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Lung cancer remains a critical global health concern, characterized by the

highest incidence and mortality rates among all cancers. Due to its

heterogeneity and complexity, the molecular mechanism underlying lung

cancer occurrence and progression needs to be further investigated. KCTD10

has been implicated in malignant phenotypes of several tumors, but the role of

KCTD10 in lung cancer remains largely unexplored. In this study, we found that

KCTD10 expression is significantly reduced in lung cancer tissues, and

overexpression of KCTD10 could inhibit lung cancer progression both in vitro

and in vivo . Immunoprecipitation-mass spectrometry (IP-MS), co-

immunoprecipitation (Co-IP), and ubiquitination assays revealed that the BTB

domain of KCTD10 interacts with Armadillo repeat domains 1–9 of b-catenin and

facilitates ubiquitin-dependent degradation of b-catenin via the K48-linked

ubiquitin chains, followed by the downregulation of the b-catenin downstream

target gene PD-L1. Notably, the combined treatment of KCTD10 overexpression

with anti-PD-1 antibodies exhibited a synergistic effect in suppressing lung

cancer progression and brain metastatic colonization in mice. In addition,

vascular endothelial cell-specific knockout of Kctd10 (Kctd10flox/

floxCDH5CreERT2/+) promoted lung cancer metastasis and tumor angiogenesis

through b-catenin signaling. Finally, we identified METTL14- mediated N6-

methyladenosine (m6A) modification within the coding sequence (CDS) region

of KCTD10, which enhanced KCTD10 mRNA stability in a YTHDF2-dependent

manner. These findings highlight KCTD10 as a critical regulator of lung cancer

progression and the tumor microenvironment, suggesting its potential as a

promising therapeutic target for lung cancer.
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Introduction

Lung cancer is the most prevalent malignancy and the leading

cause of cancer-related deaths worldwide, with approximately 85%

of non-small cell lung cancer (NSCLC) (1). Despite advancements

in treatment, lung cancer remains a major global health challenge

(2, 3). Continued research into the molecular mechanisms

underlying lung cancer progression and therapy resistance is

crucial for the development of effective targeted therapies.

b-catenin is a key oncogenic driver in multiple cancers, including

colorectal, breast, ovarian and gastric cancers (4–8), and has been

reported to enhance lung cancer development (9). b-catenin can

improve the expression of downstream genes such as ZEB1 and

cyclin-D1, promoting tumor proliferation, metastasis and drug

resistance (10, 11). Moreover, b-catenin also alters lung epithelial

cell phenotypes through epigenetic modification, contributing to lung

cancer progression (12, 13). Tumor metastasis is closely associated

with epithelial-mesenchymal transformation (EMT), and the

conversion of the epithelial phenotype to a mesenchymal

phenotype enhances metastatic potential (14, 15). Studies have

addressed that b-catenin activates EMT and induces metastasis in

lung cancer, colorectal cancer and hepatocellular carcinoma

(11, 16–19). In lung cancer, cancer-associated fibroblast-derived

SDF-1 promotes EMT through b-catenin signaling (20).

Additionally, b-catenin and Akt signaling pathways are critical for

maintaining an EMT-associated cancer stem cell-like phenotype in

breast and cervical cancers (21). Additionally, Wnt/b-catenin
signaling contribute to immune evasion and resistance to immune

checkpoint inhibitors in several cancers, including NSCLC (22).

Specifically, b-catenin enhances PD-L1 transcription and

upregulates PD-L1 expression in lung cancer (10). The EMT/b-
catenin/STAT3/PD-L1 axis accumulates in cancer stem cells and

drives immune escape in glioblastoma (23, 24). Targeting CBP/b-
catenin in combination with PD-L1 blockade has emerged as a

potential therapeutic strategy for colon cancer liver metastases (25).

Moreover, downregulation of b-catenin prevents M2 macrophage-

mediated angiogenesis in lung cancer (26). Therefore, b-catenin plays
a critical role in EMT regulation and tumor immune evasion.

KCTD10, a member of the PDIP1 gene family encoding a

potassium ion tetramer channel protein (27) has been involved in

embryonic angiogenesis and cardiac development through

negatively regulating Notch signaling (28, 29). Knockdown of

KCTD10 reduces VEGF secretion and affects angiogenesis in

diabetic retinopathy (30), suggesting that KCTD10 interferes with

angiogenesis in both physiologic and pathologic angiogenic

processes. KCTD10 has also been linked to the development of

certain, including gastrointestinal stromal tumor (GIST) and

pancreatic cancer (31–34). The cullin-3/KCTD10 E3 ubiquitin

ligase complex promotes RhoB degradation, and activates

epidermal growth factor (EGF)/human epidermal growth factor

receptor 2 (HER2)-dependent Rac1 signaling in HER2-positive

breast cancer cells (35). Conversely, in hepatocellular carcinoma

(HCC), KCTD10 acts as a tumor suppressor by promoting p53

expression via Notch signaling (36), suggesting its context-

dependent roles in tumor malignancy.
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Although KCTD10 has been reported to interact with PCNA in

A549 lung cancer cells (37), its precise function and molecular

mechanisms in lung cancer are elusive. In this study, we

demonstrated that KCTD10 suppresses lung cancer proliferation

and metastasis by promoting b-catenin degradation, leading to

decreasing PD-L1 expression and enhanced efficacy of anti-PD-1

immunotherapy in lung cancer and lung cancer brain metastases.

Furthermore, endothelial-specific knockout of Kctd10 promotes

lung cancer metastasis and angiogenesis. The stability of KCTD10

mRNA is enhanced by METTL14/YTHDF2-mediated m6A

modification. Our findings establish KCTD10 as a critical

regulator of both tumor progression and the tumor environment,

highlighting the therapeutic potential of the novel METTL14/

KCTD10/b-catenin regulatory axis in lung cancer treatment.
Materials and methods

Database analysis

Pan-cancer analysis was performed by UALCAN (https://

ualcan.path.uab.edu/) (38). Gene expression, correlation analysis

and survival analysis was from GEPIA (http://gepia.cancer-pku.cn/)

(39). Survival analysis was from Kaplan-meier-plotter (https://

kmplot.com/analysis/) (40). All survival analysis data were

obtained from the Kaplan-meier-plotter website. The survival

difference between groups was assessed using the log-rank test.

