immune- and
infection-related pathways (e.g., HTLV-1 infection, tuberculosis,
toxoplasmosis), adhesion signaling (focal adhesion), and metabolic
regulation (apelin signaling, amino acid biosynthesis) (Figure 2D).
Collectively, these results indicate that OM is characterized by
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dysregulated gene expression, accompanied by enhanced immune
and inflammatory responses, abnormal adhesion, and cytoskeletal
remodeling, which collectively contribute to disease progression.

3.2 PCD-related transcriptional alterations
reveal enhanced immune regulation and
distinct pathway activity in OM

We next evaluated differences in PCD-related gene expression
between OM and control samples. The heatmap and volcano plot
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FIGURE 3

Analysis of PCD-related gene expression and pathway activity in the control and OM groups. (A, B) Heatmap and volcano plot showing differentially
expressed PCD-related genes between the control and OM groups. (C, D) GO and KEGG pathway enrichment analyses of these DEGs. (E) Box plots
illustrating the GSVA scores of 13 PCD pathways in both groups. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively.

(Figures 3A, B) demonstrated widespread transcriptional
dysregulation across multiple PCD subtypes, including apoptosis,
autophagy, entosis, ferroptosis, lysosome-dependent cell death,
necroptosis, and pyroptosis.

GO enrichment highlighted key biological processes such as
regulation of autophagy, positive regulation of TNF production,
and activation of extrinsic apoptotic signaling (Figure 3C). These
genes were primarily involved in protein binding,
phosphatidylinositol interaction, and ubiquitin-like protein ligase
activity—molecular functions central to cell death control.

KEGG pathway analysis further revealed enrichment in canonical
immune and survival signaling pathways, most notably the NOD-like
receptor and PI3K-Akt cascades (Figure 3D), underscoring their
pivotal role in immune regulation and PCD execution.

To systematically quantify PCD activity, GSVA was applied to
13 PCD-related pathways (Figure 3E). Seven pathways—including
apoptosis, autophagy, immunogenic cell death, ferroptosis,
necroptosis, NETosis, and pyroptosis—were significantly
upregulated in OM, whereas entosis, alkaliptosis, and parthanatos
were downregulated. These enrichment profiles revealed not only
pathway-specific alterations but also potential cross-talk among
distinct PCD programs, highlighting a coordinated reprogramming
of cell death mechanisms in OM.
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3.3 Immune cell infiltration is markedly
elevated in OM and tightly associated with
dysregulated PCD pathways

Stimulus-induced cell death can activate the immune system
and elicit responses against dead-cell antigens (29). Immune cell
infiltration is therefore a key driver of OM initiation and
progression (30). Using ssGSEA, we observed significantly higher
infiltration of T cells, macrophages, dendritic cells, and eosinophils
in OM compared with controls (Figure 4A).

We next analyzed correlations between GSVA-derived PCD
pathway activity and immune infiltration. Apoptosis, necroptosis,
immunogenic cell death, and ferroptosis showed strong positive
associations with activated immune subsets, particularly CD4*/
CD8" T cells and M1/M2 macrophages, suggesting their role in
enhancing immune responses through cell recruitment. In contrast,
autophagy and lysosome-dependent cell death were negatively
correlated with regulatory T cells (Tregs) and MO macrophages,
implying suppression of immune activation (Figure 4B).

Together, these findings highlight the intricate interplay
between dysregulated PCD and immune infiltration in OM,
supporting the view that aberrant cell death processes actively
shape the inflammatory microenvironment.
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FIGURE 4

Immune infiltration analysis and its correlation with PCD pathway activity.

. (A) Immune cell scores estimated via ssGSEA across both groups.

(B) Correlations between the GSVA scores of 13 PCD pathways and immune cell subsets. *p < 0.05, **p < 0.01, ***p < 0.001.

