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Alfonso-González L, Fernández FJ and
Vega MC (2025) Systems immunology: When
systems biology meets immunology.
Front. Immunol. 16:1630488.
doi: 10.3389/fimmu.2025.1630488

COPYRIGHT

© 2025 Alfonso-González, Fernández and
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The immune system is an intricate network of cells, proteins, and signaling

pathways that coordinate protective responses and, when dysregulated, drive

immune−related diseases. Understanding this complexity increasingly relies on

systems−based mathematical and computational approaches, which integrate

multi−omics data, mechanistic models, and artificial intelligence to reveal the

emergent behavior of immune networks. In this mini−review, we discuss the

central methodological pillars of systems immunology, including Network

Pharmacology, artificial intelligence, and quantitative systems pharmacology.

We highlight illustrative applications spanning autoimmune, inflammatory, and

infectious diseases, and describe how these methods are used to identify

biomarkers, optimize therapies, and guide drug discovery. Finally, we examine

current challenges and future directions, including data quality, model validation,

and regulatory considerations, which must be addressed to translate systems

immunology into clinical impact. This integrated perspective aims to guide both

method developers and translational researchers, emphasizing the growing

role of computational modeling in next−generation immunology and

therapeutic innovation.
KEYWORDS

immunology, mechanistic models, bioinformatics, systems biology, systems
immunology, quantitative systems pharmacology, network pharmacology,
artificial intelligence
1 Introduction

The immune system is an extraordinarily complex system, with multiple components

interacting to determine the ultimate response (1). Aside from the nervous system, the

immune system stands as one of the most intricate and challenging systems in all biology. In

quantitative terms, the human brain contains approximately 100 billion neurons, each

capable of forming synaptic connections with up to 1,000 other neurons (2, 3). In comparison,

the immune system comprises an estimated 1.8 trillion cells and utilizes around 4,000 distinct

signaling molecules to coordinate its responses (4, 5). As a result, identifying the key elements
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and understanding how to effectively modulate specific aspects of the

immune response during the treatment of a particular pathology can

be challenging. Mathematical and computational modeling provide

valuable insights into the relative importance of immunological

components and their alterations under various conditions (6).

These are particularly useful for studying the pathological

mechanisms underlying immune-related diseases and evaluating

the mechanisms of action of therapeutic agents. By incorporating

pharmacokinetic and pharmacodynamic (PK/PD) considerations,

mathematical models can facilitate the optimization of new

treatment strategies discovery, enabling more efficient comparisons

of therapies targeting different immune pathways or exhibiting

diverse PK/PD profiles.

From the perspective of immunology, the mammalian immune

system is a complex and highly specialized network of molecules,

cells, tissues, and organs that recognize, respond to, and eliminate

pathogenic organisms and abnormal self-components while

maintaining tolerance to self-antigens. It operates through two

complementary arms: the innate immune system, which provides

immediate, nonspecific defense, and the adaptive immune system,

characterized by antigen-specific responses, immunological

memory, and clonal expansion. The system integrates humoral

and cellular components, mediated primarily by leukocytes (e.g.,

lymphocytes, macrophages, dendritic cells) and secreted factors

(e.g., cytokines, antibodies), to maintain homeostasis and prevent

disease. Immunology traditionally describes the immune system in

structural and functional terms, emphasizing the components that

exist and their respective functions.

From the viewpoint of systems biology, the mammalian immune

system is understood as a dynamic, multiscale, and adaptive network

composed of heterogeneous cellular and molecular entities interacting

through complex signaling pathways, feedback loops, and regulatory

circuits. It exhibits emergent properties such as robustness, plasticity,

memory, and self-organization, arising from local interactions and

global system-level behaviors. In systems biology, the immune system

is modeled as an open system interacting with internal (e.g.,

microbiota, neoplastic cells) and external (e.g., pathogens,

environmental cues) agents, with a focus on quantifying and

simulating the spatiotemporal dynamics of immune responses

through computational and mathematical modeling. Thereby,

systems biology conceptualizes the immune system as an

interconnected and evolving network, emphasizing how interactions

and systemic properties emerge from component interactions.

