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Machine learning (ML) has played a crucial role in advancing precision

immunotherapy by integrating multi-omics data to identify biomarkers and

predict therapeutic responses. However, a prevalent methodological flaw

persists in immunological studies—an overreliance on correlation-based

analysis while neglecting causal inference. Traditional ML models struggle to

capture the intricate dynamics of immune interactions and often function as

“black boxes.” A systematic review of 90 studies on immune checkpoint inhibitors

revealed that despite employing ML or deep learning techniques, none

incorporated causal inference. Similarly, all 36 retrospective studies modeling

melanoma exhibited the same limitation. This “knowledge–practice gap”

highlights a disconnect: although researchers acknowledge that correlation

does not imply causation, causal inference is often omitted in practice. Recent

advances in causal ML, like Targeted-BEHRT, CIMLA, and CURE, offer promising

solutions. These models can distinguish genuine causal relationships from

spurious correlations, integrate multimodal data—including imaging, genomics,

and clinical records—and control for unmeasured confounders, thereby

enhancing model interpretability and clinical applicability. Nevertheless,

practical implementation still faces major challenges, including poor data

quality, algorithmic opacity, methodological complexity, and interdisciplinary

communication barriers. To bridge these gaps, future efforts must focus on

advancing research in causal ML, developing platforms such as the Perturbation

Cell Atlas and federated causal learning frameworks, and fostering

interdisciplinary training programs. These efforts will be essential to translating

causal ML from theoretical innovation to clinical reality in the next 5-10 years—

representing not only a methodological upgrade, but also a paradigm shift in

immunotherapy research and clinical decision-making.
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1 Introduction

Machine learning (ML) technologies have played a pivotal role in

advancing precision immunotherapy by integrating multi-omics data

to identify biomarkers, predict treatment responses, discover novel

therapeutic targets (1, 2), characterize the tumor microenvironment,

and optimize patient stratification. These predictive models have

greatly enhanced clinical decision-making capabilities (3, 4).

However, the application of ML in immunology has increasingly

come under scrutiny. Traditional models often fail to capture the

complexity of immune interactions (5), suffer from the “black-box”

nature of deep learning (6), and lack standardized data preprocessing

protocols (7).

Despite broad recognition that “correlation ≠ causation” is a

fundamental statistical principle, this distinction is frequently

overlooked in practice. A systematic review of 90 studies on

immune checkpoint inhibitors (ICIs) revealed that while 72%

employed traditional ML and 22% used deep learning, none

incorporated causal inference. Consequently, these models were

not included in phase III clinical trial designs or referenced in major

clinical guidelines (8). This phenomenon is not isolated: a parallel

analysis of 36 melanoma prediction models showed all studies were

retrospective correlation-based analyses, with none applying causal

inference. As a result, PROBAST evaluations rated them as having

moderate to high bias, limiting their translational utility and clinical

applicability (9, 10).

This disconnect between knowledge and practice highlights a

broader issue in immunology research—an overreliance on digital

correlations. Researchers may acknowledge the importance of

causality but are deterred from applying causal frameworks due

to the intrinsic complexity of immunological data. High-

dimensional, noisy, and temporally dynamic immune responses,

combined with treatment-induced nonlinear effects and substantial

interindividual heterogeneity (across genotype, phenotype, and

microenvironment), pose significant challenges to conventional

causal inference methods (11–14).

Fortunately, recent methodological advances have made the

integration of causal inference and ML increasingly feasible. For

example, the Targeted-BEHRT model combines transformer

architecture with doubly robust estimation to infer long-term

treatment effects from longitudinal, high-dimensional data (15).

Causal network models incorporating selection diagrams,

missingness graphs, and structure discovery techniques outperform

standard ML in risk evaluation and adverse event prediction for

immunotherapies (16). CIMLA exhibits exceptional robustness to

confounding in gene regulatory network analysis, offering insights

into tumor immune regulation (17). CURE, leveraging large-scale

pretraining, improves treatment effect estimation with gains of ~4%

in AUC and ~7% in precision-recall performance over traditional

methods (18). Causal-stonet handles multimodal and incomplete

datasets effectively, crucial for big-data immunology research (19).

LingAM-based causal discovery models have demonstrated high

accuracy (84.84% with logistic regression; 84.83% with deep

learning) and can directly identify causative factors, significantly

improving reliability in immunological studies (20).
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These innovations represent a confluence of causal reasoning

and machine learning methodologies (21), which are now being

increasingly applied in immunology research (22, 23). They help

reveal true causal relationships, mitigate confounding (both

observed and unobserved), enhance model interpretability and

robustness (24), and integrate heterogeneous data types including

genomics, proteomics, clinical phenotypes, and medical imaging

(25, 26). Ultimately, they enable the construction of more realistic

models with superior generalizability and predictive performance

across diverse patient populations (27, 28).

