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Introduction: Heredity and epigenetic factors contribute to the pathogenesis of

neutrophil-cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Cytotoxic T

lymphocyte-associated protein 4 (CTLA-4), an inhibitory receptor regulating T-

cell homeostasis and maintaining self-tolerance, has emerged as a key target for

immune screening and therapeutics in autoimmunity and cancer. CTLA-4 is

associated with various autoimmune diseases; however, the relationship

between CTLA-4 polymorphisms and AAV in the Guangxi population of China

remains underexplored. In the present case–control study, we evaluated the

effects of CTLA-4 polymorphisms on AAV susceptibility in the Guangxi

population of China.

Methods: A total of 343 patients with AAV and 343 healthy controls were

recruited. High-throughput sequencing was used to genotype CTLA4 variants,

and logistic regression analysis was used to assess their association with AAV risk.

The relationship between the haplotypes of CTLA4 single-nucleotide

polymorphisms (SNPs) and AAV risk was assessed using the SHEsis platform.

Results: Three CTLA4 SNPs— rs62182595, rs16840252, and rs5742909—

showed significant association with AAV susceptibility. The ATT and GCC

haplotypes, comprising these loci, were also associated with an increased risk

of AAV.

Discussion: These findings suggest that CTLA4 polymorphisms (rs62182595,

rs16840252, and rs5742909) may contribute to AAV susceptibility in the Guangxi

population and offer preliminary markers for risk assessment, early diagnosis, and

personalized management of AAV.
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1 Introduction

Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV)

comprises a group of small-vessel inflammatory disorders with largely

unknown pathogenesis. AAV is serologically defined by autoantibodies

against two specific neutrophil antigens: proteinase 3 and

myeloperoxidase (1). Pathologically, AAV is characterized by

necrotizing inflammation of vessel walls. Clinically, AAV includes

three principal subtypes: granulomatosis with polyangiitis (2),

microscopic polyangiitis (MPA) (3, 4), and eosinophilic

granulomatosis with polyangiitis (5). Although the exact pathogenesis

of AAV is unknown, immune dysregulation, which is influenced by

genetic and environmental factors, plays a central role in AAV

pathogenesis (6). Genome-wide analyses have identified several

predisposing loci, mainly within the major histocompatibility complex

region. Specifically, variants in the human leukocyte antigen-DQ

segment show strong genetic associations with AAV pathogenesis (7,

8). In Asia, AAVprevalence ranges from 46 to 421 permillion (9), and in

China, its prevalence is increasing annually, especially among the aging

population. The current standard treatment for AAV involves systemic

immunosuppressants targeting B and T cells, including glucocorticoids,

cyclophosphamide, and rituximab (10); however, many patients with

AAV remain unresponsive to the current standard of care and

experience disease relapses (11). Therefore, identification of novel

therapeutic targets to achieve long-term disease remission is necessary.

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4), a

crucial immune checkpoint molecule within the CD28

immunoglobulin superfamily, exhibits predominant expression in

T lymphocytes (12). CTLA-4 is an important regulator of T-cell

homeostasis and self-tolerance and can modulate the T-cell

response by blocking CD28 co-stimulation of T-cells during T-

cell activation (13, 14). CTLA-4 expression in T cells is tightly

regulated, and the failure of the transport mechanism of CTLA-4 to

the cell surface leads to autoimmune susceptibility (14). Given its

central role in immune modulation, CTLA-4 has emerged as a

promising therapeutic target across multiple disease domains,

particularly in autoimmune conditions and oncology. Moreover,

CTLA-4-targeted therapies through the successful implementation

of CTLA-4 inhibitors have been validated to manage various

immune-mediated disorders clinically (12). In AAV, CTLA-4–Ig

fusion proteins that block T-cell co-stimulation offer a novel

therapeutic strategy potentially advantageous over traditional

immunosuppressive regimens (15). However, genetic studies have

reported inconsistent associations between CTLA4 polymorphisms

and AAV. For instance, a European case–control study identified

the association between CTLA4 polymorphism— rs3087243 —and

AAV (16). In contrast, a case—control study of the Han Chinese

population in Beijing, China, reported no association between

CTLA4 polymorphisms (rs231775 and rs5742909) and AAV

susceptibility (17). These findings suggest the strong influence of

ethnicity, population, and regional variation on genetic

susceptibility; however, the association between single-nucleotide

polymorphisms (SNPs) at the CTLA4 locus and AAV susceptibility

in the Guangxi population has not been reported.
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To address this gap, we conducted a case—control study

