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Ovarian cancer remains the most lethal gynecologic malignancy, largely due to

its late-stage diagnosis and immunosuppressive tumor microenvironment (TME).

A key mediator of immune evasion in ovarian cancer is the infiltration and

activation of regulatory T cells (Tregs), which suppress antitumor immunity and

foster therapeutic resistance. Emerging therapeutic strategies to target Tregs—

such as cytokine modulation, checkpoint blockade, metabolic inhibitors, and

epigenetic regulators—are critically evaluated for their potential to restore

antitumor immunity. This review synthesizes recent advances in understanding

how the ovarian TME shapes Treg biology, highlighting mechanisms such as

cytokine signaling, chemokine-driven recruitment, metabolic reprogramming,

and immune checkpoint interactions, as well as the phenotypic and functional

heterogeneity of tumor-infiltrating Tregs, including tissue-resident and follicular

subsets, and their clonal expansion in response to tumor antigens. By elucidating

the dynamic crosstalk between Tregs and the ovarian TME, this review provides a

framework for developing novel immunotherapies to overcome Treg-mediated

immunosuppression and improve clinical outcomes.
KEYWORDS

regulatory T cell, ovarian cancer, immunosuppression, metabolic reprogramming,
immune checkpoint blockade
1 Introduction

Ovarian cancer is one of the most prevalent malignant tumors affecting the female

reproductive system (1). Due to its insidious onset and lack of early clinical symptoms, more

than 70% of patients are diagnosed at an advanced stage, making it the leading cause of

mortality among gynecologic malignancies (2). Investigating the origins and pathogenesis of
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ovarian cancer is therefore of paramount importance for developing

effective strategies for its prevention and treatment. Accumulating

evidence indicates that the onset of ovarian cancer is closely

associated with impaired anti-tumor immunity in the host (3, 4).

Furthermore, tumor immunosurveillance has been shown to

correlate with clinical outcomes in ovarian cancer. Immune cells

and the tumor immune microenvironment (TIME) actively

participate in orchestrating the initiation and progression of

ovarian malignancies.

Recent studies have demonstrated substantial immune cell

infiltration within the ovarian tumor microenvironment, notably an

enrichment of regulatory T cells (Tregs), a suppressive T cell subset.

Increased Treg abundance has been strongly linked to immune

evasion, poor prognosis, and elevated mortality risk in patients

with ovarian cancer (5, 6). The differentiation and effector

functions of tumor-infiltrating Tregs are governed by signals

derived from the tumor microenvironment, playing a pivotal role

in mediating therapeutic resistance and facilitating immune escape.

This review aims to summarize recent advances in our understanding

of how the ovarian cancer microenvironment regulates Treg cell

biology, providing insights into their role in immune suppression and

therapeutic resistance.
2 Regulatory T cells

2.1 Differentiation and effector
mechanisms of Treg cells

Treg cells represent a subset of CD4+ T cells characterized by

the expression of the lineage-defining transcription factor forkhead

box protein P3 (FOXP3) (7). These cells exert potent

immunosuppressive functions and play essential roles in

maintaining immune homeostasis (8–10). They are critically

involved in the regulation of immune tolerance and are

implicated in the pathogenesis of autoimmune diseases and

cancer (11–13). Based on their developmental origin, Treg cells

can be broadly classified into thymus-derived regulatory T cells

(tTregs) and peripherally induced regulatory T cells (iTregs) (9, 14,

15). tTregs originate from CD4+CD8- thymocytes that exhibit high-

affinity recognition of self-antigens (16). Upon T cell receptor

(TCR) signaling and activation of the interleukin-2 (IL-2)

pathway, FOXP3 expression is induced, conferring suppressive

identity (17, 18). In contrast, iTregs differentiate from naive

peripheral CD4+ T cells in response to TCR stimulation and

exposure to cytokines such as IL-2 and transforming growth

factor-b (TGF-b), which collectively induce FOXP3 expression

(11, 19, 20). Functionally, Tregs mediate immune regulation by

modulating immune tolerance and suppressing the activity of

effector T cells, macrophages, dendritic cells, and B cells,

primarily via immunosuppressive molecules and cytokines (21–25).