This Perspective aims to systematically highlight the paradigm-

shifting value of causal machine learning in immunological

research. We focus on the following key questions (Figure 1):
1. Pitfalls of correlation-based approaches: Why do

conventional models relying solely on correlation lead to

conflicting conclusions? For instance, how should we

reinterpret established “consensus” when the hazard ratio

(HR) of immune-related adverse events (irAEs) for survival

shifts from 0.37 to 1.02 after causal correction?

2. Unique advantages of causal ML: How does causal ML

bridge the gap from “correlation discovery” to “causal

identification”? What breakthrough capabilities does it

offer in capturing the complexity of the immune system?

3. Implementation challenges: How do issues such as data

quality, model interpretability, and interdisciplinary

collaboration hinder the clinical adoption of causal ML?

4. Future directions: From “perturbed cellular atlases” to

federated causal learning, which innovations over the next

5-10 years are most likely to translate causal ML from

theory into real-world practice?
2 Misconceptions in immunological
research: equating correlation with
causation

In current immunotherapeutic research, traditional machine

learning (ML) models primarily rely on retrospective data mining of

correlations (29), yet they often fail to explore the underlying causal

mechanisms (30). For instance, in studies on the gut microbiome

and immune checkpoint inhibitors (ICIs), although advanced

algorithms such as Random Forests and SVMs were employed,

only 4 out of 27 studies conducted cross-validation. Furthermore,

key confounding factors such as antibiotic use and dietary

differences were not adequately controlled, resulting in highly

heterogeneous and unreliable conclusions regarding the efficacy of

the same microbial strains (31). Similarly, in the analysis of

immune-related adverse events (irAEs) and survival, traditional

Cox regression yielded a hazard ratio (HR) of 0.37, implying a

protective effect of irAEs. However, causal ML using target trial

emulation (TTE) to correct for immortal time bias revealed a true

HR of 1.02—completely overturning the conventional belief that
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irAEs improve prognosis (32). These findings underscore the urgent

need for sound causal inference in immunological studies to avoid

conclusions that contradict biological plausibility.

Moreover, the insufficient recognition of the importance of

causal inference among researchers (33) has led to multiple

problems. Notably, effective therapies may be erroneously rejected

due to improper grouping strategies (34), while correlations that

appear statistically significant (35) may be misinterpreted as causal

relationships (36), leading to misleading clinical implications (37).

For example, studies examining the impact of antibiotic exposure

on ICI outcomes reported a statistically significant HR of

approximately 1.3, yet the authors explicitly acknowledged the

presence of residual unmeasured confounders. This raises the risk

of inappropriate clinical decisions, such as the unjustified

discontinuation of antibiotics due to a presumed class-wide

harmful effect (38). Likewise, deep learning models based on CT

radiomics for predicting ICI responses reported an AUC of ~0.71,

but the signal captured largely reflected confounders such as tumor

burden and treatment line rather than true drug sensitivity, casting

doubt on the validity of the model’s conclusions (39).

Therefore, neglecting causal inference not only compromises

the reliability of study results (40), impedes clinical translation (41–

43), and misguides clinical decision-making, but also wastes

research resources and delays the development of effective
Frontiers in Immunology 03
therapies (44). A typical example is seen in COVID - 19 vaccine

research, where including non-virus-related hospitalizations (“false-

positive cases”) led to substantial underestimation of the protective

effect of vaccines that primarily prevent severe post-infection

complications rather than infection itself—ultimately resulting in

misleading conclusions about vaccine efficacy (45).