3.4 Clinical relevance of autophagy,
lysosome-dependent, and entotic cell
death pathways in OM

We next investigated the clinical significance of PCD
pathways by correlating their GSVA scores with representative
inflammatory biomarkers of osteomyelitis, including IL6R,
MMPS8, TNFRSF11A, IL17RB, TNFSF14, and TGFBRI1
(Figure 5A). Pearson correlation heatmaps revealed that IL6R
and MMP8 expression exhibited the strongest positive
associations with autophagy, lysosome-dependent cell death,
and entosis (p < 0.001). Here, “clinical correlation” refers to
statistically significant relationships between pathway activity
and clinically recognized inflammatory mediators, implying that
these death modalities may drive inflammatory amplification

and tissue destruction in OM.

Notably, IL6R, a pivotal receptor mediating immune-inflammatory
signaling, reflects immune activation status, while MMP8, a
neutrophil-derived metalloproteinase, is involved in extracellular
matrix degradation and acute inflammation. Both markers serve as
clinically relevant indicators of infection activity and tissue injury,
underscoring their value in evaluating OM pathophysiology.

To further assess their diagnostic potential, ROC curve analysis
was performed. Autophagy, lysosome-dependent cell death, and
entosis all achieved high AUC values in distinguishing OM patients
from controls (Figure 5B). These findings highlight that beyond
their mechanistic links to inflammation, these PCD pathways may
also serve as candidate biomarkers for early diagnosis.

Collectively, autophagy, lysosome-dependent cell death, and
entosis represent the most clinically relevant PCD pathways in
OM, offering promising avenues for future work on inflammation
modulation and diagnostic biomarker development.
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FIGURE 5
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FIGURE 6

Identification of PCD-associated gene modules in the OM via WGCNA. (A) Analysis of scale-free topology and average connectivity across various
soft thresholds. (B) Gene cluster dendrogram, with colors indicating distinct coexpression modules. (C) Heatmap displaying the correlation between
module eigengenes and GSVA scores of 13 PCD pathways. (D) Venn diagrams illustrating overlaps between blue or turquoise module genes and
DEGs from the control and OM groups. (E, F) Functional enrichment (KEGG and GO) of overlapping gene sets.

3.5 Anoikis- and lysosome-dependent
modules drive immune and inflammatory
networks in OM

To identify modules most relevant to PCD in OM, we
performed WGCNA based on GSVA enrichment scores of 13
pathways. A soft-thresholding power of 8 was selected to ensure
scale-free topology (Figure 6A). Hierarchical clustering identified
the MEblue module as most strongly correlated with anoikis, while
the MEturquoise module showed the highest correlation with
lysosome-dependent cell death (Figures 6B, C).

We then intersected genes from these modules with DEGs
between OM and controls, yielding module-specific sets
(Figure 6D). KEGG enrichment (Figure 6E) highlighted PI3K-
Akt and JAK-STAT signaling, while GO analysis (Figure 6F)
pointed to nucleocytoplasmic transport and autophagy regulation,
emphasizing their role in immune control and cell fate.

Together, these results indicate that anoikis- and lysosome-
dependent modules are closely linked to immune regulation and
inflammation in OM, representing potential therapeutic targets.

3.6 Identification of key diagnostic genes
via SHAP-based machine learning analysis

To comprehensively evaluate the diagnostic contribution of
candidate genes in OM, we applied SHAP-based machine learning
analysis across multiple models. Fourteen genes were assessed, and
SHAP values were used to quantify their influence on model
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predictions. Higher SHAP values indicate stronger discriminatory
ability between OM patients and healthy controls (Figures 7A-E).

Across models, SORT1, KIF1B, TMEM106B, NPC1, and
ATP6VOB consistently ranked among the top contributors,
highlighting their potential diagnostic value. We further validated
these genes by examining their expression profiles in GEO datasets,
determining chromosomal locations, and conducting ROC curve
and nomogram analyses (Figures 7F-I). Among them, SORT1
demonstrated the highest and most stable diagnostic
performance, with consistently superior AUC values across
analyses, underscoring its robustness as a biomarker.

Taken together, these results highlight SORT1, KIF1B,
TMEM106B, NPCI1, and ATP6VOB as promising diagnostic
biomarkers for OM, with SORT1 emerging as the most
compelling candidate for future clinical translation.