involving 343 patients with AAV from Guangxi and selected

three candidate CTLA4 SNPs to evaluate their association with

AAV risk in this population.
2 Materials and methods

2.1 Ethics approval

This study was approved by the Medical Ethics Committee of

The Second Affiliated Hospital of Guangxi Medical University

(2018 KY-0100) and was conducted in compliance with the

Declaration of Helsinki. We have obtained written consent from

all participants.
2.2 Study population characteristics

The MPA investigation cohort constituted 343 patients diagnosed

with AAV retrospectively enrolled from the Second Affiliated Hospital

of Guangxi Medical University (2005-2024). The cases were

confirmed through rigorous diagnostic protocols aligned with the

Chapel Hill Consensus Conference classification criteria (18).

Exclusion criteria strictly applied to individuals presenting with: (1)

secondary vasculitides induced by infectious processes, neoplastic

disorders, or pharmacological agents; (2) concurrent autoimmune

conditions (including rheumatoid arthritis, systemic lupus

erythematosus, Henoch-Schönlein purpura). A parallel control

group of 343 age- and sex-matched healthy volunteers was

established, systematically excluding participants with autoimmune

comorbidities or malignant histories.
2.3 SNP selection and DNA extraction

We selected three CTLA4 SNPs (rs62182595, rs16840252, and

rs5742909) based on the following criteria: 1) all SNPs had a minor

allele frequency (MAF) ≥ 0.05 (19) and 2) Chinese allele or

genotype data of these SNPs were available in 1000 genomes

(https://grch37. ensembl.org/).

DNA extraction was performed using a Rapid Blood Genomic

DNA Isolation Kit (Sangon, Shanghai, China), following the

manufacturer’s instructions. The concentration of the DNA was

measured using a Qubit 2.0 (Thermo Fisher Scientific, Inc.) to ensure

the extraction of adequate amounts of high-quality genomic DNA.
2.4 Statistical analyses

All statistical analyses were conducted within a rigorous statistical

framework using IBM SPSS Statistics, version 26.0 (IBM Corp.,

Armonk, NY, USA) (20). Initial demographic comparisons were

performed using independent samples t-tests for continuous variables
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and chi-square (c²) test for categorical variables. Hardy–Weinberg

equilibrium (HWE) for genotype and allele distribution was assessed

using both c² and Fisher’s exact tests. Genetic association analysis was
conducted using an unmatched case–control paradigm through the

SNPstats analytical platform (https://www.snpstats.net/start.htm)

(21), applying multivariate logistic regression with covariate

adjustment (age, ethnicity, gender) to derive adjusted odds ratios

(ORs) and 95% confidence intervals (CIs). Haplotype architecture

reconstruction (22) was performed using the SHEsis online suite

(23), incorporating permutation-based significance testing. To

control the Type I in multi-group comparisons, Bonferroni

multiplicity correction was applied, maintaining a family-wise

significance threshold set at a=0.05.
3 Results

3.1 Demographic characteristics

The study cohort comprised equal numbers of patients with

AAV (n = 343) and healthy controls (n = 343). Gender distribution

showed comparable patterns across groups, with the AAV cohort

comprising 130 male and 213 female participants, compared to 146

males and 197 females in the control group (P = 0.213). Age

distribution revealed significant intergroup variation. The AAV

group showed a mean age of 56.7 years (range, 8–86 years;

interquartile range (IQR), 49–67 years), which was significantly

higher than that of the control group (mean, 44.6 years, range: 18–

81 years; IQR, 35–53 years) (P < 0.05). Ethnic composition was

comparable between the groups, with 202 Han Chinese and 141

non-Han Chinese participants in both cohorts (P = 0.738). To

ensure analytical rigor, potential confounding variables, including

age, sex, and ethnicity, were incorporated as covariates in the

logistic regression analysis (Table 1).
3.2 Information for selected SNPs

Basic information for the selected CTLA4 SNPs is shown in

Table 2. All loci are located on chromosome 2, specifically within

the promoter region and 5’ upstream regulatory region (URR). The

MAF for each SNP was greater than 0.05, indicating that variants

are common in the Guangxi population. Additionally, all SNPs

conformed to HWE (p > 0.05).
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3.3 Correlation of SNPs with AAV
susceptibility under different genetic
models

