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The immune system is an intricate network of cells, proteins, and signaling
pathways that coordinate protective responses and, when dysregulated, drive
immune-related diseases. Understanding this complexity increasingly relies on
systems—based mathematical and computational approaches, which integrate
multi—omics data, mechanistic models, and artificial intelligence to reveal the
emergent behavior of immune networks. In this mini-review, we discuss the
central methodological pillars of systems immunology, including Network
Pharmacology, artificial intelligence, and quantitative systems pharmacology.
We highlight illustrative applications spanning autoimmune, inflammatory, and
infectious diseases, and describe how these methods are used to identify
biomarkers, optimize therapies, and guide drug discovery. Finally, we examine
current challenges and future directions, including data quality, model validation,
and regulatory considerations, which must be addressed to translate systems
immunology into clinical impact. This integrated perspective aims to guide both
method developers and translational researchers, emphasizing the growing
role of computational modeling in next—generation immunology and
therapeutic innovation.

KEYWORDS

immunology, mechanistic models, bioinformatics, systems biology, systems
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1 Introduction

The immune system is an extraordinarily complex system, with multiple components
interacting to determine the ultimate response (1). Aside from the nervous system, the
immune system stands as one of the most intricate and challenging systems in all biology. In
quantitative terms, the human brain contains approximately 100 billion neurons, each
capable of forming synaptic connections with up to 1,000 other neurons (2, 3). In comparison,
the immune system comprises an estimated 1.8 trillion cells and utilizes around 4,000 distinct
signaling molecules to coordinate its responses (4, 5). As a result, identifying the key elements
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and understanding how to effectively modulate specific aspects of the
immune response during the treatment of a particular pathology can
be challenging. Mathematical and computational modeling provide
valuable insights into the relative importance of immunological
components and their alterations under various conditions (6).
These are particularly useful for studying the pathological
mechanisms underlying immune-related diseases and evaluating
the mechanisms of action of therapeutic agents. By incorporating
pharmacokinetic and pharmacodynamic (PK/PD) considerations,
mathematical models can facilitate the optimization of new
treatment strategies discovery, enabling more efficient comparisons
of therapies targeting different immune pathways or exhibiting
diverse PK/PD profiles.

From the perspective of immunology, the mammalian immune
system is a complex and highly specialized network of molecules,
cells, tissues, and organs that recognize, respond to, and eliminate
pathogenic organisms and abnormal self-components while
maintaining tolerance to self-antigens. It operates through two
complementary arms: the innate immune system, which provides
immediate, nonspecific defense, and the adaptive immune system,
characterized by antigen-specific responses, immunological
memory, and clonal expansion. The system integrates humoral
and cellular components, mediated primarily by leukocytes (e.g.,
lymphocytes, macrophages, dendritic cells) and secreted factors
(e.g., cytokines, antibodies), to maintain homeostasis and prevent
disease. Immunology traditionally describes the immune system in
structural and functional terms, emphasizing the components that
exist and their respective functions.

From the viewpoint of systems biology, the mammalian immune
system is understood as a dynamic, multiscale, and adaptive network
composed of heterogeneous cellular and molecular entities interacting
through complex signaling pathways, feedback loops, and regulatory
circuits. It exhibits emergent properties such as robustness, plasticity,
memory, and self-organization, arising from local interactions and
global system-level behaviors. In systems biology, the immune system
is modeled as an open system interacting with internal (e.g.,
microbiota, neoplastic cells) and external (e.g., pathogens,
environmental cues) agents, with a focus on quantifying and
simulating the spatiotemporal dynamics of immune responses
through computational and mathematical modeling. Thereby,
systems biology conceptualizes the immune system as an
interconnected and evolving network, emphasizing how interactions
and systemic properties emerge from component interactions.