3.7 PCR-based validation of five gene
expression biomarkers

Peripheral blood samples from patients with OM and healthy
controls were collected for PCR validation of the five key genes
(SORT1, KIF1B, TMEM106B, NPC1, and ATP6VO0B) identified
through integrated bioinformatics and SHAP analyses. All OM
cases were recruited from the Department of Limb Orthopedics and
Reconstructive Surgery, Fuzhou Second Hospital, and only patients
meeting the inclusion criteria without concurrent infectious or
severe systemic diseases were enrolled. PCR results revealed
significant expression differences between the OM and control
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FIGURE 7

The importance and contribution of each characteristic variable in the ML model were evaluated via Shap analysis. (A). A feature importance ranking
graph that can be interpreted on the basis of SHAP. (B) Feature colony map interpretable via SHAP; (C). Interpretable feature variable waterfall
diagram based on SHAP; (D). Contribution maps of individual features interpretable via SHAP. (E). Performance comparison of different machine
learning models in OM prediction (ROC curves). (F). Differential expression of key genes in disease models. (G) Chromosomal gene distribution of
key genes (H). ROC curve analysis for key genetic biomarkers. (I) Genetic risk prediction nomogram. *, **, and *** indicate p < 0.05, p < 0.01, and

p < 0.001, respectively.
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FIGURE 8

Differences in the expression of key genes between patients with OM and healthy controls. Relative expression levels of key genes in peripheral
blood from OM patients (n = 10) and healthy controls (n = 10). GAPDH served as internal reference. *, **, and *** indicate p < 0.05, p < 0.01, and

p < 0.001, respectively.

groups, with SORT1 showing the most pronounced upregulation in
OM (Figure 8). These experimental findings not only corroborate
the computational predictions but also highlight the potential of
these genes—particularly SORT1—as clinically relevant biomarkers
for OM diagnosis and possible targets for mechanistic investigation.

4 Discussion

In this study, we systematically profiled the activity of 13 PCD
pathways in OM and elucidated their associations with PCD-related
gene expression and inflammatory mediators. Using microarray-
based transcriptomic data, we developed a SHAP-interpretable
machine learning model, which identified five core PCD-related
genes—SORT1, KIF1B, TMEMI106B, NPC1, and ATP6V0B—as
potential diagnostic biomarkers. These findings provide novel
insights into the molecular interplay between cell death
modalities and inflammatory responses in OM.

Apoptosis is a highly programmed form of cell death that is
primarily mediated by the caspase family of serine proteases and is
widely regarded as a self-executed “suicide” mechanism of the cell
(31). In recent years, studies have shown that apoptosis plays an
important role in the onset and progression of OM, where
dysregulated apoptosis—particularly excessive loss of bone-
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forming and immune cells—has been implicated in both
structural bone damage and compromised local immunity (32).

SORT1, a member of the Vps10p receptor family, is known to
modulate apoptosis in neuronal and immune contexts (33, 34). In
bone-related diseases, SORT1 promotes cell death by mediating
apoptotic signals dependent on neurotrophic factors, such as
proNGF, and may exacerbate bone tissue damage and resorption
following infection (35). Although there are currently no direct
studies investigating the role of SORT1 in OM, previous research
has indicated that the upregulation of SORT1 can enhance cell death
and tissue damage in chronic inflammatory environments (36).

On the other hand, kinesin family member 1B (KIF1B), a
microtubule-associated motor protein, participates in organelle
transport and exerts pro-apoptotic effects under cellular stress
(37). It has been reported that loss of the KIF1B-B isoform can
enable tumor cells to evade apoptosis, suggesting that in the context
of OM, dysfunction of KIF1B may impair the response of local
immune and bone cells to infection, thereby promoting infection
spread and bone destruction (38). However, direct research on the
associations among SORT1, KIF1B, and apoptosis in OM remains
limited, and further investigations are needed to elucidate the
underlying mechanisms involved.