Hazard ratios (HR), 95% confidence intervals (CI), and P-values

were calculated using the Cox proportional hazards regression

model. m6A site prediction was performed by SRAMP (http://

www.cuilab.cn/sramp) (41).
Cell culture and transfection

Authenticated A549, murine lewis lung cancer cells (LLC),

H1437, Beas-2b, H446 and H460 cell lines (Institute of

Biochemistry and Cell Biology, Chinese Academy of Sciences)

were cultured in DMEM medium (Gibco, Gran Island, NY,

USA). All these cells were cultured with 10% fetal calf serum

(Gibco), 4 mM glutamine (Gibco), 100 U/ml penicillin and

streptomycin (Invitrogen Life Technologies, Carlsbad, CA, USA)

at 37°C in a 5% CO2 incubator. Cells were transfected with plasmid

DNA and siRNAs using Lipofectamine 3000 (Invitrogen) according

to the manufacturer’s instructions.
Western blots

Cells were lysed with RIPA buffer (Beyotime, Shanghai, China),

and protein extracts were separated on SDS-PAGE gels and

transferred onto PVDF membranes (Bio-Rad, Richmond, CA) as

previously described (42). Nuclear and cytoplasmic proteins were

separated using a nuclear protein extraction kit (Solarbio, Beijing,

China). Rabbit antibodies against KCTD10 (27279-1-AP,
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Proteintech, Wuhan, China) (1:1000), b-catenin (ET1601-5,

HUABIO, Hangzhou, China) (1:1000), PD-L1 (ab228415, Abcam,

Waltham, USA) (1:1000), E-cadherin (A3044, ABclonal, Wuhan,

China) (1:1000), N-cadherin (A0433, ABclonal) (1:1000),

METTL14 (ab309096, Abcam) (1:1000), YTHDF2 (ab220163,

Abcam) (1:1000), Lamin B1 (A1910, ABclonal) (1:1000),

Tubulin (AF7010, Affinity Biosciences, Changzhou, China)

(1:5000) and Flag-Tag (F2555, Sigma) (1:1000) were used

Supplementary Table 1. Mouse monoclonal anti-ubiquitin (sc-

8017, Santa Cruz Biotech, Texas, USA) were used. HRP-

conjugated goat anti-rabbit and goat anti-mouse secondary

ant ibodies were from ABclonal . Western blots were

independently replicated for at least three times.
Immunohistochemical analysis and
hematoxylin and eosin staining

Lung and brain tissues, along with corresponding tumor tissues

were examined. Polyformalin-fixed paraffin-embedded (FFPE)

tissues were processed through an alcohol gradient. Antigen

retrieval was performed using citric acid solution (Service

Biotechnology, Wuhan, China). Rabbit antibodies against

KCTD10 (HPA014273, Sigma) (1:200, GAR), b-catenin (1:200),

PD-L1 (1:200), c-Myc (380784, Zenbio, Chengdu, China) (1:200),

VEGFR2 (A5609, ABclonal) (1:200), E-cadherin (1:200) and N-

cadherin (1:200) were used. Mouse monoclonal antibodies against

CD31 (ab9498, Abcam) (1:200), CD8a (70306, Cell Signaling,

Massachusetts, USA) (1:200), Vimentin (240140, Zenbio) (1:200)

were used. The primary antibodies were incubated overnight after

blocking, and the HRP-conjugated goat anti-rabbit and goat anti-

mouse secondary antibodies (Service Biotechnology) and DAB

detection kit (Sevice Biotechnology) were incubated sequentially

with the tissues, and the nuclei were counterstained with

hematoxylin dye solution (Sevice Biotechnology). Sections were

visualized under an Olympus BX53 microscope (Japan) after

neutral resin sealing. The pathology information of human lung

cancer tissues was shown in Supplementary Tables 2 and 3. HE

staining was performed following standard protocols. These

experiments were approved by the Human Ethics Committee of

Hunan Normal University (2021–017).
Plasmid construction

Full-length and truncated fragments of KCTD10 were cloned

into pCMV-HA and pCMV-Myc vectors (Invitrogen), respectively.

Full-length and deletion constructs of b-catenin were generated as

described (43). The pcDNA3.1-(HA-Ub) was generated by inserting

human UBC into pCDNA3.1-HA vector (Addgene, Massachusetts,

USA). The HA-K0 and KCTD10 5′UTR was synthesized by Sangon

Biotech. The K27R, K33R and K48R mutations were amplified from

the pcDNA3.1-(HA-Ub) plasmid and the K27O, K33O and K48O

mutations were amplified from the pcDNA3.1-(HA-K0) plasmid
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(SOE-PCR) site-directed mutagenesis. DNA fragments containing

K11R, K63R, K11O and K63O were digested with SalI and HpaII,

and ligated to the pcDNA3.1-(HA-Ub) and pcDNA3.1-(HA-K0)

digested with the same enzymes, respectively. The KCTD10 CDS, 3′
UTR and 5′UTR were inserted into to the pGL3 reporter plasmid

(Promega, MA, USA). The primers used are listed in

Supplementary Table 4. All constructs were verified using the

Sanger method (Sangon Biotech).
Generation of KCTD10-overexpressing cell
lines

KCTD10 lentivirus expression vectors and packaging plasmids

(pHelper 1.0 and pHelper 2.0) (Genechem, Shanghai, China) were

cotransfected into 293T cells, and viral supernatants were harvested,

filtered, concentrated and titrated (44). The lentiviral expression

vector GV365 included GFP protein and puromycin resistance

gene for the observation of infection efficiency and screening of

stable cell lines. Cells were placed in 6-well plates and infected at

MOI=10 and observed for fluorescence four days post-infection.

stable cell lines were selected with complete medium with 2 mg/ml

puromycin (Solarbio), and maintained in medium with reduced

puromycin concentration.
Cell proliferation

For colony formation, 1,000 cells were placed per well in 6-well

plates. Cells were cultured for two weeks. Cells were fixed with

methanol, stained with 0.5% crystal violet, and counted. For MTT

assays, 10, 000 cells were placed per well in 96-well plates, incubated

with MTT reagent for 4 h and dissolved in DMSO. Absorbance at

492 nm was measured using a spectrophotometer (UV-2102C,

Unico, Changsha, China).
Cell migration and invasion assays

For wound healing assays, cells were cultured in 24-well plates

until reaching 90% confluence. A 10-ml pipette tip was used to

generate wounds. After wound generation, cells were changed to

medium containing 2% serum. Three wound areas in each well were

marked on the bottom of the plates and imaged at 0, 24 and 48 h

after wound formation, which was photographed with the

microscope at each time point. For cell migration, the chamber

(Corning, New York, USA) was inserted into a 24-well plate, 2×104

infected cells were distributed in the upper chamber with 10% or

15% FBS in the lower chamber. Cells were fixed, stained with 0.5%

crystal violet (Sangon Biotech, Shanghai, China) and imaged under

the microscope. Invasion assays were performed using the chamber

covered with Matrigel glue (Corning), which were carried out as

previously described (45).
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Mice