Although the importance of causal inference has been

increasingly recognized in clinical research, many studies still rely

on conventional causal inference methods, which face significant

challenges in practice. Randomized controlled trials (RCTs) are

often infeasible due to high costs, ethical constraints, and

heterogeneity among patients (46). Stratified designs in

observational studies struggle with high-dimensional omics data,

and multivariable regression fails to capture the nonlinear

characteristics of the immune system (47). Propensity score

methods (PSM), based on the unrealistic assumption that all

confounders are measurable, have been misapplied in 72% of

studies (8). Mendelian Randomization (MR) also faces

methodological limitations, including susceptibility to false

associations and estimation bias stemming from the quality of

genetic instruments and core assumptions (48, 49). Specifically,

MR applications in immunology face four major hurdles: violation

of the instrumental variable assumption due to pleiotropy; weak

instruments owing to low heritability of immune exposures; a
FIGURE 1

Transitioning from the correlation trap to the causal paradigm in immunotherapy machine learning. This figure illustrates the urgent need and
conceptual roadmap for transitioning machine learning applications in immunotherapy research from correlation-based analyses to causal inference
frameworks. The left red module highlights critical issues in current practice: among 90 ICI (immune checkpoint inhibitor) studies, none
incorporated causal inference; the hazard ratio (HR) for immune-related adverse events (irAEs) shifted from 0.37 to 1.02 after causal bias correction,
underscoring the misleading nature of pure correlational analysis. Moreover, some models were excluded from Phase III clinical trials due to a lack
of causal validation. The central green bridge represents the solution offered by causal machine learning (Causal ML), characterized by three key
strengths: identifying true causal effects, integrating multimodal data (genomics, imaging, and clinical records), and providing interpretable
mechanistic insights. The right blue module envisions future breakthroughs over the next 5-10 years, including the development of the Perturbation
Cell Atlas, federated causal learning approaches, and eventual clinical translation. The cliff–bridge–shoreline metaphor visually encapsulates the
methodological leap required to shift from flawed analytics to a robust scientific paradigm.
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mismatch between lifelong genetic effects and short-term

therapeutic interventions; and systematic bias from population

stratification (50–52). Collectively, these limitations have

constrained the application and scalability of traditional causal

inference approaches in immunology.

Table 1 presents representative cases where correlation-based

analyses failed, while Table 2 summarizes the limitations of

traditional causal inference methods.
Frontiers in Immunology 04
3 Unique advantages of causal
inference machine learning models

To overcome the limitations of both traditional causal inference

and conventional machine learning approaches, causal inference-

based machine learning (causal ML) models have emerged

(Figure 2). Compared to classical causal methods such as

propensity score matching (PSM), Cox regression, or linear
TABLE 2 Limitations of traditional causal inference methods in immune-related studies.

Traditional method Core mechanism Limitations Ref.

Randomized Controlled Trial
(RCT)

Eliminates both observed and
unobserved confounding via

random allocation

High cost and ethical concerns; significant patient heterogeneity; multi-arm
RCTs are impractical for ICI combination and dynamic exposures

(11, 46)

Stratified/Blocked Design
Predefined stratification based

on limited covariates
High-dimensional omics (>104 features) leads to dimensionality explosion;

residual confounding remains
(47, 100)

Multivariable Regression
Adjustment

Uses linear/generalized linear
models to control covariates

Requires correct model specification; immune nonlinearity and interaction
effects are easily mis-specified

(47, 100)

Propensity Score Matching /
Inverse Probability Weighting

(PSM/IPW)

Balances observed covariates
through a single score

Relies on the “no unmeasured confounding” assumption; unstable in high-
dimensional settings; 72% of 90 ICI studies still rely on PSM or correlative ML,

lacking prospective design
(8, 9)

Mendelian Randomization
(MR)

Uses germline genetic variants
as instrumental variables to
mimic natural randomization

(1) Horizontal/related pleiotropy may violate exclusion restriction; (2) limited
heritability of immune exposures → weak instruments; (3) lifetime average

effects ≠ short-term drug effects; (4) population stratification and LD structure
may introduce bias

(50–52)
RCT, randomized controlled trial; PSM, propensity score matching; IPW, inverse probability weighting; MR, Mendelian randomization; ICI, immune checkpoint inhibitor; LD, linkage
disequilibrium.
This table highlights the key limitations of five classical causal inference approaches when applied to high-dimensional, nonlinear, and heterogeneous data settings in immunotherapy research.
TABLE 1 Representative bias cases in immune studies dominated by correlation-based machine learning.

Study & Year
Correlation-based ML/
statistical approach

Identified bias Evidence Ref.

Zhang et al., 2023
Cross-cohort Random Forest / SVM
in microbiota-ICI response review

Antibiotic use, dietary/geographic
differences, sequencing batch effects

Among 27 studies, only 4 cross-validated the
same strains; conclusions showed high

heterogeneity, possibly leading to the erroneous
rejection or overpromotion of specific microbial

therapies.

(31)

Pichler et al., 2025
Early studies used Cox/log-rank; this
study used Target Trial Emulation

(TTE)

Immortal time bias (irAEs occur
only in survivors)

Conventional analysis showed HR = 0.37, but
TTE-corrected HR = 1.02, overturning the
“irAE improves prognosis” claim; without

correction, irAE benefits may be exaggerated,
misleading dose management.