The foundation of systems immunology as a distinct field of

inquiry goes back to the realization of the need for careful

observation and rigorous analysis to understand the extraordinary

complexity of the mammalian immune system. The modern

concept of this field can be traced back to the publication of three

landmark articles around 2008-2009: an editorial titled “A

prescription for human immunology” by the immunologist Mark

M. Davis (7) and the pioneering studies by the groups of Sékaly (8)

and Pulendran (9) on the immune response to Yellow Fever vaccine

using gene expression arrays and other large-scale biological data.

These seminal efforts highlighted a critical need and a way forward:

the advance of human immunology required new approaches
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because most experimental strategies used in mice were not

feasible in humans, and the recommendation to use quantitative

metrics and informatics for data mining, analysis, modeling,

and, eventually, prediction to aid basic understanding and

therapeutic efforts.

In this context, it becomes clear that studying the immune system

from a systems biology perspective is essential. In this mini-review,

we summarize systems immunology as an innovative and exciting

field and discuss how it integrates with and enhances traditional

research methods by combining omics techniques with advanced

mathematical modeling. The main goal is to accurately predict the

immune system as a whole and apply this knowledge to developmore

effective treatments for immune-inflammatory conditions. Our

primary audience includes potential users of systems biology and

computational approaches, such as bioinformaticians, computational

biologists, and interested immunologists who may want to use these

methods to study immune function and dysfunction. General

immunologists and clinicians form a secondary audience, as

systems immunology ultimately seeks to generate insights that

improve understanding and treatment of immune−related

disorders in real-world clinical settings.

The review is structured to serve both audiences. We first

introduce the methodological and systems−level approaches that

form the foundation of systems immunology, aimed at researchers

and computational scientists seeking to apply these tools. Subsequent

sections illustrate these methods with concrete examples in immune

−related diseases, drug discovery, and therapeutic development,

demonstrating how systems−level insights can inform real−world

translational applications. By progressing from conceptual

foundations to clinical relevance, the review highlights both the

analytical depth needed by method developers and the practical

insights sought by immunologists and clinicians.
2 From complexity to systems
immunology

Systems Biology entails the integration of quantitative

molecular measurements with computational modeling of

molecular systems at the organism, tissue, or cellular level. By

integrating all components within the system under investigation,

the aim is to gain a comprehensive understanding of the broader

biological context (10).

Systems Biology is especially relevant in its application to

immunology, giving rise to Systems Immunology (Figure 1A).

The immune system is particularly complex, comprising

numerous cells that exhibit diverse activation states and interact

with one another, as well as with cytokines and chemokines.

Research through systems immunology aims to understand the

interactions between various components, the contribution of each

element to the system’s response, and ultimately, to predict the

dynamics and response to specific phenomena affecting the system

(11, 12). Thus, computational modeling can provide valuable

insights into the relative importance of different immune

components, the influence of other elements on them, and how
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their relationships may change under various conditions. In this

way, a map of the system’s integrated functioning is developed,

enabling the identification of potential targets for the clinical

modulation of the immune response by generating informed

hypotheses that can be contrasted with experimental analyses (6).

System-based approaches have focused almost entirely on data-

driven approaches based on ever-expanding ‘omics’ data sets (e.g.,
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transcriptomics, proteomics, metabolomics) (Figure 1A). Single-cell