Treg cells express high levels of immunoregulatory surface

molecules including cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) , CD39 , and T ce l l immunoreceptor wi th

immunoglobulin and immunoreceptor tyrosine-based inhibitory
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motif domain (TIGIT) (26–30). CTLA-4 on Tregs can bind the

co-stimulatory molecules CD80 and CD86 on dendritic cells (DCs),

thereby inhibiting antigen presentation (31, 32). In addition, CTLA-

4 induces the expression of indoleamine 2,3-dioxygenase (IDO) in

DCs, reducing tryptophan availability—a crucial nutrient for

effector T cell proliferation and activation—thus dampening T

cell responses (33). The ectoenzymes CD39 and CD73 on Tregs

catalyze the hydrolysis of extracellular ATP to adenosine, a potent

immunosuppressive metabolite that inhibits DC-mediated antigen

presentation and T cell proliferation (34–37). TIGIT expression on

Tregs is associated with their activation state and contributes to

suppression by inducing the expression of fibrinogen-like protein 2

(Fgl2), which inhibits the activation of effector T cells and selectively

attenuates inflammation mediated by T helper 1 (Th1) and Th17

cells (38). Tregs also exert suppressive functions through the

secretion of cytokines such as TGF-b, IL-10, and IL-35, which

inhibit both T cell and B cell effector functions (39). Upon

activation, Tregs can secrete perforin and granzymes, leading to

cytotoxic activity against effector CD4+ and CD8+ T cells (40).

Moreover, as T cell proliferation and differentiation are IL-2-

dependent processes, the high expression of CD25 on Tregs

enables them to outcompete effector T cells for IL-2, resulting in

cytokine deprivation that impairs effector T cell responses and

contributes to immune suppression within the tumor

microenvironment (41).
2.2 Treg cells in the ovarian cancer
microenvironment

In patients with ovarian cancer, Treg cells are markedly enriched

in both tumor tissues and ascites. These tumor-infiltrating Tregs (Ti-

Tregs) can suppress anti-tumor effector responses and promote

immune evasion, thereby facilitating tumor progression (42). Recent

studies employing high-throughput sequencing have revealed distinct

phenotypic and functional traits of Tregs within the ovarian tumor

microenvironment. Laumont et al. (43) identified a subset of

CD39+CD103+PD-1+ Tregs within tumors, displaying enhanced

TCR diversity and a tissue-resident phenotype. Another study

revealed that CEACAM1+ Tregs preferentially accumulate in tumor

sites, are highly activated, and exhibit strong suppressive capacity. The

accumulation of CEACAM1+ Tregs correlates with tumor

progression; notably, their depletion enhances tumor-infiltrating

lymphocyte (TIL) function and potentiates the therapeutic efficacy

of anti-programmed death-1 (PD-1) therapy (44). TCR repertoire

sequencing of Tregs in ovarian and other solid tumors has

demonstrated considerable clonality and responsiveness to tumor-

associated antigens, suggesting that intratumoral Tregs undergo clonal

expansion and selection driven by antigen stimulation (45).

Furthermore, a distinct subset of follicular regulatory T (Tfr) cells,

which express chemokine receptor CXCR5, has been identified within

the ovarian tumor microenvironment. Tfr cells, which typically reside

in the germinal centers of secondary lymphoid tissues, regulate B cell

responses. In ovarian cancer tissues and ascitic fluid, Tfr cells have

been found to infiltrate and express high levels of TGFB1 and IL-10.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1631226
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1631226
Through IL-10 secretion, Tfr cells suppress the activation and

cytotoxic function of CD8+ T cells, thereby contributing to an

immunosuppressive microenvironment (46).
3 Mechanisms of Treg regulation by
the ovarian cancer microenvironment

3.1 Cytokines regulate Treg biology

Tregs in ovarian cancer commonly express high levels of CD4,

CD25, and FOXP3. Their increased presence is associated with

immune evasion, lower survival rates, and elevated mortality risk in

patients with ovarian cancer (6). Toker et al. (47), utilizing spatial

transcriptomics, single-cell RNA sequencing, and TCR sequencing,

identified the enrichment and heterogeneity of CD4+ Tregs in

immune “cold” ovarian tumors. These findings suggest that Tregs

constitute an immunosuppressive tumor microenvironment (TME)

and are regulated by multiple factors.