4-week-old nude mice were purchased from the Hunan SJA

Laboratory Animal Corporation (Changsha, China). 6-week-old

C57BL/6J mice were purchased from Jackson Laboratories

(BarBarbor, ME). 5-week-old CDH5CreERT2/+ and KCTD10flox/flox

mice were obtained from GemPharmatech (Nanjing, China) (28)

(Supplementary Table 5). Mice were maintained in a 12 h light/dark

cycle and regularly fed with chow and water in an SPF room. All

procedures were approved by Hunan Normal University

(2021–017).
Subcutaneous tumors and lung tumors of
mice and tumor immunotherapy

1x107 cells were injected subcutaneously into 4-week-old nude

mice, with tumor growth measured twice weekly until tumor

volume reached 1,000 mm3. For lung colonization assays, 5×105

LLC cells were injected via the tail vein of 6-week-old C57BL/6J

mice or 4-week-old nude mice, and lungs were removed after 4

weeks. For brain metastases, 5×105 LLC cells were injected

intracranially into 6-week-old C57BL/6J mice and brains were

harvested 4 weeks after injection as previously described (46).

Anti-PD-1 therapy (100 µg/mouse, RPM1-14, BioXCell, New

Hampshire, USA) was injected intraperitoneally on days 11/14/

17/20 in LLC models. Tumor weight, volume, survival and tissue

analysis were recorded and analyzed. All mouse experiments were

repeated at least twice.
Immunoprecipitation and mass
spectrometry

Cells in 10 cm dishes were grown to 80% confluence and

transfected with 5 mg KCTD10 and b-catenin (full length or

truncated). After 30 h, cells were lysed and whole cell extracts

were immunoprecipitated using rabbit polyclonal antibodies

against Myc-tag (C3956, Sigma) or HA-tag (05-904, Sigma) and

protein A/G plus beads (K1305, APEXBIO, Texas, USA).

Immunoprecipitates were resolved by 10% SDS-polyacrylamide

gels and detected by HA-tag or Myc-tag. Rabbit preimmune IgG

(ab37355, Abcam) served as a negative control. For mass

spectrometry, proteins from KCTD10-overexpressing A549 cells

were separated in 10% SDS-PAGE gels after immunoprecipitation

using either IgG or Flag-tag (F7425, Sigma), and stained using a

Protein Fast Silver Stain Kit (Leagene Biotechnology, China) and

analyzed by mass spectrometry (Novogene, Beijing, China) (47, 48).
Protein degradation and ubiquitination
assays

To assess protein stability, cells and KCTD10-overexpressing

cells were treated with 50 mg/mL CHX (Selleck Chemicals, Texas,
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USA) for 0, 2, 8 h, respectively. The proteins were extracted and

detected through Western blotting. To identify protein degradation

pathway, transfected cells were treated with 20 µM MG132 for 10 h

before harvesting. Cells were lysed and analyzed by Western

blotting with antibodies against Flag-Tag, b-catenin and Tubulin.

For ubiquitin experiments, cells were transfected either with the

expression plasmids pCMV-Myc-b-catenin alone or with pCMV-

HA-KCTD10 and pcDNA3.1-(HA-Ub) or its mutants. 24 h after

transfection. Myc-b-catenin was immunoprecipitated with rabbit

polyclonal anti-b-catenin antibodies and these immunoprecipitates

were subjected to Western blotting with ubiquitin to detect b-
catenin-ubiquitin conjugation.
Immunofluorescence double staining

Tissue sections were dehydrated and processed for antigen

retrieval. For cell immunofluorescence double labeling, the cells

were fixed with methanol. The tissue sections and cells were blocked

and incubated overnight with the first primary antibodies, followed

by incubation with the specific secondary antibodies. After antigen

repair, the second primary antibodies were added for overnight

incubation, and another species-specific secondary antibodies were

added for incubation. Primary antibodies are KCTD10 (1:100), b-
catenin (1:100), CD31 (1:200), a-SMA (250104, Zenbio) (1:100).

Alexa Fluor 488 phalloidin goat anti-rabbit (A-11008, Thermo

Fisher Scientific, Massachusetts, USA) (1:2000) and Alexa 594

goat anti-mouse antibodies (A11005, Thermo Fisher Scientific)

(1:2000) were used as secondary antibodies. The nucleus was

stained with Hoechst 33258 (Beyotime). The fluorescence signals

were analyzed with a fluorescence microscope (Zeiss Axioskop-2).
Generation of endothelial cell-specific
Kctd10 knockout mice and lung tumor
model

Kctd10flox/flox and CDH5CreERT2/+ mice were intercrossed and

screened to generate homozygous Kctd10flox/floxCDH5CreERT2/+

mice. To obtain the CDH5CreERT2/+Kctd10-/- mice, the mice were

administered intraperitoneally with tamoxifen (75 mg/kg body

weight) for one week. For the LLC mouse models, 1×106 tumor

cells were injected via the tail vein into tamoxifen-injected 6-week-

old female Kctd10flox/flox mice or CDH5CreERT2/+ Kctd10-/-mice.
RNA extraction and qRT-PCR

Total RNA was extracted from the cell lines using TRIzol

reagent (Thermo Fisher Scientific) and reverse transcribed into

cDNA using MMLV RTase and random primers (Sangon Biotech).

SYBR green (Invitrogen)-based real-time PCR was performed using

an ABI 7900 thermocycler (Thermo Fisher Scientific). Reactions

were incubated in a 96-well plate at 95°C for 5 min, followed by 35

cycles of 95°C for 20 sec and 60°C for 30 sec. The PCR primers are
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listed in Supplementary Table 4. The relative expression levels of

genes were calculated by the 2−DDCt method compared to b-actin.
m6A assay

m6Amodification sites were predicted on the SRAMP website. For

MeRIP assays, RNA was isolated and incubated with 2 mg m6A

(A19841, ABclonal) or IgG antibodies. Precipitated RNA was reverse

transcribed, amplified and then subjected to agarose gel electrophoresis

as described (49). m6A-related siRNAs were purchased from

genepharma (Shanghai, China) (Supplementary Table 6).
Luciferase reporter assays

Cells were co-transfected with recombinant pGL3 vectors

bearing CDS, 3′UTR and 5′UTR of the KCTD10 gene or specific

siRNAs. After the transfection, b-galactosidase and luciferase

activities were measured using the Luciferase Assay System

(Promega, Madison, WI) in a TD-20/20 luminometer (Turner

Design, Sunnyvale, CA) as previously reported (36).
Statistical analysis

Data are expressed as mean ± SD of at least three independent

experiments. Statistical analysis was performed using GraphPad

Prism 7 (San Diego, California, USA) and SPSS 22.0 (SPSS Inc.,

Chicago, Illinois, USA). The significance of the differences between

groups was determined using Student’s t-test and multi-group

comparisons was determined using one-way ANOVA with post

hoc tests. Values of P<0.05 were considered statistically significant.

