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In-silico tool for predicting and
scanning rheumatoid arthritis-
inducing peptides in an antigen
Ritu Tomer , Shipra Jain , Pushpendra Singh Gahlot ,
Nisha Bajiya and Gajendra P. S. Raghava *

Department of Computational Biology, Indraprastha Institute of Information Technology, New
Delhi, India
Introduction: Rheumatoid arthritis (RA) is an autoimmune disorder in which the

immune system mounts an abnormal response to self-antigens, resulting in

chronic inflammation and joint damage. Identifying antigenic regions in proteins

that trigger RA is essential for the development of protein-based therapeutics.

Methods: We developed predictive models for HLA class II binding RA-inducing

peptides using a dataset of 291 experimentally validated RA-inducing peptides

and 165 RA non-inducing peptides. Positional and compositional analyses were

performed to identify residue preferences. Alignment-based approaches (BLAST

and MERCI), machine learning classifiers, deep learning, and protein language

model–based methods were evaluated for predictive performance.

Results: Compositional analysis revealed significant enrichment of glycine, proline,

and tyrosine in RA-inducing peptides. Alignment-based approaches provided high

precision but limited coverage. Amongmachine learningmethods, XGBoost achieved

the best performance (AUC = 0.75) on the validation dataset, while ProtBERT was the

top-performing protein language model (AUC = 0.72). The ensemble model

integrating XGBoost with MERCI-derived motifs yielded the highest overall

performance (AUC = 0.80; MCC = 0.45) on an independent validation dataset.

Discussion: This study presents computational strategies for identifying RA-

inducing peptides and demonstrates the advantage of combining motif-based

and machine learning approaches for improved performance. The findings are

valuable for evaluating the safety of proteins in probiotics, genetically modified

foods, and protein-based therapeutics. To facilitate broader use, the best-

performing approach has been implemented in RAIpred, a web server and

standalone software tool for predicting and scanning RA-inducing peptides,

available at https://webs.iiitd.edu.in/raghava/raipred/.
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• Rheumatoid arthritis (RA), an incurable chronic joint disorder.

• Identification of antigenic regions responsible for inducing RA.

• Application of protein language models in prediction of RA-inducing peptides.
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• Ensemble model integrating similarity-based and machine

learning approaches.

• Development of webserver, standalone, pypi and

GitHub package.
1 Introduction

Rheumatoid arthritis (RA) is an incurable, chronic autoimmune

joint disorder that exhibits significant clinical heterogeneity (1–3).

RA is characterized by abnormal inflammation within the synovial

tissue of the joints, which progressively damages both cartilage and

bone (4, 5). The global prevalence of RA affects approximately 1% of

the world population, translating to millions of individuals (6, 7).

Several studies have reported that RA contributes to a diverse range

of systemic complications, including cardiovascular disease (5, 8).

The pathogenesis of RA is still not fully understood, but it is

believed to arise from interactions between genetic predisposition

and environmental factors. Several immune cells secrete immune-

regulatory molecules that cause inflammation and joint damage—

hallmarks of autoimmune diseases (see Figure 1) (9). Previously, in-

silico methods have been developed to predict binders of HLA-

DRB1*04:01, as it plays a critical role in RA (10, 11).

In response to genetic and environmental triggers, autoreactive

CD4+ T cells become activated and present antigens to B cells,

which in turn produce autoantibodies such as rheumatoid factor

and anti-citrullinated protein antibodies (12). This autoimmune

response is further driven by pro-inflammatory cytokines such as

tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6),

which promote enhanced immune cell activity and inflammation

in the synovium (13). Additionally, macrophages and synovial

fibroblasts release chemokines that perpetuate the inflammatory

response (14). The dysregulation of the Janus kinase (JAK)/signal

transducer and activator of transcription (STAT) signaling pathway

is crucial, as it mediates the signaling of several key cytokine

receptors involved in RA (2, 15). Together, these pathways

contribute to a persistent autoimmune response, leading to

chronic joint inflammation and eventual tissue destruction (16).

Traditionally, therapy for RA has primarily focused on disease-

modifying anti-rheumatic drugs (DMARDs) (16). These drugs have

been reported to reduce pro-inflammatory cytokine production,

thereby decreasing the underlying inflammation in the synovium

and slowing disease progression (17). Significant progress has been

made in the use of DMARDs that target inflammation to prevent

joint damage. Methotrexate is considered the first-line therapy due

to its proven efficacy and safety (18–20). Additionally,

hydroxychloroquine and sulfasalazine are also widely regarded as

conventional DMARDs, which can be administered either alone or
eviations: RA, Rheumatoid arthritis; IEDB, Immune epitope database;

, Human leukocyte antigen; XGBoost, extreme gradient boosting classifier;

ERT, Protein BERT; DMARDs, Disease-modifying anti-rheumatic drugs;

IDs, Non-steroidal anti-inflammatory drugs; GMO, Genetically

fied organisms.
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in combination with methotrexate (21, 22). Apart from DMARDs,

glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs),

and inflammatory cytokine inhibitors (ICIs) are also employed in

managing and preventing RA progression (1). However, these

traditional drugs have their limitations, including inadequate

response, intolerance, high cost, and a number of side effects (23).