(32)

Eng et al., 2023
Population database with Cox +

PSM to assess antibiotic exposure on
ICI outcomes

Confounding by infection severity,
concomitant medications, baseline

ECOG status

Although HR ≈ 1.3 was statistically significant,
authors acknowledged "residual unmeasured
confounding"; could mislead clinicians into

believing all antibiotics are harmful, leading to
inappropriate withdrawal.

(38)

Sako et al., 2024
3D ResNet + multitask deep learning
for CT-based ICI efficacy prediction

Tumor burden, treatment line,
imaging device heterogeneity

Reported AUC ≈ 0.71; authors emphasized the
need for prospective validation, warning that
tumor size/stage signals may be misinterpreted

as drug sensitivity, affecting patient
stratification.

(39)
fro
ML, machine learning; ICI, immune checkpoint inhibitor; irAE, immune-related adverse event; HR, hazard ratio; TTE, target trial emulation; PSM, propensity score matching; ECOG, Eastern
Cooperative Oncology Group performance status; AUC, area under the receiver operating characteristic curve.
This table presents representative cases from four high-impact areas of immunological research—microbiome, survival analysis, drug exposure, and radiomics—demonstrating how correlation-
based approaches can lead to misleading interpretations when causal inference is neglected.
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models, causal ML lifts the constraints of strict parametric

assumptions and rigid model forms, enabling more flexible

modeling of the nonlinear dynamics and high-dimensional

interactions inherent to immune systems (53–55). For instance,

CV-TMLE, when applied in a small-scale study of only 168 ICU

patients with COVID - 19, employed the Super Learner ensemble

approach to effectively relax regularity conditions and increased the

95% confidence interval coverage by 10-20 percentage points

compared to standard methods (53). Similarly, the ANN-DML

estimator demonstrated a ~30% reduction in mean squared error

(MSE) relative to conventional kernel smoothing methods when

handling extremely high-dimensional scenarios where the number

of immune biomarkers scales with sample size (p → 2n) (54).

Moreover, causal ML enables multi-modal modeling by

integrating imaging, text, time-series, and genomic data. For

example, Clinical Transformer can fuse clinical records, laboratory

metrics, and sequencing data. By leveraging counterfactual

perturbation strategies, it achieved an improvement of 0.05-0.10 in

C-index across seven cancer types (56). MOFS effectively integrates

MRI, pathology, and multi-omics data to identify glioma subtypes

most responsive to anti-PD-1 therapy (57), while Bio-relevant AI

combines imaging, pathology, and gene expression data to help 32%

of stage II colorectal cancer patients avoid unnecessary chemotherapy

(58). These unique strengths contribute to more accurate prediction

of therapeutic outcomes (33), optimizing drug use and enhancing

treatment efficacy (59).

In contrast to conventional machine learning methods such as

random forests, LASSO, or deep learning—models that rely solely

on correlational pattern discovery—causal ML shifts the focus from

predicting associations to identifying causality. For instance, the

Super Learner ITE framework estimates individual treatment effects
Frontiers in Immunology 05
(ITE) through model ensembling, achieving an AUC of 0.77 in

external validation, with decision curve analysis showing a

significantly higher net clinical benefit compared to treat-all or

SAPS-II strategies (60). Similarly, in the MiCML platform study,

Causal Forest utilized adaptive partitioning to estimate conditional

average treatment effects (CATE), reducing prediction error for

treatment–microbiome interaction effects by 25-40% compared to

traditional LASSO regression (55).

Furthermore, causal ML effectively addresses key limitations of

correlational models—namely spurious associations and confounding

bias—by enabling robust control of unmeasured confounding (61).

This facilitates the clarification of true causal relationships between

immune cells and disease (36). For instance, COCA utilizes negative

control outcome calibration to restrict estimation bias to less than 40%

of that seen in conventional OLS models (62), and CV-TMLE

improves 95% confidence interval coverage (53). Collectively, these

advantages enhance model performance (63), clinical interpretability

(43), and generalizability (64), providing robust scientific guidance for

clinical decision-making (40).

In addition, mechanism-aware causal ML approaches embed

biological prior knowledge into model structures, achieving a

unification of data-driven and mechanism-driven strategies—a

closed loop between computation and experimentation (65). This

integration enables better capture of complex clinical phenotypes,

deeper mechanistic insights (41), and enhanced feasibility and

translational value of biomedical research (66). Consequently,

causal ML provides promising avenues for early detection

strategies (64) and novel drug development pipelines (34).