Autophagy—another essential PCD modality—maintains
cellular homeostasis by lysosomal degradation of damaged
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organelles and misfolded proteins (39). During infection, autophagy
plays a critical role in regulating immune responses and facilitating
pathogen clearance. TMEM106B, a lysosomal transmembrane
protein, is a critical regulator of lysosomal activity and autophagic
flux (40). Studies have shown that the overexpression of
TMEMI106B can impair lysosomal trafficking and autophagy,
leading to protein aggregation and cellular dysfunction (41, 42).
In our study, we observed significant alterations in autophagy-
related pathways in OM tissues. Evidence suggests that impaired
autophagy can promote chronic infection persistence by enhancing
cellular stress and tissue damage (43). It is hypothesized that
TMEMI106B dysregulation may similarly limit intracellular
pathogen clearance during OM, thereby exacerbating infection
spread and bone tissue destruction. Targeting TMEM106B-
mediated autophagy dysfunction may offer a novel therapeutic
strategy to improve pathogen clearance and reduce bone damage
in patients with OM.

Lysosome-dependent cell death (LDCD) arises from increased
lysosomal membrane permeability, releasing proteolytic enzymes
into the cytosol and initiating irreversible cellular degradation (44).
This process results in the leakage of lysosomal contents into the
cytoplasm, the activation of degradative enzymes, and the
subsequent destruction of cellular structures, ultimately leading to
cell death (45). LDCD plays a critical role in maintaining cellular
homeostasis and regulating inflammatory responses, and
dysfunction of lysosomal function can contribute to the
development and progression of various diseases (46).

NPCI, a pivotal mediator of cholesterol trafficking and
lysosomal membrane stability (47). Studies have shown that loss
of NPC1 function can lead to lipid accumulation within lysosomes,
membrane rupture, and the initiation of LDCD (48). Although
direct evidence linking NPC1 to OM is currently lacking,
disturbances in cholesterol homeostasis are closely associated with
abnormal immune responses and enhanced tissue destruction,
suggesting that NPCl-mediated LDCD may play a potential role
in the progression of OM.

ATP6VOB, a subunit of the vacuolar-type H+-ATPase (V-
ATPase) complex, is responsible for maintaining lysosomal
acidification and degradative capacity (49). Research has indicated
that ATP6VOB dysfunction impairs lysosomal enzymatic activity,
leads to the accumulation of damaged organelles, and subsequently
triggers lysosome-dependent cell death (50). Given lysosomal
dependency for osteoclast survival and bone resorption,
ATP6VOB dysregulation in OM could amplify bone destruction
and chronic inflammation.

Collectively, these findings suggest that SORTI1, KIF1B,
TMEM106B, NPC1, and ATP6VOB represent distinct molecular
nodes within the full spectrum of PCD pathways in OM, where
their dysregulation may synergistically drive bone destruction,
chronic inflammation, and impaired pathogen clearance.

This study also presents several limitations. First, although we
preliminarily validated the abnormal expression of genes associated
with apoptosis, autophagy, and LDCD in clinical samples from
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patients with OM, functional assays that directly elucidate the
mechanistic roles of these genes in disease progression were not
performed. Further in vitro and in vivo experiments are warranted
to systematically investigate the contributions of LDCD and its
related genes to the pathogenesis of OM. Such efforts will deepen
the understanding of disease mechanisms and provide a theoretical
foundation for the development of novel therapeutic strategies.

Second, the clinical validation was based on a relatively limited
sample size. The diagnostic risk model constructed in this study
relies on selected gene signatures, which may not comprehensively
capture all key regulatory components implicated in OM.
Additional studies involving larger and more diverse patient
cohorts are needed to confirm the robustness and generalizability
of the findings.

Third, the pathogenesis of OM is likely modulated not only by
transcriptional alterations but also by epigenetic mechanisms,
including DNA methylation and histone modifications. Future
research integrating epigenomic profiling may enhance the
accuracy and depth of biological interpretation, and facilitate the
identification of more reliable diagnostic biomarkers and potential
therapeutic targets.

5 Conclusions

In summary, this study identified eight core PCD pathways
implicated in OM, including apoptosis, autophagy, and nonclassical
forms such as cuproptosis and entosis, which aligns with the results
presented. By integrating WGCNA with SHAP-based machine
learning, we identified five key diagnostic genes: SORT1, KIF1B,
TMEM106B, NPC1, and ATP6VOB. Validation using peripheral
blood samples confirmed significant differential expression of these
genes, underscoring their potential diagnostic value in
clinical settings.

Collectively, these findings provide novel insights into the
molecular mechanisms underlying OM and highlight promising
targets for clinical assessment and therapeutic intervention.
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