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Viral etiologies of cancers have been widely studied for tumorigenesis and in

recent years, widely recognized for their potential influence on immune

regulation and response to immune checkpoint blockade (ICB). Here, we

review the current understanding of how various oncogenic viruses are related

to tumor immunogenicity and the tumor immune microenvironment. The

present work also highlights the distinct features of these viral-driven cancers,

that can be largely prognostic for better patient survival and response to ICB. On

the other hand, there are also several commonalities in which these cancers

acquire resistance against conventional immunotherapy. Finally, we discuss our

perspectives to address the existing conundrums to gain clearer insights on how

the interplay between anti-viral and anti-tumor immunity can be exploited to

develop novel therapeutic interventions.
KEYWORDS
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tumor microenvironment (TME)
1 Introduction

Across different types of cancers, some of the key determinants of successful cancer

immune checkpoint blockade (ICB) therapy often include tumor immunogenicity and the

tumor microenvironment (TME) (1). Immunogenicity refers to the ability to induce

adaptive immune responses influenced by the presence of tumor-derived antigens, and

among these, neoantigens have gained increasing attention for its potential in enhancing

anti-tumor immunity (2, 3). Neoantigens are novel peptides arising from somatic

mutations such as single-nucleotide variants (SNVs), base insertions and deletions
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(INDELs) and gene fusions (4). Importantly, these unique peptides

are highly immunogenic as they are not present in normal cells and

thus are not subjected to central immune tolerance (5). A high

tumor mutational burden (TMB) is generally associated with

increased likelihood of generating immunogenic neoantigens,

which is well-recognized as a strong predictor for response to ICB

across cancer types (6–8). However, this relationship does not hold

true across all cancer types. Cancers such as the viral-driven Merkel

cell carcinoma (MCC) have low to moderate TMB yet reported to

have high objective response rates (ORRs) to ICB (1, 9–11). In

addition, the patient-specific nature of neoantigens results in a

variable pre-existing T cell landscape which may also influence the

eventual responses to ICBs (12). Characteristics of the T cell

receptor (TCR) repertoire, such as clonal diversity, expansion and

convergence may also serve as potential predictors of ICB treatment

outcomes (13). It is noteworthy that TCRs generally have a much

higher affinity for viral antigens than for tumor-related antigens

(14). This critical finding could explain the inadequate efficacies of

tumor antigen vaccines in priming T cells within the tumor-bearing

host while at the same time providing a strong motivation for

engineering TCR-based therapies for viral-associated antigens

in cancers.

At the same time, understanding how the immune landscape is

shaped within the tumor microenvironment (TME) plays a critical

role in guiding immune intervention and developing innovative

therapeutic strategies to target different tumor types. The

immunological state of the TME can be broadly classified as “hot”

or “cold”, which further modulates immunogenicity over the course

of tumor progression. “Hot” tumors are highly inflamed and usually

characterized by high infiltration of immune cells, particularly

cytotoxic T cells, and increased expression of inflammatory

markers such as IFN-g and TNF-a (15). Typically, “hot” tumors

are also associated with a higher TMB leading to elevated

neoantigen presentation and better responses to ICBs (16).

Moreover, certain cancers with “hot” TMEs can contain ectopic

lymphoid aggregates commonly known as tertiary lymphoid

structures (TLS) (17). These TLS are typically characterized by a

central B-cell zone surrounded by a T-cell rich region, along with

dendritic cells (DCs) and high endothelial venules (18). Depending

on its maturation state, TLS can also contain activated B cells

capable of differentiating into plasma cells that secrete high-affinity

antibodies, which can enhance the anti-tumor immune response

(19). In contrast, “cold” tumors are characterized by poor immune

infiltration, lower TMB and PD-L1 expression. A “cold” TME is

dominated by immunosuppressive cytokines such as IL-10 and

TGF‐b , rendering them more unresponsive to existing

immunotherapies (20). While this phenotype may vary across

different cancer types, “cold” tumors generally represent an

immune desert which do not respond well to ICBs. As such,

various strategies are being explored to alter the immunological

“temperature” of cold tumors and improve their response to

immunotherapies (21).