Table 3 summarizes the unique advantages of causal ML

methods, while Table 4 outlines their applications in multi-

dimensional data integration.
FIGURE 2

Integrating machine learning and causal inference: from predictive models to causal understanding. This figure illustrates the methodological
evolution of machine learning from conventional predictive modeling toward causal inference. Traditional machine learning focuses on prediction
and classification tasks without addressing underlying causal mechanisms. Causal machine learning integrates causal assumptions into data analysis
to estimate true treatment effects. Causal forests extend random forests to enable estimation of heterogeneous treatment effects. Causal neural
networks combine deep learning architectures with causal inference to model complex relationships. Together, these approaches bridge the gap
between predictive accuracy and causal interpretability, providing a comprehensive analytical framework for immunotherapy research.
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TABLE 3 Advantages of causal machine learning (causal ML) over traditional machine learning methods.

Causal ML
method

Traditional
method

Limitations of
traditional method

Causal ML
highlights

Dataset / Scenario
Performance
gains

Ref.

CV-TMLE /
DML

Logistic
regression +
PSM

Unstable estimation in high-
dimensional covariates; model
misspecification

Super Learner ensemble +
targeted updates; doubly
robust

COVID-19 ICU (n = 168):
dexamethasone vs
hydrocortisone on NLR

95% CI coverage ↑ by 10–
20 percentage points; no
bias increase

(53)

TMLE-SL /
BART

Multivariate
linear regression

Linear assumptions; manual
interaction terms

Model-agnostic; tree-/
network-based flexible
estimation

COVID-19 ICU (n = 168):
dexamethasone vs
hydrocortisone on NLR

CI width ↓ ≈12%; more
stable estimates

(101)

Super Learner
ITE

SAPS-II rules /
Treat-all

Ignores patient heterogeneity;
low net benefit in decision
curves

Direct ensemble
estimation of individual
treatment effects

4 septic shock steroid RCTs
(training) + external RCT
validation

External AUC = 0.77; net
benefit > Treat-all/SAPS-
II strategies

(60)

Causal Forest /
X-Learner

Random forest /
LASSO

Only average treatment effects;
heterogeneity missed

Adaptive partitioning for
CATE estimation

MiCML: gut microbiota +
ICI response (n = 128)

Interaction effect error ↓
25–40%

(55)

ANN-DML
Estimator

Kernel/spline
nonparametric

“Curse of dimensionality”
Neural net approximates
both treatment and
outcome models

Simulated immunomarker
scenario with p → 2n

MSE ↓ ≈30% (54)

COCA
(Negative
Control
Calibration)

OLS /
traditional
sensitivity
analysis

Unmeasured confounding not
identifiable

Negative control outcome
+ doubly robust via
Lavaan framework

Education intervention +
inflammation markers
(simulation + real)

Bias ≤ 40% of OLS
estimate

(62)

Mechanistic
Deep Learning

End-to-end
CNN/LSTM

Lacks mechanistic
interpretability; weak
extrapolation

Embeds ODE tumor-
immune dynamics

Mathematical tumor models
+ in vitro experiments

RMSE ↓ 25%;
reproducible via wet-lab
validation

(65)

TNDDR (DML
+ Cross-fitting)

Classic test-
negative logit

High-dimensional covariates
inflate SE

Doubly robust + cross-
fitting

Québec health records (age
≥60): COVID-19 vaccine
effectiveness

SE ↓ 26–67%;
generalization improved

(102)
F
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CV-TMLE, cross-validated targeted maximum likelihood estimation; DML, double machine learning; BART, Bayesian additive regression trees; ITE, individualized treatment effect; CATE,
conditional average treatment effect; COCA, causal outcome calibration using negative control; OLS, ordinary least squares; TNDDR, test-negative design doubly robust estimator; CI, confidence
interval; pp, percentage points; MSE, mean squared error; RMSE, root mean squared error; SE, standard error. Arrows: ↑ indicates increase/improvement; ↓ indicates reduction.
This table summarizes eight representative Causal ML approaches, demonstrating their superiority over traditional methods in terms of robustness, flexibility, and capacity to handle high-
dimensional, heterogeneous, and nonlinear immunological data.
TABLE 4 Applications of multimodal causal ML: integrated modeling of imaging, omics, clinical, textual, and temporal data.

Study &
Year

Data modalities Methodological mechanism Dataset / Application outcome Ref.