technologies, including scRNA-seq, CyTOF, and single-cell ATAC-

seq, are transforming systems immunology by revealing rare cell

states and resolving heterogeneity that bulk omics overlook. These

datasets provide high−dimensional inputs for data analysis,

enabling cell−state classification, trajectory inference, and the

parameterization of mechanistic models with unprecedented
FIGURE 1

Computational modeling in Immunology. (A) Integration of various omics methodologies widely used in immunology research into a coherent
systems immunology field through the integration by computational and mathematical tools. Top panel - Omics technologies: Representative tools
for generating high−dimensional immune datasets, including transcriptomics (e.g., RNA−seq), proteomics (e.g., single-cell CyTOF), and
metabolomics platforms. Bottom panel - Computational approaches: Examples of methods for analyzing and modeling immune complexity,
including statistical modeling, ordinary differential equation (ODE) models for dynamical simulations, and network inference algorithms. Together,
these methods support the integration of immune data and mechanistic modeling to uncover disease mechanisms and inform therapy
development. (B) Examples illustrating the applications of systems immunology, artificial intelligence, network pharmacology, and quantitative
systems pharmacology, and their translational applications. The diagram illustrates how systems immunology, AI/machine learning, network
pharmacology, and QSP modeling intersect to generate actionable insights. Examples of intersections - AI + QSP: AI−driven biomarker discovery
supports model parameterization and therapy response prediction. Network + Mechanistic Models: Network−derived signaling modules integrated
into ODE−based QSP models for immune pathway simulation. Together, these intersections facilitate drug discovery, biomarker identification, and
personalized therapy design in immune−mediated diseases.
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biological resolution. Clinically, single−cell analyses are beginning

to inform patient stratification and biomarker discovery,

strengthening the translational bridge from data to therapy.

Computational models used to analyze these datasets can range

from simple curve fitting or regression modeling to artificial

intelligence methods, which are becoming increasingly prevalent

with the growing availability of rich data sets (6).

Mechanistic models are quantitative representations of

biological systems that describe how their components interact

(Figure 1A). The construction of mechanistic models is determined

and limited by the knowledge of the system under consideration.

Their validity is based on their ability to predict one or more known

behaviors of the systems and previously unobserved behaviors.

Analogous to experimental studies on biological systems, in silico

experiments on mechanistic models enable the generation of novel

hypotheses that may not emerge from empirical data alone and that

would have otherwise been difficult to formulate. Although these

tools have had a relatively minor impact on immunology so far, they

have been widely used in other areas of biology. In cardiovascular

biology, for example, multi-scale computational models based on

the Hodgkin-Huxley mechanistic model have a predictive value for

human toxicology that surpasses that of experimental rabbit models

and are accepted by the Food and Drug Administration (FDA) as

appropriate methodologies for understanding therapy-induced

cardiotoxicities (13). One of the limitations of mechanistic models

is that they necessitate a thorough understanding of the system

being studied, even though unknown parameters are usually

addressed through assumptions or by fitting experimental data.

The construction of these models is also slow and laborious,

although once implemented, they can carry out hundreds of

virtual tests in a short time (6, 14).
3 Artificial intelligence for immune
system analysis

Artificial intelligence (AI) refers to a class of computational

systems capable of displaying intelligent behavior by analyzing their

environment and making decisions, with some degree of autonomy,

to achieve specific goals. This broad field encompasses techniques

ranging from classical machine learning algorithms, including

support vector machines and single-layer neural networks, to

more advanced approaches such as deep learning (15). Machine

learning (ML) techniques involve the development of algorithms

that learn from data, identify patterns, and make predictions or

decisions with minimal human intervention. Deep learning is one

of the most advanced and complex machine learning techniques. It

utilizes models with multiple layers, such as convolutional or

recurrent neural networks, which allow the extraction of high-

level features and patterns from large, complex datasets (16).

The development and performance of AI models in

immunology are critically dependent on the size, diversity, and

quality of the datasets used. Robust, reliable models require high-

quality annotations, representative biological variation, and

carefully curated metadata (17). Ideally, artificial intelligence
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models should exhibit interpretability, clinical relevance,

versatility, and reliability. Moreover, they must address ethical

considerations, including data privacy, informed consent, and

algorithmic bias, remaining sensitive to the specific contexts in

which they are deployed (18, 19).

Applications of AI in immunology include supporting the

discovery of novel biological pathways, predicting biomarkers and

immune responses, and generating new data through generative AI

techniques. An example of new pathway discovery is the work by

Sparks et al., who developed ML models using multi-omics data

(transcriptomics, proteomics, and immune cell profiling) to

improve diagnostics in autoimmune and inflammatory diseases,

as well as to predict vaccine responses (20).