It is important to note that not all high TMB tumors are

immunogenic or “immune-hot”. Consequently, such associations

can only be applied to specific tumor types (22). Of interest, a recent
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meta-analysis reported cancers associated with HPV and HBV/

HCV can be prognostic for better overall survival and even higher

ORRs to ICBs (23). However, there is limited understanding on how

viral factors modulate anti-tumor responses within the tumor

immune landscape. As such, the present review discussed the

underpinning research to identify how oncogenic viral factors

play an integral role in influencing tumor immunogenicity and

TME. Here, we focused on several cancer types that show great

potential with ICB therapies and outlined common distinct traits

across viral-driven cancers that impact anti-tumor immunity

(Summarized in Figure 1). Ultimately, we deem that there is great

potential to advance the immune oncology field towards harnessing

anti-viral immunity across multiple types of viral-driven

solid tumors.
2 Merkel cell carcinoma as a unique
viral-driven neuroendocrine tumor

Merkel cell polyomavirus (MCPyV) has recently emerged as an

oncogenic virus, accounting for at least 80% of the Merkel cell

carcinoma (MCCs) cases worldwide. MCC is a rare and aggressive

type of skin cancer with an exponentially increasing incidence rate

between 2000 and 2013, highlighting the growing clinical

importance of this disease (24). MCC is divided into 2 distinct

molecular subtypes. Virus-negative MCC (MCPyV- MCC) is

characterized by a higher mutational burden, with most of them

resembling UV-induced mutations, while MCPyV+MCC expresses

primary oncogenic drivers small T (sT) and long T (LT) antigens

(25). TMB was reported to be higher in MCPyV- MCC tumors as

compared to MCPyV+ tumors (26). In fact, MCPyV-MCC tumors

can harbor more tumor neoantigens than cutaneous melanoma or

NSCLC (27). In a case study of a particular MCPyV-MCC patient,

the presence of neoantigen-specific Th1 cells were detected after

anti-PD-L1 therapy but intriguingly, no neoantigen-specific CD8 T

cells were detected (28).
2.1 Immunogenicity of viral associated
Merkel cell carcinoma does not correlate
with tumor mutational burden

The high immunogenicity of MCPyV+ MCC tumors could

perhaps be better explained by the presence of MCPyV antigens and

viral-reactive T cells in ICB responders. The presence of KLL-

(dominant epitope of the MCPyV common T-ag) specific

intratumoral T cells favored better disease-specific survival and

lower risk of metastatic disease (29). Frequencies of MCPyV-

specific CD8 T cells also correlated with T-Ag antibody titers

alongside increasing tumor burden (30, 31). Of interest, these

viral specific CD8 T cells also highly expressed both PD-1 and

TIM-3 which can be inhibited to improve T cell activation as

demonstrated in vitro (31). Moreover, a traceable increase in T

antigen-specific CD8 T cells was detected in the peripheral blood of

ICB responders, which was associated with improved progression-
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free survival. The authors also further demonstrated that these viral

reactive T cells can be expanded with robust killing capacity to

target MCC tumor cells in vitro (32, 33). Another study critically

uncovered that high baseline frequencies of circulating viral-specific

CD8 T cells, but not intratumoral CD8 T cells, was associated with

beneficial responses to ICBs, which may represent a potential

application as a predictive biomarker for immunotherapy.

Amongst MCPyV specific T cells, further CITE-seq (Cellular

Indexing of Transcriptomes and Epitopes by Sequencing) analysis

revealed intratumoral CD8 T cells to be terminally exhausted while

circulating CD8 T cells highly expressed TCF7, CD62L and LEF1,

resembling a more functional stem-like memory phenotype (34).

Notably, tumor regression was achieved in a case reported where

MCPyV-specific T cells were adoptively transferred (35).

Collectively, these findings highlighted the potential of using

other TCR-dependent therapies such as adoptive T cell therapy

and tumor vaccines to complement the existing success of ICBs in

treating MCCs.