In the era of protein therapeutics, one of the key challenges is

identifying the antigens or antigenic regions that activate T-helper

cells implicated in RA (24). In the past, numerous computational

methods have been developed to predict T-helper epitopes

responsible for inducing cytokines such as interferon-gamma,

TNF-a, IL-4, and IL-5 (25–28). These cytokines play a crucial role

in the development of autoimmune diseases like RA. However, to

date, there is no in silico computational tool available that predicts T-

helper cell-inducing peptides or epitopes that specifically trigger RA.

In this study, we focused on identifying peptides that activate T

cells responsible for inducing RA. We extracted 291 experimentally

validated MHC class II-binding RA-associated peptides and 165

non-associated peptides from the Immune Epitope Database

(IEDB; https://www.iedb.org). To create a robust model, we

implemented both alignment-based approaches such as the Basic

Local Alignment Search Tool (BLAST) and motif discovery, as well

as alignment-free approaches, including machine learning (ML),

deep learning (DL), and protein language models (PLMs). In

addition, we developed an ensemble model that combines our

best performing ML models with motif-based features to achieve

higher predictive performance. Finally, we developed a web server

and standalone software tool, RAIpred, for predicting, designing,

and scanning RA-inducing peptides.
2 Materials and methods

2.1 Dataset preparation and preprocessing

We gathered experimentally validated data from the IEDB for our

study and performed several preprocessing steps to improve the

quality of the data used (29). First, we extracted a total of 344

unique RA-inducing peptides as the positive dataset and 176 unique

RA non-inducing peptides (not overlapping with the positive dataset)

as the negative dataset from IEDB. We observed that RA-associated

peptides are binders of both HLA class I and HLA class II molecules

(please refer to Supplementary Figure S1). Among these, the HLA class

I set contained only 46 peptides, while the HLA class II set included

298 peptides. Due to the limited number of HLA class I peptides, we

selected only the HLA class II peptides for further analysis.

Next, we carried out several preprocessing steps, including the

removal of duplicate sequences from the negative dataset that

overlapped with the positive dataset. We also filtered out sequences

from the positive dataset with very low frequency (i.e., those that

appeared ≤ 6 times). Furthermore, we retained sequences with lengths

between 9 and 20 amino acids. After preprocessing, we were left with

291 sequences in the positive dataset and 165 sequences in the

negative dataset. The detailed workflow is shown in Figure 2.
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2.2 Feature generation

Sequence-based features are numerical or categorical

representations derived directly from the amino acid sequences of

peptides or proteins. These features are essential for computational

models such as ML or DL- to understand and make predictions about

peptide properties, including immunogenicity, toxicity, antimicrobial

activity, or disease association. In the present study, we generated

relevant sequence-based features for both RA-inducing and non-

inducing peptides. We calculated various composition-based features

using the Pfeature software (30). The Pfeature software calculates about

9,189 features using amino acid sequences. We have extracted features

such as amino acid composition (AAC), dipeptide composition (DPC),

distance distribution of residues (DDR), and many more (please refer

to Supplementary Table S1).

In addition to composition-based features, we extended feature

extraction to include binary profiles. To capture maximum

information from the amino acid sequences, we used the Amino
Frontiers in Immunology 03
Acid Binary Profile (AABP) module of the Pfeature software (30).

The generated features served as the basis for implementing ML-

based prediction algorithms. Furthermore, we included embeddings

from PLMs, specifically those generated using ProtBERT, developed

by Rostlab (31). Each feature type carries its own significance and

contributes uniquely to the overall prediction performance.
2.3 Preliminary analysis

2.3.1 Positional analysis
We created a two-sample logo using the “Two Sample Logo”

software to analyze the positional preferences of amino acid

residues (32). This method requires input sequences of fixed

length. Since the minimum peptide length in our dataset is nine

residues, we extracted 9-mers from both the N-terminal and C-

terminal of each peptide. These were then concatenated to form a

fixed-length sequence of 18 amino acids for each peptide. To
FIGURE 1

The etiology of rheumatoid arthritis (RA), highlighting how genetic and environmental factors influence T-helper cell activation, ultimately leading to
bone erosion and cartilage degradation.
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generate the two-sample logo plot, these 18-residue sequences from

the positive and negative datasets were used as input, enabling the

identification of amino acid enrichment or depletion at specific

positions between the two classes.

2.3.2 Compositional analysis
To gain deeper insights into the differences in AAC between RA-

inducing and non-inducing peptides, we performed compositional

analysis on both the positive and negative datasets. For this, we

utilized the Pfeature software to compute the AAC of each dataset

(30). The AAC is calculated by Pfeature using the following formula;

AACi =
Ri

L
∗ 100 ½1�

Where, AACi is amino acid composition of residue type i, Ri is

the number of residues in i, and L is the length of peptide sequence.