The foundation of systems immunology as a distinct field of
inquiry goes back to the realization of the need for careful
observation and rigorous analysis to understand the extraordinary
complexity of the mammalian immune system. The modern
concept of this field can be traced back to the publication of three
landmark articles around 2008-2009: an editorial titled “A
prescription for human immunology” by the immunologist Mark
M. Davis (7) and the pioneering studies by the groups of Sekaly (8)
and Pulendran (9) on the immune response to Yellow Fever vaccine
using gene expression arrays and other large-scale biological data.
These seminal efforts highlighted a critical need and a way forward:
the advance of human immunology required new approaches
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because most experimental strategies used in mice were not
feasible in humans, and the recommendation to use quantitative
metrics and informatics for data mining, analysis, modeling,
and, eventually, prediction to aid basic understanding and
therapeutic efforts.

In this context, it becomes clear that studying the immune system
from a systems biology perspective is essential. In this mini-review,
we summarize systems immunology as an innovative and exciting
field and discuss how it integrates with and enhances traditional
research methods by combining omics techniques with advanced
mathematical modeling. The main goal is to accurately predict the
immune system as a whole and apply this knowledge to develop more
effective treatments for immune-inflammatory conditions. Our
primary audience includes potential users of systems biology and
computational approaches, such as bioinformaticians, computational
biologists, and interested immunologists who may want to use these
methods to study immune function and dysfunction. General
immunologists and clinicians form a secondary audience, as
systems immunology ultimately seeks to generate insights that
improve understanding and treatment of immune-related
disorders in real-world clinical settings.

The review is structured to serve both audiences. We first
introduce the methodological and systems—level approaches that
form the foundation of systems immunology, aimed at researchers
and computational scientists seeking to apply these tools. Subsequent
sections illustrate these methods with concrete examples in immune
—related diseases, drug discovery, and therapeutic development,
demonstrating how systems—level insights can inform real-world
translational applications. By progressing from conceptual
foundations to clinical relevance, the review highlights both the
analytical depth needed by method developers and the practical
insights sought by immunologists and clinicians.

2 From complexity to systems
immunology

Systems Biology entails the integration of quantitative
molecular measurements with computational modeling of
molecular systems at the organism, tissue, or cellular level. By
integrating all components within the system under investigation,
the aim is to gain a comprehensive understanding of the broader
biological context (10).

Systems Biology is especially relevant in its application to
immunology, giving rise to Systems Immunology (Figure 1A).
The immune system is particularly complex, comprising
numerous cells that exhibit diverse activation states and interact
with one another, as well as with cytokines and chemokines.
Research through systems immunology aims to understand the
interactions between various components, the contribution of each
element to the system’s response, and ultimately, to predict the
dynamics and response to specific phenomena affecting the system
(11, 12). Thus, computational modeling can provide valuable
insights into the relative importance of different immune
components, the influence of other elements on them, and how
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FIGURE 1

Computational modeling in Immunology. (A) Integration of various omics methodologies widely used in immunology research into a coherent
systems immunology field through the integration by computational and mathematical tools. Top panel - Omics technologies: Representative tools
for generating high—dimensional immune datasets, including transcriptomics (e.g., RNA-seq), proteomics (e.g., single-cell CyTOF), and
metabolomics platforms. Bottom panel - Computational approaches: Examples of methods for analyzing and modeling immune complexity,
including statistical modeling, ordinary differential equation (ODE) models for dynamical simulations, and network inference algorithms. Together,
these methods support the integration of immune data and mechanistic modeling to uncover disease mechanisms and inform therapy
development. (B) Examples illustrating the applications of systems immunology, artificial intelligence, network pharmacology, and quantitative
systems pharmacology, and their translational applications. The diagram illustrates how systems immunology, Al/machine learning, network
pharmacology, and QSP modeling intersect to generate actionable insights. Examples of intersections - Al + QSP: Al-driven biomarker discovery

supports model parameterization and therapy response prediction. Network + Mechanistic Models: Network—derived signaling modules integrated
into ODE-based QSP models for immune pathway simulation. Together, these intersections facilitate drug discovery, biomarker identification, and

personalized therapy design in immune—mediated diseases.

their relationships may change under various conditions. In this
way, a map of the system’s integrated functioning is developed,
enabling the identification of potential targets for the clinical
modulation of the immune response by generating informed
hypotheses that can be contrasted with experimental analyses (6).