Clinical
Transformer,

2025

Clinical records + lab indices +
DNA/RNA sequencing

Transformer + self-attention; uses in silico
counterfactual perturbations to explore immune

benefit subgroups

External validation across 7 cancer types; C-index ↑
0.05–0.10; identified a cohort potentially benefiting

from immunotherapy
(56)

MOFS Fusion
Framework,

2025

MRI + digital pathology +
genomics/transcriptomics/

proteomics

Deep feature fusion with explicit tracking of
"latent causal features"

Stratified 3 glioma subtypes; MOFS3 subtype most
sensitive to anti–PD-1 therapy

(57)

MMF HCC,
2025

CT imaging + serum AFP / liver
function / clinical phenotypes

Residual-attention fusion; quantifies ICI benefit
via individualized OS/PFS counterfactual

contrasts

C-index = 0.76 for ICI benefit prediction; HR = 2.44
in high-risk group

(103)

Bio-relevant
AI (CRC II),

2025

CT radiomics + histopathology +
gene expression + clinical stage

Joint image-omics embedding + counterfactual
risk difference for chemotherapy selection

Helped 32% of stage II colorectal cancer patients
avoid unnecessary chemotherapy; RA-net

interpretability score ↑
(58)

CRISP (ICU),
2025

Temporal vital signs + clinical
notes + lab tests

Native counterfactual generation + causal graph
priors to address class imbalance

AUROC = 0.90–0.95 across 3 centers; cross-domain
generalization error ↓ 15%

(104)
C-index, concordance index; OS, overall survival; PFS, progression-free survival; HR, hazard ratio; AUROC, area under the receiver operating characteristic curve; AFP, alpha-fetoprotein; MOFS,
multi-omics feature selection; MMF, multimodal fusion; HCC, hepatocellular carcinoma; CRC, colorectal cancer; CRISP, causal risk prediction in ICU; ICU, intensive care unit. Arrows: ↑
denotes improvement/increase; ↓ denotes reduction.
This table illustrates how causal ML enables personalized treatment effect estimation by integrating multimodal data—spanning imaging, omics, clinical indicators, text, and temporal signals—
across diverse immunotherapy-related scenarios.
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3 Challenges in the application of
causal inference machine learning
models

At the data acquisition level, the presence of inaccurate or

incomplete data significantly hinders the implementation of causal

inference models. In particular, measurement errors can amplify

causal bias, thereby undermining the reliability of results (67).

Moreover, when missing data violate identifiability assumptions,

no estimator can recover the true causal effect, rendering any

derived causal inference invalid (68).

At the clinical application level, causal machine learning

(Causal ML) models often exhibit a “black-box” nature, which

severely limits clinician acceptance (69). When internal parameters

and computational processes become overly complex, it becomes

difficult for clinicians to understand how conclusions are derived,

ultimately impeding clinical translation (70, 71).

At the research methodology level, both methodological

selection difficulties and interdisciplinary collaboration barriers

constrain the advancement of Causal ML in immunological

research. Causal relationships vary in structure and often require

tailored methods, yet the abundance of available approaches—each

with unique limitations—makes optimal selection challenging,

especially for researchers with limited formal training in causal

modeling (33). Furthermore, interdisciplinary efforts are frequently

impeded by cultural and conceptual gaps between domains. For

instance, biomedical scientists tend to focus on clinical applicability,
Frontiers in Immunology 07
statisticians emphasize methodological validity, and computer

scientists prioritize algorithmic performance. These differing

priorities can lead to communication breakdowns and ultimately

slow scientific progress (72, 73).

Table 5 summarizes the three major challenges faced by

Causal ML.
4 Discussion

Over the next five years, addressing the two core challenges—data

quality and model interpretability—will require the development of

innovative technical solutions. In terms of data quality, the

integration of multiple imputation with the G-formula has

significantly reduced bias caused by missingness in cystic fibrosis

studies (74). Likewise, the MI-BART method has demonstrated

superior robustness in multi-treatment comparisons (75), offering

promising prospects for enhanced data control and quality

improvement over the next 5-10 years.

Regarding interpretability, studies have shown that Causal-XAI

hybrid frameworks can generate causal attribution heatmaps,

enabling physicians to better understand image-based decisions

(76). In addition, CLARUS, an interactive counterfactual reasoning

platform, allows clinical experts to directly manipulate and verify

model reasoning chains (77). This effectively addresses the “black-

box” issue by clarifying causal pathways underlying model outputs

(78), thereby improving both clinical decision-making and

regulatory trust, ultimately facilitating clinical translation (79).
TABLE 5 Challenges and limitations in applying causal machine learning (causal ML) models in immunological research.

Challenge
Category

Study focus Key findings Ref.