The association between the SNPs and AAV risk were assessed

using different genetic models (adjusted for age, sex, and race). The

rs62182595, rs16840252, and rs5742909 polymorphisms in CTLA4

were significantly associated with AAV susceptibility in the

Guangxi population under different genetic models (Table 3). For

rs62182595, the GA genotype in the codominant genetic model (OR

= 0.58; 95% CI [0.38–0.90]; p = 0.048), the GA-AA genotype in the

dominant genetic model (0.61; 0.40–0.93; p = 0.021), and GA

genotypes in the overdominant genetic model (0.58; 0.38–0.90; p

= 0.014), were all associated with reduced AAV susceptibility in the

Guangxi population. For rs16840252, the CT-TT genotype in the

dominant genetic model (OR = 0.61; 95% CI [0.40–0.93]; p = 0.022)

and the C/T genotype in the overdominant genetic model (0.60;

0.39–0.92; p = 0.019) were also associated with reduced risk of AAV.

In contrast, only the CT genotype at rs5742909 in the overdominant

genetic model showed association with reduced susceptibility to

AAV (OR =0.64; 95% CI [0.42–0.99]; p = 0.044).
3.4 Correlation between selected SNPs and
risk of AAV development in different
subgroups of the population

To assess the population subgroups in which the above CTLA4

SNPs specifically influence the risk of developing AAV, subgroup

analyses were performed by sex (male and female) and ethnicity (Han

Chinese and non-Han Chinese). The analysis revealed a significant

influence of sex and ethnicity on the association between the three
TABLE 1 Demographic features of AAV cases and control group.

Variable
Case

(n=343)
Control
(n=343)

p

Gender (male/female) 130/213 146/197 0.213

Ethnicity (Han/
non-Han)

202/141 251/184 0.738

Age (years) 56.6(49,67) a 44.6 (35,53) a <0.01*
frontie
AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; n, number of
people; a, The description of skewed distribution data statistics uses median (lower quartile,
upper quartile) representation; p-value: The Student’s t-test or the Chi-square test was used to
compare variables in groups; * denotes statistical significance (p<0.05).
TABLE 2 Basic information of the selected SNPs.

SNP Chromosome Position Alleles Gene Location
MAF

HWE-p Allele-p Genotype-p
Control Case

rs62182595 Chr2 204731188 G>A CTLA4 promoter 0.11 0.10 0.24 0.42 0.19

rs16840252 Chr2 204731519 C>T CTLA4 5’ URR 0.12 0.10 0.13 0.34 0.29

rs5742909 Chr2 204732347 C>T CTLA4 promoter 0.11 0.10 0.11 0.48 0.24
AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; chr,
chromosome; The p-value was calculated using Chi-square test and Fisher’s exact test; Bonferroni correction was used for multiple comparison.
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SNPs and AAV risk. Specifically, across different genetic models, all

three SNPs—rs62182595, rs16840252, and rs5742909— were

significantly associated with reduced AAV susceptibility in the male

subgroup (Table 4), whereas no significant association was observed
Frontiers in Immunology 04
in the female subgroup (Supplementary Table 1). Regarding

ethnicity, the strongest protective associations were observed in the

Han Chinese subgroup (Table 5, Supplementary Table 2), suggesting

a population-specific genetic effect on AAV risk.
TABLE 3 The relationship between the SNPs and the risk of AAV in Guangxi population in different genetic models.