IL-2 signaling is essential for Treg development. Studies show

ovarian tumor-derived CD4+CD25+ Tregs exhibit IL-2-dependent

Th17 plasticity under CD3/APC stimulation, revealing

microenvironmental modulation of Treg function (48). While high-

affinity IL-2R inhibition reduces Tregs and tumor progression, it

compromises effector T cells and induces autoimmunity. Drerup

et al. (49) demonstrated low-affinity IL-2Rb engagement increases

Treg numbers while impairing suppression, improving CD8+/Treg

ratios and tumor control, suggesting IL-2Rb as a therapeutic target.

TGF-b signaling similarly regulates Treg biology, with ovarian cancer

cells secreting TGF-b to recruit tTregs and induce iTregs (50). TGF-b
neutralization inhibits tumor progression, reduces ascites, and

enhances CD8+/Treg ratios (51), while TGFBR2 SNPs further

implicate this pathway in Treg modulation (52). Additional cytokines

contribute to Treg regulation: M2-TAMs secrete TGF-a, IL-6, and IL-

10 to maintain Tregs (53, 54), whereas Treg depletion enables IFN-a to

stimulate DC-derived IL-6 and antitumor immunity (55) (Figure 1).
3.2 Chemokines mediate Treg trafficking
and enrichment in the TME

Chemokines mediate Treg trafficking and enrichment in the

TME. The CCL28 and CCL22/CCL17–CCR4 signaling axes

selectively recruit Tregs into ovarian tumors (56, 57). In hypoxic

in vitro ovarian cancer models, CCL28 expression is induced,

promoting Treg migration via CCR10 engagement and

suppressing host antitumor responses (56). Similarly, TAMs in

ovarian tumors and ascites produce abundant CCL22, attracting

Tregs and suppressing immune surveillance, whereas CCL22

inhibitors reduce T cell migration (57). Additional chemokines

involved in Treg trafficking include CCR6/CCL20, CD11a, and

integrins such as CD49d/CD29 (58, 59). Although CCR6 is highly

expressed in hepatocellular and colorectal carcinomas and plays a

role in autoimmune diseases (60), its contribution in ovarian cancer
Frontiers in Immunology
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remains to be elucidated. Inhibition of the CXCR4–CXCL12 axis

diminishes intratumoral Tregs and facilitates their conversion to

helper T cells, enhancing intratumoral immune responses (61).

Idorn et al. (62), using flow cytometry, revealed that FOXP3- Treg

infiltration in ovarian cancer correlates with CCR4 expression and

enrichment of CCR4+, CCR5+, CXCR3+, and CXCR4+ T cells in

both ascitic fluid and peripheral blood, linking this to elevated

CCL22, CXCL9/10, and CXCL12 levels (Figure 1).
3.3 Immune checkpoints and surface
receptors