2.3.3 Mean-based univariate analysis
In this analysis, we calculated the absolute mean difference of

each feature between the RA-inducing (positive) and non-inducing
Frontiers in Immunology 04
(negative) classes after normalizing the dataset. To assess the

relevance of the generated features, we computed the mean

difference for each feature across both groups. Subsequently, we

applied an independent t-test to identify the top 5 features with

statistically significant p-values distinguishing the two classes.

2.3.4 Logistic regression-based analysis
We also employed logistic regression (LR) as a single-feature

statistical model to evaluate the relationship between each feature

and the target label. We computed the area under the curve (AUC)

for each feature to assess its individual relevance in classification.
2.4 Alignment-based approach

2.4.1 BLAST search
To annotate peptide sequences, we employed the well-known

similarity search tool BLAST (33). Specifically, we used the “blastp-

short” algorithm (BLAST+ v2.2.28) designed for short peptide

sequences to predict RA-inducing and non-inducing peptides

based on sequence similarity.
FIGURE 2

The complete workflow used to develop RAIpred.
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2.4.2 Motif search
Motifs are short amino acid patterns potentially associated with

shared biological functions. This analysis helps identify signature

patterns in RA-inducing and non-inducing peptides. These motifs

may serve as targets for the development of drugs and therapeutic

interventions. We employed the MERCI tool (34), implemented in

Perl, to discover motifs exclusive to either the positive or negative

dataset using both default and user-defined parameters.
2.5 Alignment-free approach

2.5.1 Machine learning models
We used the Scikit-learn Python library to implement various

ML algorithms for classification. The classification algorithm

consists of decision trees (DT), random forest (RF), multi-layer

perceptron (MLP), eXtreme gradient boosting (XGBoost), support

vector with the kernel as a radial basis (SVR), ExtraTreesClassifier

(ET), LR, k-nearest neighbors (KNN), and Gaussian Naïve Baise

(GNB). We employed a GridSearchCV approach to optimize

hyperparameters, using AUC as the scoring metric.

2.5.2 Deep learning models
To process sequential data and capture local patterns in peptide

sequences, we implemented a one-dimensional convolutional

neural network (1D CNN) model for the DL technique. This

model is particularly effective in recognizing sequence patterns

and dependencies. Hyperparameters were tuned to maximize

classification performance for each dataset.
2.6 Feature selection

As not all features contribute equally to model performance, we

applied two feature selection methods: minimum Redundancy—

Maximum Relevance (mRMR) and support vector classifier with L1

regularization (SVC-L1). Feature selection was applied to all

composition-based features. The SVC-L1 method selected 34

features, whereas mRMR selected 50 features. We also selected top-

performing features based on mean-based univariate and LR analyses.

In addition to this, we have selected top relevant features from

mean-based univariate analysis and LR-based analysis. After

computing the mean difference among both groups of each

feature, we selected 3,782 of 9,189 features. Second, we applied an

independent t-test to identify significant features from the stretch of

3,782 features using a p-value ≤ 0.05. Finally, we have obtained 305

features with maximum absolute mean difference ranges from 0.001

to 0.14 with significant p-values. Upon which, we have deployed ML

classifiers over the top 10, 20, 50, 100, 150, 200, 250, and 305

features. Similarly, we have developed ML models on the top 10, 20,

and 50 features obtained from LR-based analysis.
2.7 Protein language models

Large language models (LLMs), such as PLMs, excel in tasks like

peptide classification due to their contextual understanding. We
Frontiers in Immunology 05
utilized ProtBERT, a pre-trained PLM developed by RostLab, and

fine-tuned it to classify RA-inducing and non-inducing peptides.

After fine-tuning, the model predicted the class of each input

sequence with improved accuracy.
2.8 Ensemble method

To develop a more robust classification system, we

implemented two ensemble approaches. First, the BLAST-based

approach was used to identify disease-causing peptides based on

similarity hits, and then the ML approach was used for the

prediction of those peptides that are not covered by the BLAST-

based approach. Second, the Motif-based approach was used to

classify between disease-causing peptides by identifying specific

motifs, and then the ML approach was used for the prediction of

those peptides not covered by the Motif-based approach.
2.9 Model evaluation

To ensure generalizability and prevent overfitting, we followed

standard ML practices, including fivefold cross-validation (35, 36).