Progress has been made in the prediction of biomarkers and

immune responses, including the development of disease-specific

AI models in asthma (21), cancer (22, 23), and vaccination (24, 25),

often improving upon conventional statistical approaches in both

performance and scalability.

Single-cell omics deserve particular attention in this context, as

they enable the integration of diverse molecular dimensions

within individual cells, allowing for precise discrimination of

developmental states and cell types. This high-resolution data

serves as an ideal foundation for training artificial intelligence

models (26, 27). A clear example is the machine learning

approach developed by Xu et al., for the identification of

neutrophil clusters and novel biomarkers relevant to sepsis (28).

Generative AI, while still in its early stages in immunology, holds

significant promise. These models, trained on large-scale datasets, can

generate novel data for hypothesis generation, virtual experimentation,

and simulation of biological scenarios (29). Potential applications in

immunology include drug discovery, precision immunotherapy, and in

silico clinical trial design (18, 30).

Together, these AI approaches not only advance mechanistic

understanding of immune processes but also support translational

applications, including biomarker discovery, patient stratification,

and the design of personalized immunotherapies.
4 Network pharmacology in immune
pathways

There is a growing interest in integrating pharmacology and

Systems Biology, as evidenced by an increasing number of

publications since 2020. The collaboration between these two fields

has led to the generation of a new discipline, Network Pharmacology

(31). Network pharmacology extends systems immunology by

integrating multi−omics data, drug-target interactions, and disease

networks to reveal how therapeutic interventions perturb complex

immune systems. Unlike traditional single-target approaches,

network pharmacology evaluates sets of molecules and pathways,

acknowledging that immune-mediated diseases often arise from

multi-node dysregulation.

Typical network pharmacology workflows begin with

assembling a disease−associated network using genomic,

transcriptomic, and proteomic datasets. Computational methods
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such as network topology analysis, community detection, and

centrality scoring are then used to identify critical nodes and

subnetworks that can serve as potential drug targets. Drug-target

networks can be superimposed to evaluate multi−target strategies or

predict off−target effects, enabling rational polypharmacology.

Network Pharmacology is an effective tool for analyzing complex

interactions, identifying novel therapeutic targets, investigating the

underlying causes of treatment inefficacy, and assessing toxic and

beneficial interactions among different components.

The use of Network Pharmacology techniques is increasingly

popular for understanding the mechanisms of multi-target drugs in

treating complex and multifactorial diseases, including

autoimmune disorders and conditions such as ulcerative colitis

(32–35), vitiligo (36), asthma (37), and rheumatoid and gouty

arthritis (38, 39). Recent applications include mapping cytokine

networks to prioritize multi-cytokine blockade strategies in

rheumatoid arthritis (RA) (40), as well as analyzing immune cell-

drug interaction networks to mitigate hyperinflammatory responses

in COVID-19 (41).

By combining pathway−level insights with drug-target mapping,

Network Pharmacology serves as a bridge from multi−omics

discovery to therapy prioritization. This approach supports both

mechanism discovery, by highlighting critical signaling modules

and their redundancy or compensation, and drug repurposing and

polypharmacology, enabling rapid translation of network−informed

hypotheses to preclinical or early clinical testing.
5 Quantitative systems pharmacology
in immunology and therapy
development

Pharmacology researchers use different mathematical approaches

to build integrated pharmacokinetics/pharmacodynamics (PK/PD)

models for drug action in a biological system. These models rely

heavily on obtaining experimental data on the drug and associated

biological responses collected over time and at various doses. PK/PD

models, similar to mechanistic models of Systems Biology, are

integrated using ordinary differential equations (ODEs) to describe

the processes of absorption, distribution, metabolism, and excretion

(ADME) of the drug in the organism and its binding to the

target (42).