Tregs in ovarian cancer highly express PD-1, which upon ligand

binding suppresses immune activity. Tumor cells exploit this by

upregulating PD-1 on Tregs to facilitate immune tolerance. PD-1

promotes apoptosis of inflammatory T cells while inhibiting

apoptosis of Tregs, thereby increasing their proportion and

contributing to immune suppression (47, 63). Sato et al. (64) found

that CD45RA-FOXP3+ effector Tregs in ascites correlated with

elevated PD-1 expression on CD8+ T cells. Compared to primary

tumors, peritoneally metastasized ovarian cancers express higher PD-

L1 levels, potentially enhancing Treg activation and promoting tumor

progression (65). Tregs in ovarian cancer also overexpress TNFR2, a

potent immunosuppressive receptor, likely in response to elevated IL-

6 in the TME (66). High CCR4 expression in the TME facilitates

TNFR2+ Treg accumulation in tumors and ascites (67). Active

TNFR2 supports cell growth and modulates proliferation-apoptosis

balance (68). TNF signaling enhances FOXP3 expression,

maintaining the suppressive Treg phenotype (69). High CD73

expression in ovarian tumors correlates with poor prognosis. The

CD73/adenosine axis supports the accumulation of Tregs and M2

macrophages, with Tregs suppressing antitumor immunity via

CD73-dependent adenosine production (70). TIGIT, an inhibitory

checkpoint molecule, is upregulated on CD4+ Tregs in murine

ovarian cancer models. Anti-TIGIT antibody blockade reduces

Treg numbers and suppressive function without affecting CD4+,

CD8+, or NK cells, thereby improving survival (71). Recent clinical

trials on ovarian cancer, including JAVELIN Ovarian 100

(NCT02718417) and JAVELIN Ovarian 200 (NCT02580058),

demonstrated that the PD-L1 inhibitor avelumab, either as

monotherapy or in combination with chemotherapy, did not

significantly improve progression-free survival (PFS) or overall

survival (OS) compared to chemotherapy alone (72, 73). Similarly,

the KEYNOTE-100 trial evaluating pembrolizumab monotherapy

reported a low objective response rate (ORR) (approximately 9.9%)

and short duration of response (DOR) in patients with recurrent

ovarian cancer (74). These findings suggest that immune checkpoint

inhibitor monotherapy has limited efficacy in ovarian cancer, which

may be attributed to Treg-mediated immunosuppression within the

tumor microenvironment. These results underscore the need for

rational combination strategies that concurrently target Tregs and

stimulate effector immune responses to overcome the observed

clinical resistance to immunotherapy (Figure 1).
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3.4 Metabolic regulators

The aberrant metabolic milieu and metabolic byproducts in

tumors influence Treg biology. Tregs in ovarian cancer tissues

exhibit increased apoptosis, partially induced by adenosine, which

also mediates immunosuppression. Maj et al. (36) found that

apoptotic Tregs convert ATP to adenosine via CD39 and CD73,

releasing adenosine that activates A2A receptors and dampens

immune responses. Treg apoptosis is linked to their vulnerability to

reactive oxygen species and diminished NRF2 antioxidant signaling,

suggesting that oxidative stress-induced cell death enhances their

immunosuppressive capacity. IDO also modulates Tregs by

metabolizing tryptophan into kynurenine, which binds to aryl

hydrocarbon receptors (AHRs) on T cells, skewing the Th17/Treg

balance toward Tregs. Kynurenine also binds AHRs on TAMs,

creating a feedback loop that upregulates IDO. Ovarian cancer

progression is marked by a shift from Th17 dominance to Treg

dominance, implicating metabolic byproducts in local immune

modulation (75). Tryptophan deprivation induces AHR

overexpression, promoting kynurenine uptake, AHR pathway

activation, and Treg differentiation (76). Glucose metabolism also

influences Treg function. Xu et al. (77) reported that Tregs in ovarian
Frontiers in Immunology 04
cancer overexpress glucose transporter 1 (GLUT1) and hypoxia-

inducible factor 1-alpha (HIF-1a). TLR8 signaling suppresses mTOR

activity, thereby modulating glycolysis and suppressing Treg

functionality (Figure 1).
3.5 Transcription factors and epigenetic
modulators

FOXP3 is the master transcription factor of Tregs. Studies on

FOXP3 polymorphisms in ovarian cancer identified SNPs rs3761548A/

C and rs5902434del/ATT as associated with epithelial ovarian tumor

susceptibility and prognosis. The rs3761548A/C variant confers

increased susceptibility, while rs5902434del/ATT is an independent

prognostic factor (78). Epigenetic regulators also control Tregs. Class I

histone deacetylases (HDACs) maintain Treg function; inhibition of

HDACs suppresses Tregs, restores the CD8+/FOXP3+ Treg ratio, and

reduces ascites (79). N6-methyladenosine (m6A), a key mRNA

modification, regulates immunity via m6A reader proteins. TNF

signaling induces expression of YTHDF2 in Tregs, which accelerates

degradation of NF-kB repressors, thereby enhancing Treg activation

and suppressive function. Conditional YTHDF2 deletion in Tregs
FIGURE 1

TME-mediated induction of immunosuppressive Tregs in ovarian cancer.
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impairs their function, increases apoptosis, and limits tumor growth,

confirming the role of m6A regulation in tumor Tregs (80,

81) (Figure 1).
3.6 Cell-cell interactions

Tumor-associated DCs can promote Treg induction.