The dataset was split in an 80:20 ratio, with 80% used for training and

20% reserved for external validation. Models were evaluated using

both threshold-dependent and threshold-independent metrics:

Sensitivity =
TP

TP + FN
½2�

Specificity =
TN

TN + FP
½3�

Accuracy =
TP + TN

TP + TN + FP + FN
½4�

F1 − Score =
2TP

2TP + FP + FN
½5�

MCC =
(TP*TN) − (FP*FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p ½6�

Where FP is false positive, FN is false negative, TP is true

positive and TN is true negative, AUC was used to assess the overall

discriminatory power of the models , independent of

classification thresholds.
3 Results

3.1 Preliminary analysis

3.1.1 Positional analysis

To determine the most significant positional preferences of

amino acid residues within peptides, we employed “Two

Sample Logo” for positional analysis. It is important to note

that the first nine positions correspond to the N-terminal
frontiersin.org
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residues, while the last nine represent the C-terminal residues

of the peptides. Our analysis revealed that glycine (G),

glutamine (Q), and phenylalanine (F) are predominantly

present at the N-terminal of RA-inducing (positive) peptides,

whereas isoleucine (I), glycine (G), tyrosine (Y), and proline

(P) are enriched at the C-terminal. In contrast, threonine (T)

and isoleucine (I) were observed at the N-terminal, and

alanine (A), leucine (L), arginine (R), and histidine (H)

were commonly found at the C-terminal of non-inducing

(negative) peptides. Notably, glutamic acid (E) was

consistently prominent across almost all positions in the

negative dataset (refer to Figure 3).
3.1.2 Compositional analysis
We computed the AAC (Using Equation 1) for both RA-

inducing (positive) and RA non-inducing (negative) peptides. As

shown in Figure 4, glycine (G), proline (P), and tyrosine (Y) exhibit

the highest average composition in RA-inducing peptides, with

statistically significant p-values compared to the negative dataset. In

contrast, alanine (A), aspartic acid (D), glutamic acid (E), and leucine

(L) are significantly more abundant in the RA non-inducing peptides.

3.1.3 Mean-based univariate analysis
We finally selected 305 features based on their higher mean

differences between the positive and negative datasets, along with

statistically significant p-values. As shown in Table 1, the

composition-enhanced transition and distribution (CeTD)

features such as CeTD_21_HB and CeTD_25_p_VW3 exhibited

the highest mean differences of 0.084 and −0.140, respectively. For

the complete list of selected features and their rankings, please refer

to Supplementary Table S2.

3.1.4 Logistic Regression-based analysis
To identify the best features based on their individual

performance, we also applied an LR classifier on 9,189 features

calculated using the Pfeature tool. We observed that the top AUC

features belong to the Bond Composition (BTC) and CeTD feature

categories. The features named BTC_T, BTC_S, and BTC_H achieved

a maximum AUC of 0.69, while features CeTD_75_p_VW3,

CeTD_100_p_VW3, and CeTD_50_p_VW3 achieved an AUC of
tiers in Immunology 06
0.68. The top 10 features with their performance are shown in Table 2,

and detailed results are provided in Supplementary Table S3.
3.2 Alignment-based approach

We used both alignment-free (ML techniques) and alignment-

based (motif & BLAST) methods, as explained in previous sections.

Each strategy has its own advantages and limitations. Alignment-

based techniques generally have low sensitivity but high specificity,

as their performance depends on the presence of motifs or sequence

similarity. In contrast, alignment-free ML-based approaches are

more generalizable and not dependent on sequence similarity. We

developed ensemble or hybrid approaches combining BLAST and

Motif to leverage the strengths of both methods.

3.2.1 BLAST
In the BLAST-based approach, we first prepared a BLAST-

formatted database using the training dataset. Then, we searched

the query sequences (from the validation dataset) against the

training database to find hits at various e-values ranging from 1e-

5 to 1e+3. A query sequence was categorized as positive if the top hit

was positive and negative if the top hit was negative. The detailed

BLAST results on the validation data are shown in Table 3.

Next, we combined the predicted labels obtained using CeTD

features with BLAST scores to improve the performance of our XGB

models. We attained a maximum AUC of 0.77 on the validation

dataset at an e-value of 1.00E+01. However, such a high e-value

could indicate a random chance of getting hits. The complete result

table is provided in Supplementary Table S4. To develop a more

robust model, we further explored a motif-based approach.

3.2.2 Motif
In the motif-based approach, we identified K exclusive motifs using

the MERCI tool. MERCI provides different parameters to generate

specific motifs based on positive and negative datasets. We calculated

exclusive motifs using the “None,” KOOLMAN-ROHM, and BETTS-

RUSSELL classification methods, assigning a score of +0.5 if the motif

was found in a positive sequence and 0 if nomatch was found.We then

combined the predicted labels from the best model with motif scores.
FIGURE 3

Preference of residues at different positions in RA-inducing and non-inducing peptides.
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The best performing motifs were obtained using the BETTS-RUSSELL

classification method. The detailed list of motifs with their occurrence

in the RA-inducing dataset is provided in Table 4.
3.3 Alignment free approach

In this study, multiple classifiers were employed to differentiate

between RA-inducing and non-inducing peptides. The predictive

performance of these models was systematically assessed using
Frontiers in Immunology 07
standard evaluation metrics, with the corresponding calculations

derived from the formulas provided in Equations 2–6. This ensured

a comprehensive and rigorous assessment of classification accuracy,

reliability, and generalizability.