System-based approaches have focused almost entirely on data-
driven approaches based on ever-expanding ‘omics’ data sets (e.g.,
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transcriptomics, proteomics, metabolomics) (Figure 1A). Single-cell
technologies, including scRNA-seq, CyTOF, and single-cell ATAC-
seq, are transforming systems immunology by revealing rare cell
states and resolving heterogeneity that bulk omics overlook. These
datasets provide high—dimensional inputs for data analysis,
enabling cell-state classification, trajectory inference, and the
parameterization of mechanistic models with unprecedented
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biological resolution. Clinically, single—cell analyses are beginning
to inform patient stratification and biomarker discovery,
strengthening the translational bridge from data to therapy.
Computational models used to analyze these datasets can range
from simple curve fitting or regression modeling to artificial
intelligence methods, which are becoming increasingly prevalent
with the growing availability of rich data sets (6).

Mechanistic models are quantitative representations of
biological systems that describe how their components interact
(Figure 1A). The construction of mechanistic models is determined
and limited by the knowledge of the system under consideration.
Their validity is based on their ability to predict one or more known
behaviors of the systems and previously unobserved behaviors.
Analogous to experimental studies on biological systems, in silico
experiments on mechanistic models enable the generation of novel
hypotheses that may not emerge from empirical data alone and that
would have otherwise been difficult to formulate. Although these
tools have had a relatively minor impact on immunology so far, they
have been widely used in other areas of biology. In cardiovascular
biology, for example, multi-scale computational models based on
the Hodgkin-Huxley mechanistic model have a predictive value for
human toxicology that surpasses that of experimental rabbit models
and are accepted by the Food and Drug Administration (FDA) as
appropriate methodologies for understanding therapy-induced
cardiotoxicities (13). One of the limitations of mechanistic models
is that they necessitate a thorough understanding of the system
being studied, even though unknown parameters are usually
addressed through assumptions or by fitting experimental data.
The construction of these models is also slow and laborious,
although once implemented, they can carry out hundreds of
virtual tests in a short time (6, 14).

3 Artificial intelligence for immune
system analysis

Artificial intelligence (AI) refers to a class of computational
systems capable of displaying intelligent behavior by analyzing their
environment and making decisions, with some degree of autonomy,
to achieve specific goals. This broad field encompasses techniques
ranging from classical machine learning algorithms, including
support vector machines and single-layer neural networks, to
more advanced approaches such as deep learning (15). Machine
learning (ML) techniques involve the development of algorithms
that learn from data, identify patterns, and make predictions or
decisions with minimal human intervention. Deep learning is one
of the most advanced and complex machine learning techniques. It
utilizes models with multiple layers, such as convolutional or
recurrent neural networks, which allow the extraction of high-
level features and patterns from large, complex datasets (16).

The development and performance of AI models in
immunology are critically dependent on the size, diversity, and
quality of the datasets used. Robust, reliable models require high-
quality annotations, representative biological variation, and
carefully curated metadata (17). Ideally, artificial intelligence
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models should exhibit interpretability, clinical relevance,
versatility, and reliability. Moreover, they must address ethical
considerations, including data privacy, informed consent, and
algorithmic bias, remaining sensitive to the specific contexts in
which they are deployed (18, 19).

Applications of Al in immunology include supporting the
discovery of novel biological pathways, predicting biomarkers and
immune responses, and generating new data through generative Al
techniques. An example of new pathway discovery is the work by
Sparks et al.,, who developed ML models using multi-omics data
(transcriptomics, proteomics, and immune cell profiling) to
improve diagnostics in autoimmune and inflammatory diseases,
as well as to predict vaccine responses (20).

Progress has been made in the prediction of biomarkers and
immune responses, including the development of disease-specific
Al models in asthma (21), cancer (22, 23), and vaccination (24, 25),
often improving upon conventional statistical approaches in both
performance and scalability.