Dysfunctional DCs in ovarian tumors facilitate Treg conversion

(82). Conrad et al. (83) demonstrated that tumor-infiltrating Tregs

overexpress ICOS, whose expansion depends on interactions with

ICOS ligand on plasmacytoid DCs, promoting Treg proliferation

and suppressive function. Additionally, DCs can induce IDO

expression, facilitating Treg differentiation and T cell exhaustion

(84). TAMs recruit CCR4+ Tregs via CCL22 secretion, suppressing

T cell proliferation and enhancing immune evasion. Myeloid-

derived suppressor cells (MDSCs) promote iTreg differentiation

and tTreg expansion through CD40-CD40L, IFN-g, IL-10, and
TGF-b pathways (85–87). Cancer-associated fibroblasts (CAFs)

also contribute to immune suppression. Givel et al. (88) found

that the CAF-S1 subset in high-grade serous ovarian cancer

(HGSOC) is enriched in mesenchymal tumors and promotes Treg

chemotaxis, survival, and differentiation via a miR-141/miR-200a-

dependent CXCL12b mechanism.

Theodoraki et al. (89) showed that TLR3 agonists such as Sendai

virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U) activate IFN-a
and CXCL10 expression, enhancing T cell infiltration. These agonists

also stimulate MAVS signaling, inhibiting NF-kB and TNF-a-
dependent COX2 activation. The COX2/PGE2 pathway promotes

Treg infiltration by inducing IDO, IL-10, CCL22, and CXCL12.

Extracellular vesicles also regulate Tregs in ovarian cancer. TAM-

derived exosomes enriched in miR-29a-3p and miR-21-5p inhibit
Frontiers in Immunology 05
STAT3 in CD4+ T cells, promoting Treg differentiation and

expression of TGF-b and IL-10, while suppressing Th17

differentiation and TNF-a/IL-6 secretion (90) (Figure 1).
4 Ovarian cancer therapy targeting
Treg in the TME

4.1 Inhibiting Treg proliferation and
recruitment

Given the pivotal immunosuppressive role of Tregs in ovarian

cancer, targeted strategies to disrupt their function have emerged as

promising therapeutic approaches. While IL-2 demonstrates clinical

efficacy with response rates of 16-20% in cancer patients, its

therapeutic potential is limited by the paradoxical expansion of

CD4+CD25+FOXP3+ Tregs (91). To overcome this limitation, novel

agents have been developed, including Ontak, a fusion protein of IL-2

and diphtheria toxin, which selectively depletes Tregs through

inhibition of protein synthesis, and nemvaleukin alfa, an engineered

cytokine that preferentially activates CD8+ T cells and NK cells while

minimizing Treg expansion (NCT02799095) (92, 93). Alternative

strategies focus on blocking key Treg pathways, such as CTLA-4

inhibition with MDX-CTLA-4 which reduces CA125 levels, or CCR4

targeting with mAb2–3 that stimulates IFN-g while suppressing IL-2-
driven Treg proliferation (94, 95). Additionally, immunotherapeutic

approaches like the GVAX whole-cell vaccine enhance antitumor

immunity through GM-CSF-mediated CTL infiltration and Treg

reduction, demonstrating the potential of combinatorial strategies to

effectively modulate the immunosuppressive tumor microenvironment

in ovarian cancer (96).
TABLE 1 Therapeutic strategies targeting Tregs in ovarian cancer.

Therapeutic
approach

Target Effects on Tregs/TME Results

Cytokine Modulation IL-2Rb agonists (low-affinity)
Reduces Treg suppression while sparing
CD8+ T cells.

Improves CD8+/Treg ratio; delays tumor
growth in models.

Checkpoint Inhibition Anti-CTLA-4 (e.g., MDX-CTLA-4)
Depletes Tregs via ADCC; enhances
Teff activity.

Lowers CA125 levels in patients.

Chemokine Axis Blockade Anti-CCR4 (mAb2-3) Inhibits Treg recruitment; boosts IFN-g. Synergizes with PD-1 blockade.

Metabolic Interference IDO inhibitors (e.g., epacadostat)
Reverses kynurenine-mediated
Treg polarization.