3.3.1 Machine learning-based analysis
We applied multiple ML-based classifiers to composition-based

features and AABP features. Results are shown in Supplementary

Table S5. Our findings demonstrate that among the various

composition-based features, the CeTD features performed

exceptionally well. Using CeTD based features, we achieved a

maximum accuracy and AUC of 71% and 0.75 on the training

dataset and 66.30% and 0.75 on the validation dataset, with balanced

sensitivity and specificity using the XGB classifier. Table 5 shows the

performance of the best model across all composition and binary

profile-based features on the validation dataset.

3.3.2 Deep learning-based analysis
We applied a 1D-CNN on various composition-based features

as well as on amino acid binary profile-based features. The 1D-CNN

performed well on tri-peptide composition features, achieving an

AUC of 0.69 on the validation dataset. Detailed results of the 1D-

CNN model on different features are provided in Supplementary

Table S6. Performance summary is shown in Table 6.

3.3.3 Feature selection techniques
To select themost relevant features, we applied two feature selection

techniques—SVC-L1 and mRMR. Using SVC-L1, we selected 34

composition-based features. As shown in Table 7, we achieved a

maximum AUC of 0.72 on the validation dataset using the SVC.

We also applied the mRMR technique, which selected 50

composition-based features and achieved a maximum AUC of

0.73 using the RF classifier. These results are presented in Table 8.
TABLE 1 Significantly preferred, or not preferred, features in RA-
inducing peptides in terms of difference in mean values between RA-
inducing and non-inducing peptides.

Feature

Mean value Difference in
mean (Inducing -
non-inducing)

RA-
inducing

Non-
inducing

Features preferred in RA-inducing peptides

CeTD_21_HB 0.466 0.382 0.084

SER_Y 0.275 0.196 0.079

PRI_NE 0.340 0.265 0.075

PRI_NE_pH 0.340 0.265 0.075

CeTD_11_SS 0.373 0.299 0.074

Features not preferred in RA-inducing peptides

CeTD_25_p_VW3 0.306 0.445 −0.140

CeTD_100_p_VW3 0.320 0.453 −0.133

SER_E 0.382 0.514 −0.132

CeTD_75_p_VW3 0.340 0.471 −0.131

CeTD_50_p_VW3 0.330 0.458 −0.128
FIGURE 4

The average amino acid composition among RA-inducing (i.e., positive) and RA non-inducing (i.e., negative) peptides.
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Additionally, we implemented mean-based univariate analysis

and LR-based feature selection. We applied ML techniques to 305

features, as well as to the top 200, 150, 100, 50, 20, and 10 selected

features. Using this approach, we achieved the highest AUC of 0.73

for the top 100, 150, and 200 features. Results are presented in

Table 9. For detailed results, refer to Supplementary Table S7.

Performance of various ML algorithms on the top 10, 20, and 50

features selected through LR is provided in Supplementary Table S8.
3.4 Protein language model-based analysis

We used two pre-trained large language models—protBERT and

BioBERT—for this study. Eachmodel was fine-tuned by changing the

number of epochs, which allowed the model to learn and update its

parameters depending on the sequences it processed. An epoch is

defined as one complete pass through the whole training dataset. The
Frontiers in Immunology 08
best results were obtained at epoch 10 for protBERT and epoch 3 for

BioBERT, achieving maximum AUCs of 0.71 and 0.67, respectively,

on the fine-tuned models. Results are shown in Table 10.

Furthermore, we extracted embeddings from the fine-tuned

models and applied various ML algorithms. However, these models

did not perform well on our dataset. Results for PLM-based models

are presented in Supplementary Table S9.
3.5 Ensemble model

An ensemble model was developed by combining the best-

performing ML model (based on CeTD features) with the motif-

based approach. BETTS-RUSSELL classification in MERCI

(parameters: fp = 2, fn = 0, g = 0, k = 20) identified the best

motifs that covered the maximum validation dataset. We combined

these motif scores with the best ML classifier. As shown in Table 11,
TABLE 3 The performance of the BLAST method in terms of coverage of RA-inducing and non-inducing peptides at different e-values.

BLAST + CeTD (validation dataset)

E-value Number of hits RA-inducers RA non-inducers Correct pos Correct neg

1.00E+10 92 46 46 10 23

1.00E+03 92 46 46 10 23

1.00E+02 87 44 43 9 20

1.00E+01 66 32 34 6 13

1.00E+00 53 28 25 6 12

1.00E-01 47 25 22 20 10

1.00E-02 39 21 18 4 10

1.00E-03 30 16 14 4 9

1.00E-04 20 12 8 4 6

1.00E-05 14 7 7 2 5

1.00E-08 2 1 1 0 1
Correct pos, correct positive; Correct neg, correct negative.
TABLE 2 The performance of single feature based LR models developed using the top ten features.