Although PK/PD models and simulations have been a part of

clinical development since the 1980s, model-based drug

development is a much more recent phenomenon, increasingly

advocated by industry, academia, and, especially, regulatory

agencies, including International Conference Harmonization

(ICH), U.S. Food and Drug Administration (FDA), European

Medicines Agency (EMA), Japanese Pharmaceuticals and Medical

Devices Agency (PMDA), and China’s National Medical Products

Administration (NMPA) (43–48).

Quantitative Systems Pharmacology (QSP) approaches are

based on the principles of Systems Biology and pharmacology

(Figure 1B) to generate mechanistic models of physiology in

health and disease along with PK/PD models of drugs to predict
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their effects on the system as a whole, providing a framework for

translational research that quantitatively links pharmacological

targets, physiological pathways, and, ultimately, integrated disease

systems (49). QSP models have a growing impact on model-

informed drug discovery and development (50). Its usefulness is

recognized at all stages of drug development, from its initial

discovery to its growth in later stages. It is also helpful during the

management of the drug in clinical practice and serves as a support

during its regulatory submission (50, 51).

In drug discovery, QSP models can identify potential targets for

new treatments, enabling the evaluation of molecules with different

pharmacokinetic properties. During clinical development, QSP

models help reduce costs in clinical trials by improving project

selection and progression, facilitating an assessment of their relative

risks, and avoiding approaches with a low probability of success (42,

52). QSP models are also valuable in patient management in clinical

practice, as they allow model parameters to be customized based on

the genetic and epigenetic profiles of individual patients, thus

providing a pathway for personalized medicine (42).

Despite all these advantages, the potential and the growing

number of models, the in-depth interaction between mechanistic

modeling and experimental and clinical research, particularly in

immunology, remains a relatively uncommon practice. Some

notable QSP models in the field of immunology include

approaches for identifying new therapeutic strategies and

determining the mechanism of action of certain drugs and its

potential application in immune-oncology (53–55), sepsis (56),

autoimmune diseases such as Crohn’s disease (57, 58), systemic

lupus erythematosus (59), and RA (60, 61), as well as therapies

targeting the complement system (62–64), and even during

bacterial (65) and viral infections (66).

Additionally, approaches continue to be novel, and the

methodology is still under discussion. The community and

regulators have not agreed on precise QSP model development

guidelines (14). Use cases must be carefully selected to ensure the

models’ valid application. For QSP models to receive greater

acceptance in clinical practice, the values assigned to parameters

and relevant interactions should be thoroughly examined through

sensitivity analysis and recognized as plausible by both

immunologists and clinical researchers.

By integrating immunological mechanisms with pharmacokinetics

and pharmacodynamics, QSP models have become a critical link

between preclinical studies and clinical decision−making, guiding

dose selection, trial design, and the development of immune

−targeted therapies.
6 Challenges and future directions

The realization of systems immunology’s potential must

address challenges and limitations. Some limitations arise from

the inherent variability and heterogeneity of biological samples, as

well as the complexity of the omics techniques required to analyze

complex samples. Standardization of sampling protocols, analytical

methods, and, if ethically permissible, unrestricted data sharing
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should all contribute to producing reproducible and trustworthy

experimental results and widely accepted conclusions.

Other limitations involve the computational models used to

analyze and interpret systems-level properties. The main restriction

is the strict need for high-quality, abundant data to train AI models.

Because immunology datasets are often high−dimensional but

limited in size, AI models face a substantial risk of overfitting,

which can compromise generalizability. Moreover, reproducibility

remains challenging without standardized pipelines and open

benchmarking datasets, underscoring the need for transparent

and well−curated data.

Large, multiscale QSP models encounter scalability challenges

due to increased dimensionality and computational demands,

which restrict their application. Validating these models with

independent datasets is crucial for ensuring reliability and gaining

regulatory approval, particularly when translating insights from

model organisms to humans. Achieving comprehensive and

accurate validation for both animal and human predictions will

require additional effort in the future.