SNP Models
Genotype/

Allele
Control(freq) Case(freq) OR (95% CI) p −value

rs62182595
Allele

A 75(10.9%) 66(9.6%)
0.87(0.61-1.23) 0.42

G 611(89.1%) 620(90.4%)

Codominant

G/G 270 (78.7%) 282 (82.2%) 1.00

0.048*G/A 71 (20.7%) 56 (16.3%) 0.58 (0.38-0.90)

A/A 2 (0.6%) 5 (1.5%) 1.32 (0.21-8.34)

Dominant
G/G 270 (78.7%) 282 (82.2%) 1.00

0.021*
G/A-A/A 73 (21.3%) 61 (17.8%) 0.61 (0.40-0.93)

Recessive
G/G-G/A 341 (99.4%) 338 (98.5%) 1.00

0.68
A/A 2 (0.6%) 5 (1.5%) 1.46 (0.23-9.17)

Overdominant
G/G-A/A 272 (79.3%) 287 (83.7%) 1.00

0.014*
G/A 71 (20.7%) 56 (16.3%) 0.58 (0.38-0.90)

rs16840252 Allele C 606 (88.3%) 617 (89.9%)
1.18(0.84-1.66) 0.34

T 80 (11.7%) 69 (10.1%)

Codominant C/C 267 (77.8%) 280 (81.6%) 1.00 0.063

C/T 72 (21%) 57 (16.6%) 0.60 (0.39-0.92)

T/T 4 (1.2%) 6 (1.8%) 0.88 (0.20-3.87)

Dominant C/C 267 (77.8%) 280 (81.6%) 1.00 0.022*

CT-TT 76 (22.2%) 63 (18.4%) 0.61 (0.40-0.93)

Recessive C/C-C/T 339 (98.8%) 337 (98.2%) 1.00 0.98

T/T 4 (1.2%) 6 (1.8%) 0.98 (0.23-4.24)

Overdominant C/C-T/T 271 (79%) 286 (83.4%) 1.00 0.019*

C/T 72 (21%) 57 (16.6%) 0.60 (0.39-0.92)

rs5742909 Allele C 610(88.9%) 618(90.1%)
1.13(0.80-1.60) 0.48

T 76(11.1%) 68(9.9%)

Codominant C/C 270 (78.7%) 281 (81.9%) 1.00 0.13

C/T 70 (20.4%) 56 (16.3%) 0.64 (0.42-0.99)

T/T 3 (0.9%) 6 (1.8%) 1.13 (0.22-5.70)

Dominant C/C 270 (78.7%) 281 (81.9%) 1.00 0.056

C/T-T/T 73 (21.3%) 62 (18.1%) 0.66 (0.43-1.01)

Recessive C/C-C/T 340 (99.1%) 337 (98.2%) 1.00 0.8

T/T 3 (0.9%) 6 (1.8%) 1.23 (0.24-6.15)

Overdominant C/C-T/T 273 (79.6%) 287 (83.7%) 1.00 0.044*

C/T 70 (20.4%) 56 (16.3%) 0.64 (0.42-0.99)
AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; The p-value, OR, and 95% CI were
derived from a logistic regression model adjusted for age, ethnicity, and gender; * denotes statistical significance (p<0.05).
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3.5 Linkage disequilibrium and haplotype
analyses

To evaluate the interactions among CTLA4 SNPs, we performed

LD and haplotype analyses using the SHEsis online platform. Strong

LD was observed between rs62182595 and rs16840252 (D’ = 1),
Frontiers in Immunology 05
whereas moderate LD was observed between rs62182595

and rs5742909 (D’ = 0.739) and between rs16840252 and rs5742909

(D’ = 0.735) (Figure 1).

The haplotype analysis identified six haplotypes based on the

three SNPs (Table 6). Four of these haplotypes had a frequency of

less than 0.05 (24), suggesting a low frequency of occurrence in the
TABLE 4 The relationship between the SNPs and the risk of AAV in male of Guangxi population in different genetic models.