Feature name Sensitivity Specificity Accuracy AUC Kappa MCC

BTC_T 65.64 66.06 65.79 0.69 0.30 0.31

BTC_S 66.32 67.88 66.89 0.69 0.32 0.33

BTC_H 65.98 67.27 66.45 0.69 0.31 0.32

CeTD_75_p_VW3 56.70 66.06 60.09 0.68 0.21 0.22

CeTD_100_p_VW3 56.70 66.06 60.09 0.68 0.21 0.22

CeTD_50_p_VW3 68.73 53.33 63.16 0.68 0.22 0.22

CeTD_100_p_HB3 71.13 53.33 64.69 0.66 0.24 0.24

CeTD_75_p_HB3 71.13 53.33 64.69 0.66 0.24 0.24

CeTD_50_p_HB1 62.89 63.03 62.94 0.66 0.24 0.25

CeTD_50_p_SS3 62.89 63.03 62.94 0.66 0.24 0.25
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this ensemble model achieved the highest AUC of 0.80 and MCC of

0.45 on the validation dataset. These exclusive motifs help in

identifying specific regions in proteins that may cause RA. This

ensemble model is also implemented in the prediction module of

the RAIpred web server for ease of access.
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3.6 Web server design

We developed “RAIpred,” available at https://webs.iiitd.edu.in/

raghava/raipred/, to provide a user-friendly web interface for

predicting HLA class II binding RA-inducing or non-inducing

peptides only. The platform includes “Prediction,” “Design,”

“Protein Scan,” and “Motif Scan” modules. The Protein Scan

module identifies RA-inducing regions in a given protein

sequence. The design module enables generation of all possible

analogs of a given peptide and evaluates their RA-inducing

potential. The Protein Scan module identifies RA-inducing

regions in the protein. The Motif Scan module uses MERCI to

map RA-inducing motifs in the query sequence. The platform is

responsive and accessible on desktops, laptops, and smartphones.

We also developed a standalone Python tool called “RAIpred”

to assist in identifying potentially disease-causing regions in

peptides or proteins. The tool can be downloaded from the web

server’s download page. The web server is powered by HTML5,

Java, CSS3, and PHP and supports a variety of devices, including

desktop, tablet, mobile, and iMac.
4 Discussion

RA is caused by gradual loss of self-tolerance in genetically

vulnerable individuals due to various environmental stressors. Both

the genetic and environment factors are significantly responsible for
TABLE 4 List of highly abundant motifs in RA-inducing peptides.

Motif
Coverage in
RA inducers

tiny polar hydrophobic G hydrophobic 22

hydrophobic L hydrophobic aliphatic small 20

hydrophobic polar hydrophobic tiny polar hydrophobic
hydrophobic polar

19

aliphatic aliphatic hydrophobic polar polar aliphatic 19

small S hydrophobic G 18

hydrophobic polar A G hydrophobic 17

G small small G small 17

P hydrophobic polar polar hydrophobic 17

tiny hydrophobic S hydrophobic hydrophobic hydrophobic 16

tiny S hydrophobic G 15

tiny S tiny tiny 15
Polar, H,K,R,D,E,Y,W,T,C,S,N,Q; charged, D,E,R,H,K; negative, D,E; positive, R,H,K; small,
A,G,C,S,P,N,D,T,V; tiny, A,G,C,S; hydrophobic, H,F,W,Y,I,L,V,M,K,T,A,G,C; aromatic, H,F,
W,Y; aliphatic, I,L,V.
TABLE 5 The performance of the ML models using the best set of features on the validation dataset.

Feature name ML model Sensitivity Specificity Accuracy AUC Kappa MCC

CeTD XGB
61.02 75.76 66.30 0.75 0.33 0.35

TPC ET
62.71 69.70 65.22 0.74 0.30 0.31

ALLCOMP LR
57.63 75.76 64.13 0.73 0.30 0.32

APAAC ET
61.02 63.64 61.96 0.72 0.23 0.24

DPC KNN
61.02 69.70 64.13 0.71 0.28 0.30

AAC ET
59.32 60.61 59.78 0.70 0.19 0.19

BTC GNB
50.85 75.76 59.78 0.69 0.23 0.26

DDR ET
52.54 75.76 60.87 0.67 0.25 0.28

CTC SVC
62.71 66.67 64.13 0.65 0.27 0.28

PRI LR
55.93 69.70 60.87 0.63 0.23 0.25

AABP KNN
55.93 51.52 54.35 0.59 0.07 0.07
XGB, extreme gradient boosting; ET, extra tree; LR, logistic regression; KNN, k-nearest neighbors; GNB, Gaussian Naïve Baise; SVC, support vector classifier; AUC, area under curve; kappa,
Cohen’s kappa coefficient; MCC, Mathew’s correlation coefficient.
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TABLE 7 The performance of the ML models developed using SVC-L1–selected features on the validation dataset.