*p < 0.05, **p < 0.01, ***p < 0.001.
Results

KCTD10 expression is downregulated in
lung cancer tissues and correlates with
favorable patient prognosis

To assess the expression of KCTD10 in lung cancer, we

analyzed the TCGA Pan-Cancer and GEPIA database and found

lower KCTD10 expression in lung cancer tissues than in normal

tissues (Figure 1A, Supplementary Figure 1A). Western blots

further confirmed reduced KCTD10 expression in lung cancer

cell lines compared with bronchial epithelial Bears-2b cells

(Figure 1B). IHC analysis revealed that KCTD10 expression was

markedly lower in high-stage lung cancer patients (Figures 1C, D),

with a particularly pronounced reduction in LUAD (Figures 1E, F).

Kaplan-Meier Plotter survival analysis revealed that patients with

high expression of KCTD10 exhibited significantly prolonger

overall survival (OS) and post-progression survival (PPS)

(Figures 1G, H), suggesting a potential tumor-suppressive role of
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KCTD10. Interestingly, the hazard ratio (HR) for KCTD10 was

lower in LUAD, implying a notable role for KCTD10 in this lung

cancer type (Figure 1I). As demonstrated in the GEPIA

database analysis, elevated KCTD10 expression correlates with

prolonged disease-free survival (DFS) in patients, suggesting its

potential role in inhibiting tumor metastasis (Figure 1J).

Thus, KCTD10 expression is inversely correlated with lung cancer

stage and is associated with a favorable prognosis for lung

cancer patients.
Overexpression of KCTD10 suppresses
lung cancer growth and metastasis

To further investigate the functional role of KCTD10, we

constructed a stable A549 lung cancer cell line overexpressing

KCTD10 by lentiviral transduction and demonstrated successful

overexpression of KCTD10 by fluorescence imaging and Western

blots (Figures 2A, B, Supplementary Figure 1B). MTT assays

revealed that overexpression of KCTD10 reduced cell viability

while enhancing cisplatin-induced cytotoxicity (Supplementary

Figure 1C). And colony formation assays further supported the

suppressive effect of KCTD10 on the growth of A549 cells

(Figure 2C). Subsequently, subcutaneous tumorigenesis assays

showed that KCTD10-overexpression A549 cells formed

significantly smaller tumors compared to controls (Figures 2D, E,

Supplementary Figure 1D). HE staining revealed decreased tumor

cell density in Kctd10-overexpressing tumors (Figure 2F,

Supplementary Figure 1E). These results indicate that KCTD10

inhibits lung cancer growth both in vitro and in vivo.

Lung cancer metastasis remains a major clinical challenge (50).

To determine whether KCTD10 influences metastatic ability of lung

cancer, we performed wound healing, cell migration and invasion

assays and found that KCTD10 overexpression significantly

inhibited the migration and invasion ability of A549 cells

(Figures 2G, H, Supplementary Figure 1F). In an in vivo

metastasis model, tail vein injection of KCTD10-overexpressing

A549 cells into nude mice resulted in a significant reduction in lung

nodule formation (Figure 2I). HE staining further confirmed a

lower lung tumor burden in the KCTD10-overexpressing group

compared to the NC group (Figure 2J). Since tumor metastasis is

closely linked to an EMT process (19), we examined EMT markers

in A549 cells and subcutaneous tumors. Western blots and IHC

analyses showed that overexpression of KCTD10 increased the

epithelial marker E-cadherin while decreased the stromal markers

N-cadherin and b-catenin (Figures 2K, L, Supplementary

Figures 2A, B). Moreover, KCTD10-overexpressing cells exhibited

a morphology resembling epithelial cells (Supplementary

Figure 2C). Additionally, CD31 expression, an angiogenesis

marker, was downregulated in KCTD10-overexpressing

subcutaneous tumors, indicating reduced tumor angiogenesis

(Figure 2L). Similar results were observed in LLC and H1437 cells

(Supplementary Figures 3A–F). These findings suggest that

KCTD10 inhibits lung cancer metastasis by suppressing EMT and

tumor angiogenesis.
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KCTD10 interacts with b-catenin and
promotes its ubiquitin-dependent
degradation via the K48 ubiquitin chain

To determine the molecular mechanism of KCTD10 in lung

cancer, we performed IP followed by silver staining and MS. The

identified differential bands revealed potential interacting KCTD10-

interacting proteins (Figure 3A) and their predicted subcellular

localization (Supplementary Figure 4A). KEGG enrichment analysis

indicated strong associations between KCTD10-interacting proteins

and metabolism, cancers and immune system (Supplementary
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Figure 4B). GO enrichment confirmed that KCTD10 highly

correlated with protein binding, as previous reported (Supplementary

Figure 5A) (51). KOGs analysis highlighted its involvement in post-

translational modifications, protein turnover, chaperones and signal

transduction (Supplementary Figure 5B). Based on protein-peptide

scores, we identified b-catenin as a top interactor of KCTD10

(Figure 3B). b-catenin is well-established oncogene implicated in

EMT and tumor progression (22). GEPIA database analysis showed

that b-catenin is highly expressed in LUAD (Figure 3C). IHC analysis

further showed a positive correlation between b-catenin expression and
lung cancer stage (Figures 3D, E), particularly in LUAD (Figure 3F).
FIGURE 1

Low expression of KCTD10 in lung cancer. (A) GEPIA database analysis of KCTD10 expression in normal lung tissues and lung cancer tissues.
(B) Western blot analysis of KCTD10 expression in lung cancer cell lines and normal cell line Bears-2b. (C, D) IHC analysis of KCTD10 expression in
human lung cancer tissues (n=80) and corresponding staining scores in different lung cancer grades. (E, F) IHC analysis of KCTD10 expression in
LUAD (n=42) and LUSC (n=34). (G) Correlation between KCTD10 expression and overall survival in lung cancer patients, HR=0.65 (0.55-0.75),
logrank P=1.2e-08. (H) Correlation between KCTD10 expression and post-progression survival of lung cancer patients, HR=0.64 (0.42-0.99), logrank
P=0.042. (I) Correlation between KCTD10 expression and overall survival in LUAD patients, HR=0.62 (0.48-0.79), logrank P=0.00013. (J) Correlation
between KCTD10 expression and disease free survival in LUAD patients, HR=0.41 (0.35-0.47), logrank P=0.042. *P < 0.05, **P < 0.01, ***P < 0.001.
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The IHC scores revealed a negative correlation between KCTD10 and

b-catenin expression (Figure 3G). Moreover, Kaplan-Meier survival

analysis indicated that high b-catenin expression is associated with

poor prognosis (Figures 3H–K). Importantly, overexpression of
Frontiers in Immunology 07
KCTD10 reduced b-catenin and its downstream effector, PD-L1, in

lung cancer cells (Figure 3L, Supplementary Figure 6).