SNP Models Genotype/Allele Control(freq) Case(freq) OR (95% CI) p −value

rs62182595
Allele

A 35(12.0%) 20(7.7%)
0.61(0.34~1.09) 0.092

G 257(88.0%) 240(92.3%)

Codominant

G/G 112 (76.7%) 111 (85.4%) 1.00

0.054G/A 33 (22.6%) 18 (13.8%) 0.41 (0.20-0.87)

A/A 1 (0.7%) 1 (0.8%) 0.37 (0.01-18.35)

Dominant
G/G 112 (76.7%) 111 (85.4%) 1.00

0.016*
G/A-A/A 34 (23.3%) 19 (14.6%) 0.41 (0.20-0.86)

Recessive
G/G-G/A 145 (99.3%) 129 (99.2%) 1.00

0.67
A/A 1 (0.7%) 1 (0.8%) 0.44 (0.01-20.84)

Overdominant
G/G-A/A 113 (77.4%) 112 (86.2%) 1.00

0.018*
G/A 33 (22.6%) 18 (13.8%) 0.41(0.20-0.87)

rs16840252 Allele C 255(87.3%) 240(92.3%)
0.74(0.98~3.08) 0.055

T 37(12.7%) 20(7.7%)

Codominant C/C 110 (75.3%) 111 (85.4%) 1.00 0.034*

C/T 35 (24%) 18 (13.8%) 0.39 (0.19-0.81)

T/T 1 (0.7%) 1 (0.8%) 0.36 (0.01-18.15)

Dominant C/C 110 (75.3%) 111 (85.4%) 1.00 0.0093*

C/T-T/T 36 (24.7%) 19 (14.6%) 0.39 (0.19-0.81)

Recessive C/C-C/T 145 (99.3%) 129 (99.2%) 1.00 0.67

T/T 1 (0.7%) 1 (0.8%) 0.44 (0.01-20.84)

Overdominant C/C-T/T 111 (76%) 112 (86.2%) 1.00 0.011*

C/T 35 (24%) 18 (13.8%) 0.39 (0.19-0.82)

rs5742909 Allele C 254(87.0%) 240(92.3%)
1.80(1.02-3.17) 0.04*

T 38(13.0%) 20(7.7%)

Codominant C/C 110 (75.3%) 111 (85.4%) 1.00 0.019*

C/T 34 (23.3%) 18 (13.8%) 0.37 (0.18-0.78)

T/T 2 (1.4%) 1 (0.8%) 0.20 (0.01-5.04)

Dominant C/C 110 (75.3%) 111 (85.4%) 1.00 0.0053*

C/T-T/T 36 (24.7%) 19 (14.6%) 0.36 (0.17-0.75)

Recessive C/C-C/T 144 (98.6%) 129 (99.2%) 1.00 0.37

T/T 2 (1.4%) 1 (0.8%) 0.24 (0.01-5.90)

Overdominant C/C-T/T 112 (76.7%) 112 (86.2%) 1.00 0.0087*

C/T 34 (23.3%) 18 (13.8%) 0.38 (0.18-0.80)
AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; OR, odds ratio; CI, confidence interval; The p-value, OR, and 95% CI were derived from a logistic regression model
adjusted for age and ethnicity; * denotes statistical significance (p<0.05).
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population and unstable inheritance, and were therefore excluded

from further analyses. Two haplotypes, ATT and GCC, with

frequencies greater than 0.05 significantly elevated the risk of

AAV development in the Guangxi population (ATT: OR=1.67,

95% CI: 1.113–2.503, p = 0.01; GCC: 1.80, 1.300–2.494,

p = 0.000355).
Frontiers in Immunology 06
4 Discussion

The pathogenesis of AAV involves the complex interplay of

host immunological dysregulation (encompassing both innate and

adaptive immunity) and genetic–environmental synergism (4). The

breakdown of ANCA tolerance, which is critical to disease
TABLE 5 The relationship between the SNPs and the risk of AAV in Han of ethnicity Guangxi population in different genetic models.