Model Sensitivity Specificity Accuracy AUC Kappa MCC

DT
62.71 48.49 57.61 0.58 0.11 0.11

RF
59.32 72.73 64.13 0.70 0.29 0.31

LR
59.32 66.67 61.96 0.71 0.24 0.25

XGB
66.10 69.70 67.39 0.69 0.34 0.34

KNN
61.02 69.70 64.13 0.71 0.28 0.30

GNB
62.71 66.67 64.13 0.68 0.27 0.28

ET
69.49 54.55 64.13 0.69 0.24 0.24

SVC
62.71 75.76 67.39 0.72 0.35 0.37

MLP
62.71 66.67 64.13 0.71 0.27 0.28
F
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DT, decision tree; RF, random forest; LR, logistic regression; XGB, extreme gradient boosting; KNN, k-nearest neighbors; GNB, Gaussian Naïve Baise; ET, extra tree; SVC, support vector
classifier; MLP, multilayer perceptron; AUC, area under curve; kappa: Cohen’s kappa coefficient; MCC, Mathew’s correlation coefficient.
TABLE 6 The performance of the 1D-CNN model over different types of features on the validation dataset.

Feature name Sensitivity Specificity Accuracy AUC Kappa MCC

AAC
88.14 21.21 64.13 0.60 0.11 0.13

DPC
50.85 63.64 55.44 0.67 0.13 0.14

TPC
55.93 72.73 61.96 0.69 0.26 0.28

BTC
0.00 100.00 35.87 0.38 0.00 0.00

DDR
55.93 45.46 52.17 0.54 0.01 0.01

CTC
52.54 66.67 57.61 0.60 0.17 0.19

PRI
45.76 69.70 54.35 0.64 0.14 0.15

CeTD
71.19 48.49 63.04 0.68 0.20 0.20

APAAC
59.32 51.52 56.52 0.65 0.10 0.11

AAB
55.93 54.55 55.44 0.60 0.10 0.10

ALLCOMP
57.63 69.70 61.96 0.72 0.25 0.26
AUC, area under curve; kappa, Cohen’s kappa coefficient; MCC, Mathew’s correlation coefficient.
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the onset of the disease. The ability of peptides or proteins to

selectively bind arthritogenic amino acid sequences for presentation

to auto-reactive T lymphocytes is provided by a common epitope in

the peptide-binding groove area of MHC class II molecules (37).

These T cells generate inflammatory responses by releasing

excessive amounts of cytokines and by activating B cells, which

are further responsible for the excessive production of

autoantibodies and lead to destruction and bone erosion. As these

arthritogenic peptides are responsible for inducing T-cell response,

they can be targeted for therapeutic purposes by modifying their
Frontiers in Immunology 11
properties using peptide cyclization, chemical modification, or

other in-vitro approaches.

Few ML-based techniques have been developed in the past to

combat RA. One of these techniques, was developed in order to

forecast how well biologic drugs will work in treating patients with

RA and AS (ankylosing spondylitis), with an AUC of 0.64 based on

the validation dataset. Furthermore, it demonstrates that the most

significant predictors of therapy responses were patient self-

reporting scales, the Bath Ankylosing Spondylitis Functional

Index (BASFI) in AS patients, and the patient global assessment
TABLE 9 The performance of the best ML models developed using different sets of top features on the validation dataset. Features were selected
using mean-based univariate analysis.

Total feature ML model Sensitivity Specificity Accuracy AUC Kappa MCC

Top 305 RF
57.63 66.67 60.87 0.72 0.22 0.23

Top 200 RF
66.10 69.7 67.39 0.73 0.34 0.34

Top 150 RF
59.32 72.73 64.13 0.73 0.29 0.31

Top 100 ET
67.80 66.67 67.39 0.73 0.33 0.33

Top 50 ET
61.02 66.67 63.04 0.70 0.26 0.27

Top 20 SVC
50.85 75.76 59.78 0.70 0.23 0.26

Top 10 SVC
59.32 69.70 63.04 0.69 0.27 0.28
RF, random forest; ET, extra tree; SVC, support vector classifier.
TABLE 8 The performance of the ML models developed using mRMR-selected features on the validation dataset.

Model Sensitivity Specificity Accuracy AUC Kappa MCC

DT
55.93 66.67 59.78 0.65 0.21 0.22

RF
59.32 69.70 63.04 0.73 0.27 0.28

LR
66.10 75.76 69.57 0.72 0.39 0.40

XGB
55.93 75.76 63.04 0.71 0.28 0.31

KN
57.63 72.73 63.04 0.69 0.27 0.29

GNB
79.66 39.39 65.22 0.60 0.20 0.21

ET
52.54 72.73 59.78 0.74 0.22 0.24

SVC
66.10 69.70 67.39 0.71 0.34 0.34

MLP
64.41 66.67 65.22 0.67 0.29 0.30
DT, decision tree; RF, random forest; LR, logistic regression; XGB, extreme gradient boosting; KNN, k-nearest neighbors; GNB, Gaussian Naïve Baise; ET, extra tree; SVC, support vector
classifier; MLP, multilayer perceptron; AUC, area under curve; kappa, Cohen’s kappa coefficient; MCC, Mathew’s correlation coefficient.
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of disease activity (PtGA) in RA patients (38). Another study uses

ML to predict patient relapses based on blood test results and

ultrasound examination data (39). Prasad et al. developed

ATRPred, an ML-based technique that uses clinical and

demographic characteristics to predict how well RA patients will

respond to anti-TNF treatment (40). One study uses genetic

information from SNPs in non-HLA genes to predict RA (41). To

the best of our knowledge, no method has yet been developed to

anticipate the T-helper cell-inducing peptides or epitopes that

trigger RA.