To verify the interaction between KCTD10 and b-catenin, co-IP
assays were performed. Endogenous b-catenin was detected in immune
FIGURE 2

Overexpression of KCTD10 inhibits lung cancer growth and metastasis in vitro and in vivo. (A) Fluorescence image showing the efficiency of lentiviral
infection in A549 cells. (B) Western blot analysis confirming KCTD10 overexpression in A549 cells. (C) Colony formation assays demonstrating the
effect of KCTD10 overexpression on cell growth. (D, E) Effects of KCTD10 on the weight and volume of subcutaneous A549 tumors (n=4/group).
(F) Effects of KCTD10 on cell morphology of A549 subcutaneous tumors. (G, H) Transwell assays evaluating the effect of KCTD10 overexpression on
A549 cell migration and invasion. (I, J) Effect of KCTD10 overexpression on lung colonization of A549 cells injected via the tail vein (n=4). 5x105

A549 cells and KCTD10-overexpressing A549 cells were injected. (K, L) Western blot and IHC analysis of EMT-related gene expression. ***P< 0.001.
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complexes of HA-KCTD10, whereas control IgG failed to precipitate

any band (Figure 4A). To map the binding regions, we constructed

truncated plasmids of KCTD10 and b-catenin, we found that the BTB

region of KCTD10 binds to the Armadillo repeat region (1–9) of b-
catenin (Figures 4B–D, Supplementary Figures 7A–C). We next

examined whether KCTD10 promoted the degradation of b-catenin
using cycloheximide (CHX), which revealed accelerated b-catenin
degradation in KCTD10-overexpressing cells (Figure 4E), and this

was rescued by the proteasome inhibitor MG132 (Figure 4F),

suggesting KCTD10 mediates b-catenin degradation via the

ubiquitin-proteasomal pathway. Immunofluorescence and

nucleocytoplasmic fractionation experiments confirmed that

KCTD10 primarily degrades b-catenin in the cytoplasm (Figures 4G,

H). Ubiquitination assays demonstrated that co-transfection of

KCTD10 and ubiquitin plasmids promoted the ubiquitination of b-
catenin (Figure 4I). To identify the specific polyubiquitin linkage, we

constructed a series of lysine-linked ubiquitin active and mutant site

plasmids and found that KCTD10 facilitates polyubiquitination of b-
catenin via K48-linked ubiquitin chains (Figures 4J, K), supporting its

role in the ubiquitin-proteasomal degradation of b-catenin. Similar

results were observed in LLC and H1437 cells (Supplementary

Figures 8A-D). Taken together, our results demonstrated that

KCTD10 directly binds with b-catenin and promotes its K48-linked

polyubiquitination and proteasomal degradation.
Overexpression of KCTD10 enhances the
therapeutic effect of PD-1 blockade in a
metastatic lung cancer model

Since KCTD10 downregulates b-catenin and PD-L1, and PD-L1

expression is known to promote tumor immune evasion in lung cancer

(52), we investigated the impact of KCTD10 on lung cancer

immunotherapy. Kaplan-Meier Plotter survival analysis revealed that

high KCTD10 expression significantly correlated with improved

prognosis in lung cancer patients with CD8+ T cell infiltration

(Figure 5A, Supplementary Figure 9A), indicating a potential role in

immune system activation. To assess the therapeutic potential of

KCTD10 in combination with immune checkpoint blockade,

KCTD10-overexpressing LLC cells were injected into 6 week-old

C57BL/6J mice, followed by anti-PD-1 antibody treatment

(Figure 5B). Fluorescence analysis and Western blots confirmed

successful Kctd10 overexpression (Figures 5C, D). Survival analysis

demonstrated that both Kctd10 overexpression and anti-PD-1

treatment individually prolonged the survival of C57BL/6 mice

compared to the NC group. Notably, the combination of KCTD10

overexpression and anti-PD-1 therapy exhibited an additive effect, with

50% of the combination group surviving beyond 50 days, compared to

fewer than 30 days in the NC group (Figure 5E). HE staining further

showed that Kctd10 overexpression and PD-1 blockade reduced lung

tumor burden, independently, with the combination treatment

exerting the most pronounced effect (Figure 5F). IHC and IF analysis

indicated that Kctd10 overexpression suppressed b-catenin and Pd-l1

expression while improved CD8a+ T cell infiltration. The combined

treatment led to the most strongly improvement in CD8a+ T cell
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infiltration (Figures 5G, H, Supplementary Figures 9B, C). Therefore,

overexpression of Kctd10, in conjunction with PD-1 blockade,

effectively inhibits lung tumor metastasis and augments anti-

tumor immunity.

Brain metastases are among the most common distant

metastases in lung cancer (53). To investigate the effect of Kctd10

on brain colonization, we intracranially injected LLC cells into 6

week-old C57BL/6J mice and assessed the impact of Kctd10

overexpression combined with anti-PD-1 blockade (Figure 6A).

Both Kctd10 overexpression and anti-PD-1 treatment

independently prolonged the mouse survival compared to the NC

group. Remarkedly, the combination therapy showed the greatest

survival benefic, with 80% of the mice in this group survived beyond

60 days, whereas those in the NC group die at approximately 23

days (Figure 6B). HE staining revealed that both Kctd10

overexpression and anti-PD-1 treatment independently reduced

brain tumor burden, with the combined treatment exhibiting the

most profound effect (Figure 6C). IHC analysis of brain sections

revealed that overexpression of Kctd10 downregulated b-catenin
and Pd-l1 but increased CD8a+ T cell abundance, indicating the

similar effects in the lungs. Notably, the combined therapy led to the

most substantial increase in CD8a+ T cell infiltration, further

enhancing the anti-tumor immune response (Figures 6D, E,

Supplementary Figures 9D, E). These results highlight the

therapeutic potential of KCTD10 overexpression in improving the

efficacy of immune checkpoint blockade for lung cancer metastases.
Endothelial-specific knockout of Kctd10
promotes tumor metastasis and
angiogenesis in lung cancer

Tumor angiogenesis is critical for tumor growth and metastasis,

while b-catenin can promote tumor angiogenesis via VEGF

signaling (54). Immunofluorescence analysis showed that Kctd10

is co-localized with endothelial markers Cd31 and Cd34 in multiple

subcutaneous tumors (Supplementary Figures 10A–F), suggesting

that Kctd10 is associated with tumor angiogenesis. Given that

endothelial cells in the tumor microenvironment are dispensable

for tumor angiogenesis (55), we generated Kctd10flox/

floxCDH5CreERT2/+ mice that specifically delete Kctd10 in vascular

endothelial cells (Figures 7A, B, Supplementary Figure 10G).