Single-cell omics deserve particular attention in this context, as
they enable the integration of diverse molecular dimensions
within individual cells, allowing for precise discrimination of
developmental states and cell types. This high-resolution data
serves as an ideal foundation for training artificial intelligence
models (26, 27). A clear example is the machine learning
approach developed by Xu et al., for the identification of
neutrophil clusters and novel biomarkers relevant to sepsis (28).

Generative Al, while still in its early stages in immunology, holds
significant promise. These models, trained on large-scale datasets, can
generate novel data for hypothesis generation, virtual experimentation,
and simulation of biological scenarios (29). Potential applications in
immunology include drug discovery, precision immunotherapy, and in
silico clinical trial design (18, 30).

Together, these AI approaches not only advance mechanistic
understanding of immune processes but also support translational
applications, including biomarker discovery, patient stratification,
and the design of personalized immunotherapies.

4 Network pharmacology in immune
pathways

There is a growing interest in integrating pharmacology and
Systems Biology, as evidenced by an increasing number of
publications since 2020. The collaboration between these two fields
has led to the generation of a new discipline, Network Pharmacology
(31). Network pharmacology extends systems immunology by
integrating multi—omics data, drug-target interactions, and disease
networks to reveal how therapeutic interventions perturb complex
immune systems. Unlike traditional single-target approaches,
network pharmacology evaluates sets of molecules and pathways,
acknowledging that immune-mediated diseases often arise from
multi-node dysregulation.

Typical network pharmacology workflows begin with
assembling a disease—associated network using genomic,
transcriptomic, and proteomic datasets. Computational methods
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such as network topology analysis, community detection, and
centrality scoring are then used to identify critical nodes and
subnetworks that can serve as potential drug targets. Drug-target
networks can be superimposed to evaluate multi—target strategies or
predict off-target effects, enabling rational polypharmacology.
Network Pharmacology is an effective tool for analyzing complex
interactions, identifying novel therapeutic targets, investigating the
underlying causes of treatment inefficacy, and assessing toxic and
beneficial interactions among different components.

The use of Network Pharmacology techniques is increasingly
popular for understanding the mechanisms of multi-target drugs in
treating complex and multifactorial diseases, including
autoimmune disorders and conditions such as ulcerative colitis
(32-35), vitiligo (36), asthma (37), and rheumatoid and gouty
arthritis (38, 39). Recent applications include mapping cytokine
networks to prioritize multi-cytokine blockade strategies in
rheumatoid arthritis (RA) (40), as well as analyzing immune cell-
drug interaction networks to mitigate hyperinflammatory responses
in COVID-19 (41).

By combining pathway—level insights with drug-target mapping,
Network Pharmacology serves as a bridge from multi-—omics
discovery to therapy prioritization. This approach supports both
mechanism discovery, by highlighting critical signaling modules
and their redundancy or compensation, and drug repurposing and
polypharmacology, enabling rapid translation of network—informed
hypotheses to preclinical or early clinical testing.

5 Quantitative systems pharmacology
in immunology and therapy
development

Pharmacology researchers use different mathematical approaches
to build integrated pharmacokinetics/pharmacodynamics (PK/PD)
models for drug action in a biological system. These models rely
heavily on obtaining experimental data on the drug and associated
biological responses collected over time and at various doses. PK/PD
models, similar to mechanistic models of Systems Biology, are
integrated using ordinary differential equations (ODEs) to describe
the processes of absorption, distribution, metabolism, and excretion
(ADME) of the drug in the organism and its binding to the
target (42).

Although PK/PD models and simulations have been a part of
clinical development since the 1980s, model-based drug
development is a much more recent phenomenon, increasingly
advocated by industry, academia, and, especially, regulatory
agencies, including International Conference Harmonization
(ICH), US. Food and Drug Administration (FDA), European
Medicines Agency (EMA), Japanese Pharmaceuticals and Medical
Devices Agency (PMDA), and China’s National Medical Products
Administration (NMPA) (43-48).