Data Collection:
Inaccuracy and
Missingness

HIV cohort: modeling measurement error and
missingness as latent outcome missingness

“All your data are always missing” demonstrates that observational
data alone cannot validate causal assumptions; measurement error →

information loss → biased ATE; highlights need for additional
assumptions or sensitivity analyses in high-noise immunological

datasets

(67)

Pediatric long-term medication study using graphical
models to analyze missingness patterns

In longitudinal pharmacokinetic data, if missing nodes violate
identifiability conditions, no estimator can recover the true causal

effect; emphasizes prior design and imputation strategy
(68)

Clinical Application: Lack
of Model Interpretability

Four clinical decision support scenarios comparing
interpretable vs. non-interpretable models

Summarizes seven dimensions of interpretability (e.g., stakeholder type,
transparency-accuracy trade-off); concludes that complex causal

models lacking clear explanation are difficult to integrate into clinical
workflows

(69)

Review of Causal ML in precision medicine, including a
section on explainability and regulatory barriers

While causal graphs and deep models can address interventional
questions, lack of clinician-facing visualization and auditing tools

sustains “black-box” concerns
(71)

Methodological & Cross-
Disciplinary Barriers

Systematic evaluation of causal inference strategies (IV,
RD, PS, G-methods); introduces “evidence

triangulation”

Many researchers lack training to choose appropriate methods;
recommends triangulation and cross-disciplinary validation for greater

robustness
(105)

Commentary on clinical research practice

Cultural divides between epidemiology, statistics, and clinical medicine
hinder communication; advocates for a unified vocabulary and

collaborative platforms—still a major bottleneck in immunological
causal research

(72)
frontier
ATE, average treatment effect; HIV, human immunodeficiency virus; IV, instrumental variable; RD, regression discontinuity; G-methods, graphical-based causal inference methods; HTA, health
technology assessment.
This table synthesizes three major classes of challenges faced when applying causal ML models to immunological studies: (1) data quality and missingness, (2) model interpretability and clinical
adoption, and (3) methodological complexity and interdisciplinary barriers.
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In the future, the integration of Bayesian nonparametric models and

natural language processing (NLP) is expected to further enhance

model performance by extracting authentic causal structures from

large-scale biomedical data (80), revealing deep causal relationships

and identifying novel therapeutic targets (81, 82).

In the next 5-10 years, methodological integration will become a

central theme. The emerging “triangulation framework” will be
Frontiers in Immunology 08
more widely adopted. This framework enhances the robustness of

causal inference by integrating and cross-validating multiple

approaches such as instrumental variables (IVs), regression

discontinuity (RD), and propensity scores (83). In parallel,

strengthening interdisciplinary collaboration and talent

development will become essential. Multidisciplinary teams can

develop shared terminologies and workflows, promoting effective
TABLE 6 Technical strategies addressing the three core challenges in causal machine learning (causal ML) applications.

Challenge Solution strategy Supporting evidence Ref.

Poor Data Quality (Missingness /
Measurement Error)

Multiple Imputation + G-formula: Integrates
Bayesian multiple imputation into G-formula to

simultaneously estimate counterfactuals and impute
missing data

Demonstrated in cystic fibrosis cohort to recover time-
varying treatment effects and significantly reduce bias

from missing data
(74)

MI-BART / GAM for multiple-treatment scenarios:
Fits flexible models for each treatment arm and

imputes all counterfactual outcomes

MI-BART showed superior robustness and CI coverage
over weighting/matching in multi-center readmission

risk comparisons
(75)

Limited Clinical Interpretability

Causal-XAI federated learning: Employs causal
sparsity weights and blockchain validation for

federated clinical feature attribution

Heterogeneity-aware causal sparsity FL reduced
communication cost (↓) and improved performance
(↑), generating causal heatmaps interpretable to

clinicians

(76)

CLARUS: An interactive counterfactual explanation
platform allowing clinicians to explore GNN-based

reasoning chains

Combines manual and automated interfaces; enables
expert manipulation and validation of reasoning paths

to enhance model trust
(77)

Difficulty in Method Selection
Evidence triangulation: Parallel use of IV, RD,
propensity scores, and G-methods with cross-

validation across designs

Proposes “biased-but-directionally-consistent cross-
validation” framework, emphasizing method and

cohort consistency as a criterion for causal reliability
(83)

Interdisciplinary Collaboration Barriers
Integration of Health Decision Science & Causal

Inference: Aligns DAGs and decision models under
shared HTA frameworks

Highlights complementarity of causal inference and
economic evaluation; provides joint workflow

templates for epidemiology, economics, and clinical
collaboration

(84)
frontier
MI-BART, multiple imputation with Bayesian additive regression trees; GAM, generalized additive model; XAI, explainable artificial intelligence; FL, federated learning; GNN, graph neural
network; DAG, directed acyclic graph; HTA, health technology assessment. Arrows: ↑ indicates enhancement/improvement; ↓ indicates reduction.
This table presents validated methodological solutions corresponding to the three core Causal ML challenges—data quality, interpretability, and method selection—supported by empirical
evidence and interdisciplinary integration practices.
TABLE 7 Future directions for causal machine learning in immunology over the next 5–10 years.