A final reflection concerns the regulatory challenges faced by

outcomes from systems immunology. Medical regulatory agencies

like the FDA and the EMA have indicated they welcome

computational mechanistic modeling of new drugs’ effects, even

though regulatory adoption of systems−based models is progressing

cautiously. Examples include cardiovascular QSP models and PK

simulations that have informed dose selection and safety assessment

in FDA and EMA submissions. Despite this increasing regulatory

interest, the clinical adoption of systems-based methods remains

limited by the lack of standardized modeling practices and

reproducible pipelines. These gaps, along with the need for

rigorous independent validation, continue to slow the broader

translation of AI and QSP approaches into regulatory decision-

making. Understandably, any mistakes in the quantitative modeling

of the immune system or its components with consequences for

clinical trials could predictably cause increased regulatory concerns

and hurdles.
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It is hopeful that the systems immunology community recognizes

these limitations and is actively working to find solutions. Much work

has been done by omics researchers to address key experimental

issues, such as reproducibility. Computational models are also

becoming more accurate, and their predictions more precise. Given

the rapid pace of new discoveries and the publication of innovative

bioinformatics tools in systems immunology, the future looks

promising for this exciting field.
7 Conclusions

Mathematical modeling in systems biology provides a powerful

framework to simulate and analyze complex interactions among

multiple biological components. By integrating these elements into

understandable networks, such models allow the study of biological

systems whose complexity might otherwise hide key functional

relationships. This is especially important in immunology, where

the dynamic and layered nature of the immune response

creates significant challenges for traditional analysis methods.

Immunological diseases and disorders are difficult because of the

complexity of the immune response. Combining systems biology

with immunology opens new possibilities for uncovering the

molecular roots of immunological diseases. This integration helps

identify critical regulatory nodes and signaling pathways, offering

new insights into disease development and treatment (Table 1).

Artificial intelligence further enhances this potential by enabling the

analysis of high-dimensional immunological data, supporting

biomarker discovery, disease outcome prediction, and the

development of precision therapies. However, the large amount

of data needed to build reliable AI models highlights the importance

of a strong, accessible, standardized, and high-quality data

infrastructure. At the same time, pharmacology-based modeling

approaches, including Network Pharmacology and QSP, provide

mechanistic insights into drug action and immune modulation.

These approaches require careful selection of databases and
TABLE 1 Systems immunology stages.

1. Identify the most prominent components in a biological system and/or phenomenon
• Identification of the biological system and its major components. This involves defining the scope of the model, including the relevant cells, genes, proteins,

metabolites, and other molecules.
• Search for experimental data, including gene expression, protein and metabolite concentrations, and other relevant components.
• Analyze the collected data. Identify relationships and trends that may affect the model.

2. Looking for interacting components within a phenomenon
• Collects information on model interactions and experimental data describing the kinetics of these interactions. Sometimes it is necessary to estimate unknown

parameters based on experimental data.

3. Model formulation, predictive simulation and analysis within a phenomenon and/or system-wide
• Choose the appropriate modeling approach. This can include using different modeling techniques such as ordinary differential equations (ODEs), constraints-based

models and agent-based models.
• Build the model and perform simulations.
• Analyze the results and validate the model. Analyze the behavior of the model, and compare the results obtained with experimental data and other approaches.
• Refine the model. Modify the model based on the results of the validation, this can lead to the variation of the parameters or the addition of new components.
• Iterate the process. The acquisition of data and model formulation, simulation and analysis are often repeated iteratively to refine the model and deepen

understanding of the system.
Inspired by Davis (12), these stages have been tailored to the development of QSP models in systems immunology, using a Boolean network analysis used in sepsis (56), Entelos® Rheumatoid
Arthritis PhysioLab® platform (61), and C-model, a QSP model centered on the complement system (64), as examples.
Panel titles corresponding to the main modeling stages are shown in boldface.
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algorithms, as well as high-quality research data (67). These models

provide a computational platform for comparing, improving, and

optimizing treatment strategies, thereby aiding decision-making

throughout all phases of drug development and clinical care.

Overall, the integration of systems biology, artificial intelligence,

and pharmacological modeling enhances our ability to understand,

predict, and control immune function. Further progress in these

integrated methods within immunology will be crucial to unlock

their full potential for research and clinical use.
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