Quantitative Systems Pharmacology (QSP) approaches are
based on the principles of Systems Biology and pharmacology
(Figure 1B) to generate mechanistic models of physiology in
health and disease along with PK/PD models of drugs to predict

Frontiers in Immunology

10.3389/fimmu.2025.1630488

their effects on the system as a whole, providing a framework for
translational research that quantitatively links pharmacological
targets, physiological pathways, and, ultimately, integrated disease
systems (49). QSP models have a growing impact on model-
informed drug discovery and development (50). Its usefulness is
recognized at all stages of drug development, from its initial
discovery to its growth in later stages. It is also helpful during the
management of the drug in clinical practice and serves as a support
during its regulatory submission (50, 51).

In drug discovery, QSP models can identify potential targets for
new treatments, enabling the evaluation of molecules with different
pharmacokinetic properties. During clinical development, QSP
models help reduce costs in clinical trials by improving project
selection and progression, facilitating an assessment of their relative
risks, and avoiding approaches with a low probability of success (42,
52). QSP models are also valuable in patient management in clinical
practice, as they allow model parameters to be customized based on
the genetic and epigenetic profiles of individual patients, thus
providing a pathway for personalized medicine (42).

Despite all these advantages, the potential and the growing
number of models, the in-depth interaction between mechanistic
modeling and experimental and clinical research, particularly in
immunology, remains a relatively uncommon practice. Some
notable QSP models in the field of immunology include
approaches for identifying new therapeutic strategies and
determining the mechanism of action of certain drugs and its
potential application in immune-oncology (53-55), sepsis (56),
autoimmune diseases such as Crohn’s disease (57, 58), systemic
lupus erythematosus (59), and RA (60, 61), as well as therapies
targeting the complement system (62-64), and even during
bacterial (65) and viral infections (66).

Additionally, approaches continue to be novel, and the
methodology is still under discussion. The community and
regulators have not agreed on precise QSP model development
guidelines (14). Use cases must be carefully selected to ensure the
models” valid application. For QSP models to receive greater
acceptance in clinical practice, the values assigned to parameters
and relevant interactions should be thoroughly examined through
sensitivity analysis and recognized as plausible by both
immunologists and clinical researchers.

By integrating immunological mechanisms with pharmacokinetics
and pharmacodynamics, QSP models have become a critical link
between preclinical studies and clinical decision-making, guiding
dose selection, trial design, and the development of immune
—targeted therapies.

6 Challenges and future directions

The realization of systems immunology’s potential must
address challenges and limitations. Some limitations arise from
the inherent variability and heterogeneity of biological samples, as
well as the complexity of the omics techniques required to analyze
complex samples. Standardization of sampling protocols, analytical
methods, and, if ethically permissible, unrestricted data sharing
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should all contribute to producing reproducible and trustworthy
experimental results and widely accepted conclusions.

Other limitations involve the computational models used to
analyze and interpret systems-level properties. The main restriction
is the strict need for high-quality, abundant data to train AI models.
Because immunology datasets are often high—dimensional but
limited in size, AI models face a substantial risk of overfitting,
which can compromise generalizability. Moreover, reproducibility
remains challenging without standardized pipelines and open
benchmarking datasets, underscoring the need for transparent
and well-curated data.

Large, multiscale QSP models encounter scalability challenges
due to increased dimensionality and computational demands,
which restrict their application. Validating these models with
independent datasets is crucial for ensuring reliability and gaining
regulatory approval, particularly when translating insights from
model organisms to humans. Achieving comprehensive and
accurate validation for both animal and human predictions will
require additional effort in the future.