SNP Models Genotype/Allele Control(freq) Case(freq) OR (95% CI) p −value

rs62182595
Allele

A 60(12.0%) 26(06.4%)
0.50(0.31~0.82) 0.0048*

G 442(88.0%) 378(93.6%)

Codominant

G/G 193 (76.9%) 176 (87.1%) 1.00

0.0037*G/A 56 (22.3%) 26 (12.9%) 0.43 (0.25-0.75)

A/A 2 (0.8%) 0 (0%) 0.00 (0.00-NA)

Dominant
G/G 193 (76.9%) 176 (87.1%) 1.00

0.0014*
G/A-A/A 58 (23.1%) 26 (12.9%) 0.42 (0.24-0.72)

Recessive
G/G-G/A 249 (99.2%) 202 (100%) 1.00

0.17
A/A 2 (0.8%) 0 (0%) 0.00 (0.00-NA)

Overdominant
G/G-A/A 195 (77.7%) 176 (87.1%) 1.00

0.0026*
G/A 56(22.3%) 26(12.9%) 0.43(0.25-0.76)

rs16840252 Allele C 438(87.3%) 377(93.3%)
2.04(1.27~3.27) 0.0025*

T 64(12.7%) 27(6.7%)

Codominant C/C 191 (76.1%) 175 (86.6%) 1.00 0.0029*

C/T 56 (22.3%) 27 (13.4%) 0.45 (0.26-0.79)

T/T 4 (1.6%) 0 (0%) 0.00 (0.00-NA)

Dominant C/C 191 (76.1%) 175 (86.6%) 1.00 0.0018*

C/T-T/T 60 (23.9%) 27 (13.4%) 0.43 (0.25-0.74)

Recessive C/C-C/T 247 (98.4%) 202 (100%) 1.00 0.064

T/T 4 (1.6%) 0 (0%) 0.00 (0.00-NA)

Overdominant C/C-T/T 195 (77.7%) 175 (86.6%) 1.00 0.0049*

C/T 56 (22.3%) 27 (13.4%) 0.46 (0.26-0.80)

rs5742909 Allele C 444(88.4%) 377(93.3%)
1.82(1.13~2.94) 0.012*

T 58(11.6%) 27(6.7%)

Codominant C/C 195 (77.7%) 175 (86.6%) 1.00 0.02*

C/T 54 (21.5%) 27 (13.4%) 0.49 (0.28-0.85)

T/T 2 (0.8%) 0 (0%) 0.00 (0.00-NA)

Dominant C/C 195 (77.7%) 175 (86.6%) 1.00 0.0076*

C/T-T/T 56 (22.3%) 27 (13.4%) 0.48 (0.28-0.83)

Recessive C/C-C/T 249 (99.2%) 202 (100%) 1.00 0.27

T/T 2 (0.8%) 0 (0%) 0.00 (0.00-NA)

Overdominant C/C-T/T 197 (78.5%) 175 (86.6%) 1.00 0.011*

C/T 54 (21.5%) 27 (13.4%) 0.49 (0.28-0.86)
AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; OR, odds ratio; CI, confidence interval; The p-value, OR, and 95% CI were derived from a logistic regression model
adjusted for age and gender; * denotes statistical significance (p<0.05).
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initiation, is frequently driven by aberrant immune cell dynamics

and humoral immunity deficiencies (25, 26). Nevertheless,

emerging evidence from large-scale genomic investigations has

substantiated the pivotal role of genetic predisposition in AAV

development (7, 9, 27). In this study, we focused on identifying the

risk alleles associated with AAV mechanisms and evaluated the

correlation between CTLA4 SNPs and AAV risk in the Guangxi

population in China. Our findings expand the current

understanding of genetic loci associated with AAV susceptibility.

CTLA-4 is a master immune checkpoint receptor that delivers co-

inhibitory signals crucial for attenuating excessive immune

activation (28) and orchestrating immune response termination
Frontiers in Immunology 07
(29). Although its central regulatory role in maintaining immune

homeostasis and preventing autoreactivity is well-established, the

precise molecular mechanisms governing CTLA-4-mediated

immune modulation remain incompletely elucidated (30). CTLA4

polymorphisms demonstrate significant pleiotropic effects, showing

associations with multiple immune-mediated pathologies including

systemic lupus erythematosus, rheumatoid arthritis, autoimmune

diabetes, and allograft rejection episodes (31–33).

Our data show that CTLA4 rs62182595, rs16840252, and

rs5742909 polymorphisms are significantly associated with AAV

susceptibility in the Guangxi population under various genetic

models. Specifically, the GA genotype of rs62182595 in the
FIGURE 1

Graphical representation of the SNP locations and LD structure.
TABLE 6 Correlations between the haplotypes of CTLA-4 gene and AAV susceptibility.