In this study, we have made a systematic approach for the

classification of RA-inducing peptides. We have extracted 291 RA-

inducing peptides and 165 RA non-inducing peptides from the

IEDB. In the preceding sections, we observed a few key insights

from the comprehensive analysis of RA-inducing and non-inducing

peptides. Here, compositional analysis indicates that RA-inducing

peptides have the highest average composition of glycine and

proline as compared to non-inducing peptides, which might be

responsible for peptide binding to MHC (42). In addition to this,

positional analysis further marks distinct amino acid preferences for

the N-terminal and C-terminal regions in positive and negative

datasets, emphasizing the differential roles of residues such as

glycine, threonine, and alanine.

In classification modelling, both alignment-based (BLAST and

Motif) and alignment-free methods were implemented. BLAST-

based approach demonstrated slightly increased performance at

higher e-values, which depict the random chances of getting hits.

While the Motif-based approach gave the highest number of correct

hits for the validation dataset. In the present study, among different

composition-based features, we have observed that CeTD

composition-based features outperformed all. We have reported

maximum accuracy and AUC over the training dataset as 71% &

0.75 and 66.30% & 0.75 over validation dataset with balanced

sensitivity and specificity by applying the XGB classifier. This

result underscores that CeTD features capture physicochemical

peptide properties for our dataset, which is critical for accurate

predictions. Finally, we have combined motif analysis and an ML-

based methodology to develop an ensemble method. On the
Frontiers in Immunology 12
validation dataset, an ensemble-based method gets a maximum

AUC of 0.80 and an MCC of 0.45. All the performance metrices

calculated using Equations 2–6. The integration of compositional

insights and ML algorithms enabled the development of a robust

tool “RAIPred,” for HLA class II binding RA-inducing peptide

prediction. In order to provide the scientific community an easy and

user-friendly approach for the prediction of RA-inducing peptides,

we have developed RAIpred as a web server (https://

webs.iiitd.edu.in/raghava/raipred/), a standalone package (https://

webs.iiitd.edu.in/raghava/raipred/download.html) and it is also

available on Github (https://github.com/raghava/raipred) and

python package (https://pypi.org/project/raipred/).
4.1 Applications of RAIpred
• Assess the HLA class II binding RA-inducing potential of

nove l pept ides /prote ins before therapeut ic or

GMO applications.

• Des i gn the r apeu t i c pep t i d e s w i t h op t im i z ed

physicochemical properties and screen them as HLA class

II binding RA-inducers or non-inducers.

• Map antigenic epitopes responsible for RA using the

Protein Scan module.

• Design peptide analogs with single-residue modifications

using the Design Module to evaluate HLA class II binding

RA-inducing potential.
5 Conclusion

Peptide-based therapeutics are increasingly popular due to their

target specificity and clinical success. Risk assessment of these proteins

is essential for preventing them from causing some severe side-effects

or being involved in disease development. There are several peptide-

based drugs approved by the FDA for the treatment of RA and other

autoimmune disorders. RAIpred is a reliable and accurate tool for
TABLE 11 The performance of the hybrid model developed using exclusive positive motifs (with MERCI classification – None, KOOLMAN-ROHM and
BETTS-RUSSELL).

Classification method Requested number of motif Sensitivity Specificity Accuracy AUC Kappa MCC

None K20 67.80 66.67 67.39 0.70 0.33 0.33

KOOLMAN-ROHM K20 71.19 66.67 69.57 0.75 0.36 0.37

BETTS-RUSSELL K20 71.19 75.76 72.83 0.80 0.44 0.45
fro
K, number of requested motifs; AUC, area under curve; kappa, Cohen’s kappa coefficient; MCC, Mathew’s correlation coefficient.
TABLE 10 Best performance of PLM models on the validation dataset, models were fine-tuned on the training dataset.

Model name Sensitivity Specificity Accuracy AUC MCC

ProtBERT 0.81 0.58 0.73 0.71 0.40

BioBERT 0.69 0.58 0.65 0.67 0.26
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identifying HLA class II binding RA-inducing peptides, aiding in the

development of targeted therapeutics. It also provides deep insights

into peptide functionality and helps discover novel bioactive peptides

with pharmaceutical relevance.
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