Restores Th17/Treg balance; trials show
mixed efficacy.

Epigenetic Modulation HDAC inhibitors (entinostat)
Reduces FOXP3+ Treg stability; increases
CD8+/Treg ratio.

Decreases ascites and tumor burden in
preclinical models.

Combination Therapies Cyclophosphamide + BCG vaccine
Selectively depletes proliferating Tregs;
enhances CD8+ infiltration.

Improves response to immunotherapy.

Anti-Angiogenics Bevacizumab (anti-VEGF)
Reduces Treg recruitment;
normalizes vasculature.

Transiently elevates Teff populations.

TLR Agonists Poly-I:C (TLR3 agonist)
Induces IFN-a/CXCL10; suppresses COX2/
PGE2-driven Treg recruitment.

Enhances T cell infiltration; phase I/II
trials ongoing.
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4.2 Modulate Treg biosynthesis,
differentiation, or suppressive function

Cyclophosphamide, an alkylating agent that disrupts DNA

Treatment with MDX-CTLA-4 in ovarian cancer patients

replication in rapidly dividing cells, preferentially eliminates

highly proliferative Tregs in the tumor milieu at low doses,

thereby potentiating antitumor immunity (97). Combined use of

cyclophosphamide with intratumoral Bacillus Calmette–Guérin

(BCG) vaccination has been shown to diminish Treg frequencies

while enhancing CD8+ T cell infiltration (98). Other compounds,

including mitoxantrone, the glycolytic inhibitor 2-deoxy-D-glucose

(2-DG), and IDO inhibitors, similarly reduce Treg numbers and

impair their immunosuppressive activity (99–101). Recent findings

indicate that anionic liposomal delivery of Toll-like receptor (TLR)

antagonists in ovarian cancer leads to a reduction in Treg

accumulation, concurrent with elevated T cell infiltration and M1

macrophage polarization within the TME (102).
4.3 Inhibition of tumor angiogenesis

Another therapeutic axis centers on the inhibition of tumor

angiogenesis. Vascular endothelial growth factor (VEGF), often

overexpressed in the TME, has been implicated in the recruitment of

Tregs. Application of anti-VEGF monoclonal antibodies in ovarian

cancer has been associated with a reduction in circulating Tregs and a

concomitant rise in effector T cell populations (103). Programmed

death-1 (PD-1), an immunoinhibitory receptor, facilitates immune

escape in tumors (104). OX40, a co-stimulatory receptor expressed on

activated T cells and Tregs, belongs to the tumor necrosis factor

receptor superfamily and plays a crucial role in T cell activation and

expansion. Notably, combinatorial blockade of PD-1 and activation of

OX40 signaling induces a robust immunostimulatory response in

ovarian cancer murine models, characterized by elevated IFN-g levels
and diminished Treg infiltration (105). Furthermore, CCR4 is highly

expressed on Tregs, and chemokines secreted by tumor cells can attract

CCR4+ Tregs into the tumor niche (106). Consequently, targeting

CCR4 in clinical trials holds potential to provide a new and reliable

strategy for immunotherapeutic intervention in ovarian

cancer (Table 1).
5 Conclusion

Ovarian cancer remains a formidable challenge in oncology, with

its immunosuppressive tumor microenvironment playing a critical role

in disease progression and therapeutic resistance. Regulatory T cells are

key mediators of immune evasion, suppressing antitumor responses

through multiple mechanisms, including cytokine secretion, metabolic
Frontiers in Immunology 06
regulation, and immune checkpoint interactions. Despite advances in

immunotherapy, clinical trials targeting PD-1/PD-L1 in ovarian cancer

have shown limited efficacy, underscoring the need for novel strategies

that disrupt Treg-mediated immunosuppression. Emerging

approaches such as Treg depletion, inhibition of recruitment signals,

metabolic modulation, and combination therapies targeting immune

checkpoints hold promise for restoring antitumor immunity. Future

research should focus on identifying biomarkers for patient

stratification and optimizing combinatorial regimens that

simultaneously neutralize Treg suppression while enhancing effector

T cell function. Overcoming Treg-driven resistance will be crucial for

improving outcomes in ovarian cancer immunotherapy.
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