Following injection of 1x106 LLC cells (Figure 7B), we observed

significantly increased lung tumor burden in Kctd10-knockout mice

(Figure 7C). HE staining confirmed a large lung tumor area in these

mice compared to controls (Figure 7D). Immunofluorescence

analysis revealed a decrease in normal blood vessels, as indicated

by Cd31 labeling, whereas the number of tumor-associated blood

vessels was markedly increased in Kctd10-knockout mice

(Figure 7E). Normal vessels have a higher pericyte density than

tumor vessels (56). Additionally, pericyte coverage, assessed by a-
sma staining, was reduced in tumor regions, indicating a shift

toward an abnormal tumor vasculature phenotype. And the

expression of b-catenin was upregulated in Kctd10 knockout mice

(Figure 7E, Supplementary Figures 10H, 11A). The IHC results
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FIGURE 3

Interaction between KCTD10 and b-catenin proteins. (A) IP-MS and silver staining showing differential bands between anti-KCTD10 antibodies and
IgG. (B) The top nine polypeptide scores of KCTD10-interacting proteins. (C) GEPIA database analysis of b-catenin expression in normal and lung
cancer tissues. (D, E) IHC analysis of b-catenin expression and corresponding staining scores in different lung cancer grades (n=80). (F) IHC analysis
of b-catenin in LUAD (n=42). (G) Correlation between KCTD10 and b-catenin expression in lung cancer. (H–K) Correlation between b-catenin
expression and overall/post-progression survival of lung cancer patients. (H) HR=1.15 (1.02-1.29), logrank P=0.027. (I) HR=1.45 (1.08-1.97), logrank
P=0.014. (J) HR=1.72(1.31-2.25), logrank P=6.3e-05. (K) HR=1.98 (1.29-3.05), logrank P=0.0015. (L) Western blot analysis of b-catenin expression
and its downstream genes in A549 cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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showed that the expression of Vegfr2 correlated with Cd31 levels,

suggesting that Kctd10 deficiency promotes pathological

angiogenesis while impairing normal angiogenesis. Furthermore,

the upregulation of EMT-associated proteins indicated an enhanced
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metastatic phenotype and tumor angiogenesis (Figure 7F,

Supplementary Figure 11B). These results suggest that

endothelial-specific loss of Kctd10 promotes tumor angiogenesis

and metastasis while inhibits normal vascular development.
FIGURE 4

KCTD10 promotes ubiquitination and degradation of b-catenin through the K48-ubiquitin chain. (A) Co-IP analysis demonstrating the interaction
between KCTD10 and b-catenin proteins. (B) Representative schematic of KCTD10 and b-catenin protein domains. (C, D) Identification of the
interacting regions between truncated KCTD10 and b-catenin proteins. (E) Degradation of b-catenin proteins after CHX treatment. (F) Effect of
KCTD10 on b-catenin protein stability in the presence of MG132. (G, H) Fluorescence analysis and Western blots showing KCTD10-induced
degradation of cytoplasmic b-catenin. (I–K) KCTD10 overexpression enhanced the ubiquitination of b-catenin. Myc-b-catenin was
immunoprecipitated with rabbit polyclonal anti-b-catenin antibodies and these immunocomplexes were subjected to Western blotting with anti-
ubiquitin antibodies to detect b-catenin-ubiquitin conjugates. In the ubiquitin constructs, R indicates that the corresponding lysine residue has been
mutated to arginine, abolishing linkage at that site; O indicates that only the corresponding lysine residue remains intact, while all other lysines are
mutated, allowing selective assessment of linkage through that specific site.
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The expression of KCTD10 is regulated by
m6A modification

To investigate the upstream regulatory mechanism of KCTD10

expression in lung cancer, we explored the m6A modification, the

most common form of mRNA modification for the regulation of

mRNA stability (57). Previous studies have shown that m6A

modification plays a tumor-suppressive role in lung cancer
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(58, 59). Bioinformatic analysis predicted potential m6A binding

sites within the CDS region of KCTD10 (Supplementary Figure 12),

which was validated by MeRIP assays (Figure 8A, Supplementary

Figure 13A). Knockdown of m6A-related genes in A549 and LLC

cells demonstrated that METTL14 knockdown significantly

reduced KCTD10 expression (Figure 8B, Supplementary

Figure 13B). The GEPIA database revealed lower METTL14

expression in lung cancer tissues (Supplementary Figure 13C),
FIGURE 5

Overexpression of Kctd10 combined with anti-PD-1 therapy effectively suppresses lung tumor colonization. (A) Effect of Kctd10 expression on patient
survival in high CD8 expression cohorts. (B) Combined therapeutic strategy for LLC tumors inoculated into C57BL/6 mice. (C, D) Construction and
validation of stable LLC cell lines overexpressing Kctd10. (E, F) Effect of Kctd10 and anti-PD-1 therapy on lung tumor size and survival in LLC-bearing
mice (n=4/group). (G) IHC analysis of b-catenin and Pd-l1 proteins expression following Kctd10 overexpression and anti-PD-1 treatment. (H) IF analysis
of CD8a proteins expression following Kctd10 overexpression and anti-PD-1 treatment. *P < 0.05, **P < 0.01, ***P < 0.001.
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and the Kaplan-Meier plotter analysis indicated that high

METTL14 expression was associated with improved prognosis

(Figures 8C, D). A positive correlation between KCTD10 and

METTL14 expression was also observed (Figure 8E). Luciferase

reporter assays confirmed that knockdown of METTL14 specifically

decreased KCTD10 CDS reporter activity, but not other regions

(Figure 8F, Supplementary Figure 13D). Next, RIP experiments

showed that METTL14 can enrich RNAs corresponding to the

KCTD10 CDS region (Figure 8G, Supplementary Figure 13E).

Transcription inhibitor actinomycin D treatment revealed that

METTL14 knockdown reduced KCTD10 mRNA stability

(Figure 8H, Supplementary Figure 13F). Furthermore, Western

blots showed that knockdown of METTL14 decreased KCTD10

and E-cadherin levels while increased b-catenin expression

(Figure 8I, Supplementary Figures 13G, H), suggesting that

METTL14 regulates the KCTD10/b-catenin axis.