Geng SNP Haplotypes Control(freq) Case(freq) c 2 p OR (95% CI)

CTLA-4
rs62182595/
rs16840252/
rs5742909

ATC 33.99(0.050) 0.00(0.000) 34.958 – –

ATT 41.01(0.060) 66.00(0.096) 6.252 0.012437* 1.669 (1.113~2.503)

GCC 571.01(0.832) 617.00(0.899) 12.771 0.000355* 1.801 (1.300~2.494)

GCT 34.99(0.051) 0.00(0.000) 36.013 – –

GTC 5.00(0.007) 1.00(0.001) – – –

GTT 0.00(0.000) 2.00(0.003) – – –
SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; The p-value was calculated using Chi-square test and Fisher’s exact test; Bonferroni correction was used for
multiple comparison; * denotes statistical significance (p<0.05); – denotes frequency<0.05 in both control & case has been dropped.
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codominant and overdominant genetic models and the GA-AA

genotype in the dominant genetic model were associated with

reduced AAV susceptibility in the Guangxi population. Similarly,

the CT-TT and C/T genotypes of rs16840252 (dominant genetic

model) and the C/T genotype of rs5742909 (overdominant genetic

model) showed association with reduced AAV risk in the

Guangxi population.

Next, we analyzed the synergistic effects of haplotype

combinations to assess the possible interactions among CTLA4

SNPs and determine the effects of these three SNPs on AAV

susceptibility in the Guangxi population. Among the six haplotypes

identified, ATT and GCC haplotypes significantly elevated

susceptibility, suggesting an interaction between the three SNPs that

increases the susceptibility to AAV in the Guangxi population, similar

to the results of a previous study on CTLA-4 (34). Furthermore,

previous studies suggest that SNP polymorphisms in the 5′ URR
region may lead to altered selective splicing (35–37), and alterations in

selective splicing can lead to variation in CTLA4. Therefore, we

hypothesized that alterations in bases at rs1684025 may alter the

selective splicing of both the soluble CTLA-4 (sCTLA-4) and the

surface full-length CTLA-4 (flCTLA-4) isoforms, ultimately affecting

CTLA-4 gene expression (38). The remaining two SNPs, rs5742909

and rs62182595, located in the promoter region, may lead to different

levels of mRNA transcription and protein translation and affect T cell

homeostasis, leading to immune dysfunction and ultimately affecting

the susceptibility of individuals to AAV (39, 40). Because

rs62182595*G, rs16840252*C, and rs5742909*C showed strong LD,

we hypothesize that these three loci are likely to amplify the synergistic

effects between the loci through gene–gene interactions (formation of

different haplotypes). Such interactions could affect the expression

level and protein structure of CTLA4, impair T-cell function, and

disrupt immune homeostasis, ultimately influencing the susceptibility

of individuals to AAV (41–43). Overall, our study demonstrates a

significant association between CTLA4 SNPs and AAV risk in the

Guangxi population. These findings not only lay the foundation for

disease risk stratification (e.g., specific genes can serve as potential

genetic markers) to help guide screening of high-risk populations and

provide targets for subsequent precise prevention and early

intervention, but also explore the potential of CTLA4-targeted

precision therapy. It supports the rationale for using CTLA4 as a

therapeutic target and provides evidence for “genotype-guided

personalized immunotherapy.

Despite its strengths, the present study has certain limitations. First,

although haplotype association analysis was conducted, we did not

evaluate the expression levels of the CTLA4 gene or protein. As gene

expression is affected by numerous factors, such as transcriptional and

translational regulations and gene–environmental interactions, our

findings require further experimental validation. Second, sample

collection was limited due to the rarity of ANCA-associated

vasculitis. Third, the study population was restricted to Guangxi,

China, which may limit the generalizability of the findings to other

populations. In the future, it is planned to carry out cross-regional

multi-center collaborative studies. While expanding the sample size,

populations of different ethnic groups will be included, and the

expression levels of the CTLA4 gene and protein will be detected
Frontiers in Immunology 08
simultaneously. Combined with the analysis of gene-environment

interactions, the research conclusions will be comprehensively verified.
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