Research direction Theoretical foundation Ref.

Large-scale Perturbation Single-
Cell Atlas

Introduced the concept of a “Perturbation Cell Atlas,” proposing training generative causal models on millions of CRISPR-
based scRNA-seq perturbation profiles

(92)

Causal GRN Inference from
Single-Cell Data

Velorama applies RNA velocity to represent developmental trajectories as DAGs, enabling inference of fast/slow
transcriptional regulators and dynamic GRNs at single-cell resolution

(93)

Explainable Causal AI for Multi-
omics Integration

CIMLA framework combines SHAP-style interpretability with structural causal models to trace directional regulation in
immune-metabolic pathways

(96)

Causal Inference in Vaccine
Design

AI-driven vaccinology requires target trial emulation and causal NLP to accelerate discovery of protective correlates (94)

Toolchains for Single-Cell Causal
Discovery

CausalCell platform integrates multiple algorithms to facilitate causal signal mining in single-cell immunology (106)

Explainable Federated Causal
Learning

Combines causal sparsity weighting with blockchain-based data quality control to enable multi-institutional causal modeling
under privacy-preserving constraints

(76)

Cross-Site Distributed Causal
Inference

Federated causal estimation will extend to Cox and Aalen–Johansen models, correcting for heterogeneity across clinical sites (95)
CRISPR, clustered regularly interspaced short palindromic repeats; scRNA-seq, single-cell RNA sequencing; GRN, gene regulatory network; DAG, directed acyclic graph; SHAP, Shapley additive
explanations; NLP, natural language processing.
This table highlights emerging trajectories in causal ML for immunological research, ranging from single-cell network inference to federated causal modeling, paving the way for more
interpretable, scalable, and collaborative approaches in precision immunology.
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integration across epidemiology, economics, and clinical medicine

(84) and enabling each field to contribute its strengths to solve

complex problems (42, 73). Cultivating versatile professionals

capable of navigating the intricacies of immune-related biological

systems (85) will help dismantle disciplinary silos and address

challenges in resource allocation and coordination (86). This

integrated approach will enable more comprehensive solutions

(87) to meet the rapidly evolving demands of immune drug

research (88). Furthermore, academic institutions should establish

dedicated programs and curricula to train cross-disciplinary talent

in causal inference and immunotherapy (42, 73), fostering the

convergence of modern science and specialized education (89),

promoting skills development (90), and facilitating global

collaboration in immunology research (91), injecting new vitality

and opportunity into the field.

In the next 5-10 years, causal inference models are expected to

be widely implemented in clinical immunology. One notable

development is the “Perturbation Cell Atlas” proposed by Rood

et al., which represents a conceptual turning point. Future research

will likely build on this by leveraging large-scale CRISPR-scRNA-

seq perturbation datasets to train and deploy foundational causal

models for practical guidance (92). Technologically, tools such as

Velorama, which has shown great promise in immune

differentiation studies, will play a pivotal role. By integrating RNA

velocity to express cellular developmental trajectories as directed

acyclic graphs (DAGs), these tools enable causal network inference

at single-cell resolution, a capability expected to be expanded in

future research (93).

With the continued advancement of artificial intelligence,

AI-assisted vaccine design is poised to become a prevailing trend.

This will necessitate the use of target trial emulation, causal NLP,

and federated causal estimation frameworks to identify causally

relevant endpoints and accelerate critical discoveries (94, 95).

Moreover, as federated learning frameworks mature across

institutions (76), interpretable causal tools such as CIMLA will

likely become standardized (96), enabling a full transition of causal

inference from theoretical development to routine clinical decision

support. This process will be further facilitated by improvements in

data quality and model robustness through rigorous control of

covariates and confounding variables (97–99), which are essential

for enhancing the credibility, transparency, and real-world

applicability of causal models in clinical settings.

Table 6 presents strategies to address the three major challenges,

while Table 7 outlines the projected applications of causal ML in

immunology over the next 5-10 years.
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