We then knocked down m6A-associated readers and found that

YTHDF2 interference reduced KCTD10 expression (Figure 8J,

Supplementary Figure 14A). Although YTHDF2 expression was

not significantly different between lung tumors and non-tumors
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(Supplementary Figure 14B), high YTHDF2 levels were associated

with improved survival (Figures 8K, L) and positively correlated

with KCTD10 expression (Figure 8M). Luciferase reporter assays

showed knockdown of YTHDF2 reduced the KCTD10 reporter

activity (Figure 8N, Supplementary Figure 14C). RIP experiments

demonstrated that YTHDF2 enriches the KCTD10 CDS regions

(Figure 8O), and actinomycin D treatment indicated that silencing

YTHDF2 decreased KCTD10 mRNA stability (Figure 8P). Western

blots showed that knockdown of YTHDF2 reduced KCTD10 and E-

cadherin levels while increased b-catenin expression (Figure 8Q,

Supplementary Figures 14D, E). These results suggest that the

METTL14-YTHDF2 axis stabilizes KCTD10 mRNA via m6A

modification, contributing to KCTD10 downregulation in

lung cancer.
Discussion

KCTD10 has been reported to play different roles in several

tumors (32–34), but its mechanism in lung cancer remains unclear.
FIGURE 6

Kctd10 in combination with anti-PD-1 therapy suppressed lung cancer brain metastasis. (A) Combined strategy for intracranial LLC metastatic tumor
treatment in C57BL/6 mice. (B, C) Effects of Kctd10 and anti-PD-1 therapy on intracranial tumor sizes and survival in LLC-bearing mice (n=4/group).
(D) IHC analysis of b-catenin and Pd-l1 proteins following Kctd10 overexpression and anti-PD-1 therapy. (E) IF analysis of CD8a proteins following
Kctd10 overexpression and anti-PD-1 therapy. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 7

Endothelial Kctd10 knockout inhibits angiogenesis and metastatic phenotypes in lung tumors. (A) Construction strategy for Kctd10flox/

floxCDH5CreERT2/+ mice. (B) Experimental strategy for inducible Kctd10 knockout and LLC cell injection in Kctd10flox/floxCDH5CreERT2/+ mice. Mice
were treated by tamoxifen (75 mg/kg) for one week (n=5/group). (C, D) Images of lung cancer and corresponding HE staining in conditional
knockout mice. (E, F) Immunofluorescence and IHC analysis of target gene expression in mouse lungs and lung tumor tissues. ***P < 0.001.
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FIGURE 8

METTL14 and YTHDF2 mediates m6A modification of KCTD10 and enhances its mRNA stability. (A) MeRIP detecting m6A modification of KCTD10
CDS. (B) KCTD10 protein levels following m6A-related interfering RNAs. (C, D) Correlation between METTL14 expression and overall/post-
progression survival in lung cancer patients using Kaplan-Meier Plotter survival analysis. (E) Correlation between METTL14 and KCTD10 expression in
lung cancer using the GEPIA database. (F) Effects of METTL14 on the luciferase reporter activity of KCTD10. (G) RIP analysis detecting METTL14
binding to the predicted modification site of KCTD10. (H) qPCR analysis of KCTD10 RNA stability following METTL14 knockdown. (I) Western blot
analysis of KCTD10 and related protein expression in A549 cells following METTL14 interference. (J) KCTD10 protein expression after m6A-related
RNA interference. (K, L) Correlation between YTHDF2 expression and patient survival. (M) The GEPIA database analyzing the correlation between
YTHDF2 and KCTD10 expression. (N) Effect of YTHDF2 knockdown on luciferase reporter activity of KCTD10. (O) RIP analysis of YTHDF2 binding to
predicted modification sites of KCTD10 in A549 cells. (P) qPCR analysis of KCTD10 RNA stability following YTHDF2 knockdown. (Q) Western blot
analysis of KCTD10 and downstream gene expression following YTHDF2 knockdown. *P < 0.05, **P < 0.01, ***P < 0.001.
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In this study, we identified low KCTD10 expression in lung cancer

from the GEPIA database. IHC analysis further confirmed that

KCTD10 expression negatively correlates with the pathologic stage

of lung cancer. High KCTD10 expression was associated with

prolonged overall and post-progression survival in lung cancer

patients, indicating the potential clinical significance of KCTD10

in lung cancer diagnosis, treatment and prognosis.

Lung cancer metastasis, particularly to the brain, is a major

therapeutic challenge (60–62). EMT is a critical process in tumor

progression and metastasis, characterized by reduced tumor cell

viscosity and increased their motility and migration (31). During

the EMT process, E-cadherin expression was downregulated while

the expression of the stromal markers such as Vimentin, N-

cadherin and b-catenin was increased (31, 32). Our findings

demonstrated that overexpression of KCTD10 inhibits lung

cancer cell growth, migration and invasion, suppresses

subcutaneous tumor growth, reduces lung tumor nodule

formation, and reverses EMT markers in both lung cancer cells

and tissues, suggesting that KCTD10 suppresses lung cancer

metastasis by regulating the EMT program. 20% to 65% of lung

cancer patients develop brain metastases during the course of the

disease, which is significantly higher than in other tumor types

(60–62). Our data further revealed that overexpression of Kctd10

effectively reduces the colonization of lung tumors in the brain and

prolongs mouse survival. These finding suggest that KCTD10 is a

promising therapeutic target for lung cancer metastasis.

Previous studies have shown that KCTD10 expression is

induced by IFNg and IL-6 (27, 37, 63, 64), linking KCTD10 to

the inflammatory response that associated with immune system

recognition and activation in vivo. Through IP-MS, we identified b-
catenin as a KCTD10-interacting protein. b-catenin activation

promotes EMT-related protein expression and facilitates lung

cancer metastasis (20). Mechanistically, KCTD10 promotes K48-

linked ubiquitination of b-catenin, leading to its proteasomal

degradation and the inhibition of the EMT process. EMT is also

associated with upregulation of the immune checkpoint protein

PD-L1 (65). PD-L1 is overexpressed on the surface of almost all

tumor cells (66). PD-L1 could bind to the PD-1 receptor on the

surface of T cells, inhibit T cell function, facilitating immune

evasion (67). Since b-catenin enhances PD-L1 and suppresses

antitumor immunity (25). We found that overexpression of

KCTD10 reduces PD-L1 levels. Tumor infiltrating immune cells

(TIICs) play a pivotal role in cancer progression, therapeutic

response and overall patient prognosis, and distinct intrinsic

subtypes exhibiting heterogeneous immune landscape (68). When

combined with anti-PD-1 therapy, KCTD10 overexpression

significantly inhibited metastatic lung and brain tumor

colonization and led to the strongly improvement in CD8a+ T

cell infiltration. These results suggest that the KCTD10/b-catenin
axis counteracts immune evasion, promotes anti-tumor immunity

and improves the efficacy of anti-PD-1 therapy. However, the

current study did not extensively dissect the role of KCTD10

between immune activation in specific lung cancer subtypes and

immune cell subsets, including regulatory T cells (Tregs). In follow-
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up studies, we will employ single-cell RNA sequencing and flow

cytometry to comprehensively profile immune cell composition and

activation states, further enabling a deep understanding of how

KCTD10 shapes the tumor immune microenvironment and

influences immune responses in subtype-specific contexts.