A final reflection concerns the regulatory challenges faced by
outcomes from systems immunology. Medical regulatory agencies
like the FDA and the EMA have indicated they welcome
computational mechanistic modeling of new drugs’ effects, even
though regulatory adoption of systems—based models is progressing
cautiously. Examples include cardiovascular QSP models and PK
simulations that have informed dose selection and safety assessment
in FDA and EMA submissions. Despite this increasing regulatory
interest, the clinical adoption of systems-based methods remains
limited by the lack of standardized modeling practices and
reproducible pipelines. These gaps, along with the need for
rigorous independent validation, continue to slow the broader
translation of AI and QSP approaches into regulatory decision-
making. Understandably, any mistakes in the quantitative modeling
of the immune system or its components with consequences for
clinical trials could predictably cause increased regulatory concerns
and hurdles.

TABLE 1 Systems immunology stages.

10.3389/fimmu.2025.1630488

It is hopeful that the systems immunology community recognizes
these limitations and is actively working to find solutions. Much work
has been done by omics researchers to address key experimental
issues, such as reproducibility. Computational models are also
becoming more accurate, and their predictions more precise. Given
the rapid pace of new discoveries and the publication of innovative
bioinformatics tools in systems immunology, the future looks
promising for this exciting field.

7 Conclusions

Mathematical modeling in systems biology provides a powerful
framework to simulate and analyze complex interactions among
multiple biological components. By integrating these elements into
understandable networks, such models allow the study of biological
systems whose complexity might otherwise hide key functional
relationships. This is especially important in immunology, where
the dynamic and layered nature of the immune response
creates significant challenges for traditional analysis methods.
Immunological diseases and disorders are difficult because of the
complexity of the immune response. Combining systems biology
with immunology opens new possibilities for uncovering the
molecular roots of immunological diseases. This integration helps
identify critical regulatory nodes and signaling pathways, offering
new insights into disease development and treatment (Table 1).
Artificial intelligence further enhances this potential by enabling the
analysis of high-dimensional immunological data, supporting
biomarker discovery, disease outcome prediction, and the
development of precision therapies. However, the large amount
of data needed to build reliable AI models highlights the importance
of a strong, accessible, standardized, and high-quality data
infrastructure. At the same time, pharmacology-based modeling
approaches, including Network Pharmacology and QSP, provide
mechanistic insights into drug action and immune modulation.
These approaches require careful selection of databases and

1. Identify the most prominent components in a biological system and/or phenomenon
« Identification of the biological system and its major components. This involves defining the scope of the model, including the relevant cells, genes, proteins,

metabolites, and other molecules.

« Search for experimental data, including gene expression, protein and metabolite concentrations, and other relevant components.
« Analyze the collected data. Identify relationships and trends that may affect the model.

2. Looking for interacting components within a phenomenon

+ Collects information on model interactions and experimental data describing the kinetics of these interactions. Sometimes it is necessary to estimate unknown

parameters based on experimental data.

3. Model formulation, predictive simulation and analysis within a phenomenon and/or system-wide
« Choose the appropriate modeling approach. This can include using different modeling techniques such as ordinary differential equations (ODEs), constraints-based

models and agent-based models.
o Build the model and perform simulations.

« Analyze the results and validate the model. Analyze the behavior of the model, and compare the results obtained with experimental data and other approaches.
+ Refine the model. Modify the model based on the results of the validation, this can lead to the variation of the parameters or the addition of new components.
« Iterate the process. The acquisition of data and model formulation, simulation and analysis are often repeated iteratively to refine the model and deepen

understanding of the system.

Inspired by Davis (12), these stages have been tailored to the development of QSP models in systems immunology, using a Boolean network analysis used in sepsis (56), Entelos® Rheumatoid
Arthritis PhysioLab® platform (61), and C-model, a QSP model centered on the complement system (64), as examples.

Panel titles corresponding to the main modeling stages are shown in boldface.
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algorithms, as well as high-quality research data (67). These models
provide a computational platform for comparing, improving, and
optimizing treatment strategies, thereby aiding decision-making
throughout all phases of drug development and clinical care.
Overall, the integration of systems biology, artificial intelligence,
and pharmacological modeling enhances our ability to understand,
predict, and control immune function. Further progress in these
integrated methods within immunology will be crucial to unlock
their full potential for research and clinical use.
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