Tumor angiogenesis in the tumor microenvironment, essential for

tumor growth and metastasis, requires the formation of new blood

vessels (69). Cancer-associated fibroblasts (CAFs) release stromal cell-

derived factors and angiogenic factors, and promote tumor cell growth

and blood vessel formation. Vascular endothelial cells mainly mediate

the regeneration of tumor blood vessels (55). Vascular normalization,

characterized by increased pericyte coverage, improves the hypoxic

microenvironment and enhances transport efficiency, thereby

enhancing the therapeutic efficacy (54). Aberrant b-catenin
activation promotes tumor metastasis and angiogenesis (70–73),

while b-catenin/TCF/LEF-dependent transcription, activated by the

PI3K/AKT pathway, enhances VEGF-induced angiogenesis (74). In

the tumor microenvironment, endothelial cells primarily regulate the

new tumor angiogenesis (55). Our study revealed that endothelial

Kctd10 knockout in mice accelerates lung cancer progression and

tumor angiogenesis. Consistently, the global Kctd10 knockout

displayed severe defects in mouse embryonic angiogenesis (28, 29).

Kctd10 exerts the function of tissue heterogeneity in regulating

angiogenesis in both normal lung tissues and the tumor

microenvironment, KCTD10 could promote tumor vascular

normalization, making it a potential therapeutic target. The effect of

endothelial-specific Kctd10 knockout on b-catenin expression likely

reflect a non–cell-autonomous effect, in which the loss of Kctd10 in

endothelial cells indirectly influences adjacent tumor and stromal cells

through changes in the TME. Specifically, endothelial cells actively

participate in cell–cell communication through the secretion of

paracrine factors such as Wnt ligands, VEGF, and various cytokines

(75, 76). Loss of Kctd10 in endothelial cells may disrupt this paracrine

balance or compromise vascular integrity, thereby modulating b-
catenin signaling in neighboring cells, suggesting the importance of

endothelial–tumor cell crosstalk in mediating the systemic effects of

endothelial gene perturbations.

The m6A methylation plays diverse roles in lung cancer by

regulating different target genes (58, 59). The m6A modification

regulates sphingolipid metabolism after birth, which correlates with

KCTD10 expression (77, 78). The m6A methyltransferase

METTL14 suppresses lung cancer growth and metastasis through

downregulating LINC02747 (79), while the m6A reader YTHDF2 is

associated with better outcome in NSCLC (80). Although YTHDF2

generally facilitates mRNA degradation (81), several studies have

shown that YTHDF2 can also stabilize m6A-modified mRNA

(82–86). We identified an m6A-binding site in the KCTD10 CDS

region, where METTL14-YTHDF2 enhances KCTD10 mRNA

stability. Both METTL14 and YTHDF2 exhibit low expression in

lung cancer but are positively correlated with better patient

prognosis, suggesting that impaired METTLE14-YTHDF2 activity

contributes to the downregulation of KCTD10 in lung cancer.

In conclusion, KCTD10 suppresses lung cancer metastasis and

tumor angiogenesis by interacting with b-catenin to promote its
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ubiquitin-dependent degradation, which then inhibits EMT and

PD-L1 expression, leading to the improving outcome of anti-PD-1

therapy. The dual role of KCTD10 in tumor cells and the tumor

microenvironment was demonstrated through lung cancer mouse

models and conditional Kctd10 knockout studies. The METTL14-

YTHDF2 axis enhances KCTD10 mRNA stability via m6A

modification, clarifying the regulatory mechanisms of low

KCTD10 express ion in lung cancer . These findings

establish KCTD10 as a promising target for inhibiting lung

cancer metastasis and enhancing immunotherapy efficacy.

Rational drug design aimed at developing specific KCTD10

activators may represent a novel and effective strategy for lung

cancer treatment.
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AKT AKT serine/threonine kinase 1
Frontiers in Immunol
a-sma a-smooth muscle actin
b-catenin cadherin-associated protein, beta 1
CBP CREB-binding protein
CD31 platelet and endothelial cell adhesion molecule 1
CD8 CD8 subunit alpha
CDS coding sequence
CHX cycloheximide
c-Myc cellular myelocytomatosis oncogene
co-IP co-immunoprecipitation
Cre cyclization recombination enzyme
DAB diaminobenzidine
DMEM dulbecco’s modified eagle medium
E-cadherin epithelial cadherin
EMT epithelial-mesenchymal transition
EGF epidermal growth factor
FFPE formalin fixed paraffin embedded
GEPIA Gene Expression Profiling Interactive Analysis
GIST gastrointestinal-stromal-tumor
GO gene ontology
HCC hepatocellular carcinoma
HE hematoxylin-eosin staining
HER2 human epidermal growth factor receptor 2
HR hazard ratio
IgG immunoglobulin G
IHC immunohistochemistry
IP-MS immunoprecipitation-mass spectrometry
KCTD10 potassiumchanneltetramerisationdomain-containing10
KEGG Kyoto encyclopedia of genes and genomes
LUAD lung adenocarcinoma
LUSC lung squamous cell carcinoma
ogy 19
M2 alternatively activated macrophages
m6A n6-methyladenosine
Me-rip methylated RNA immunoprecipitation
METTL14 methyltransferase like 14
MOI multiplicity of infection
mRNA messenger ribonucleic acid
NC negative control
N-cadherin neural cadherin
OS overall survival
P53 tumor suppressor protein, oncogene protein
PCNA proliferating cell nuclear antigen
PCR polymerase chain reaction
PD-1 programmed cell death protein 1
PDIP1 polymerasedelta-interactingprotein1
PD-L1 programmed cell death-ligand 1
PPS post progression survival
PVDF polyvinylidene fluoride
rac1 ras related C3 botulinum toxin substrate 1
RT-qPCR reverse transcription-quantitative PCR
SDF-1 stromal cell derived factor 1
SDS sodium dodecyl sulfate
SiRNA small interfering RNA
SOE-PCR splicing overlapping extension PCR
SPF specific pathogen free
SRAMP sequence-based RNA adenosine methylation site predictor
STAT3 signal transducer and activator of transcription 3
TCF/LEF transcription factor/lymphoid enhancer-binding factor
VEGF vascular endothelial growth factor
YTHDF2 YTH domain-containing family protein 2
ZEB1 zinc finger E-box binding homeobox 1.
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