Alongside the presence of these viral antigens, MCPyV+ MCC

can promote immune evasion via multiple mechanisms. Like many

other cancers, modulation in expression levels of MHC and other

molecules of the antigen presentation machinery (APM) are widely

implicated in the escape of immune surveillance in MCPyV+ MCC

(36). Ritter et al. demonstrated that APM genes are epigenetically

silenced by histone hypoacetylation, highlighting the potential use

of HDAC inhibitors as therapeutic primers for response to ICBs

(37). Likewise, the STING pathway (innate immune regulator

stimulator of IFN genes) was also revealed to be largely silenced
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in MCC, implicating the downregulation of NF-kB signaling. The

reactivation of STING could reconfigure the “cold” TME of MCC to

enhance immune infiltration and surveillance (38, 39).

Additionally, MCPyV sT was uncovered to interfere with type I

IFN signaling by either direct transcriptional repression or histone

modifications (40). Overall, it is evident that MCPyV can enhance

immunogenicity and at the same time, drive immune tolerance

within the TME of MCC.
2.2 Exploiting the favorable immune
landscape of MCPyV+ MCCs for
immunotherapy

Interestingly, MCC can be well-infiltrated with both effector and

central memory T cells (41). In fact, MCPyV positivity in MCC is

associated with greater infiltration of T cells and macrophages within

the tumor microenvironment, which consequently contributes to

favorable survival outcomes (42). Additionally, a gene signature

derived from a comprehensive characterization of pro-

inflammatory gd T cells was found to be a potential predictor of

improved survival and responses to ICBs (43). While most

immunological studies on MCC were heavily dependent on

phenotypic profiling of patient tissues, the engraftment of MCC

tumor fragments into immuno-deficient NSG mice has been

explored as a functional patient-derived xenograft (PDX) model.

Comparing the phenotype of tumor-infiltrating lymphocytes (TILs)

before engraftment to those 5 days post implantation into the mice,
FIGURE 1

Summary of the key similarities and differences of the tumor immune microenvironment between viral and non-viral cancers. Factors generally
more strongly associated with viral-associated cancers are depicted in yellow (Left), and those more strongly associated with non-viral cancers are
depicted in green (Right). Similarities are shown in pink. In brief, viral-specific CD8 T cells are robust to mount a satisfactory anti-tumor immune
response. Viral integration into host genome can influence immunogenicity and at the same time, potentially implicates the development of intrinsic
tumor immune evasive mechanisms. While the TME can be favorably conditioned by the presence of TLS, there is a functional dichotomy of
immune cells. In particular, tumor-associated macrophages (TAMs) and B cells can acquire either anti- or pro-tumoral immunoregulatory
phenotypes to shape the immune landscape. Schematic illustration created with BioRender.com.
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there is an increase in activated effector T cells and a reduction of

FOXP3+ regulatory T cells (Tregs). The selective depletion of CD25+

T cells intriguingly enhances tumor growth in vivo, suggesting the

presence of active T cell-mediated anti-tumor immunity that limited

the initial growth of the engraft in the PDX model (41). However,

there remains no evidence of Tregmediated impedance of anti-tumor

immunity within MCC. Likewise, there could be potential

involvement of humoral immunity in MCC. While antibody

reactivity to MCPyV capsid protein VP1 is seemingly ubiquitous

within the general population, the abundance of antibodies

recognizing MCPyV tumor-associated oncoproteins (T antigens)

was found to correlate with tumor burden. Importantly, the

increase in titers of such antibodies precedes recurrence and

metastatic progression, highlighting their potential as biomarkers

for clinical utility (30). Future studies should be focused on further

dissecting the understanding of B cells within MCC using

deep immune-profiling to provide potential insights on how

humoral immunity can be further exploited to improve

conventional therapies.
2.3 Future prospects for immunotherapy in
MCPyV+ MCC

Although ORRs reported with ICB treatment of MCPyV+MCC

is undeniably promising (44, 45), the direct interplay between

MCPyV and the host’s immune system is not clearly understood.

Moreover, treatment responses are greatly influenced by immune

evasion mechanisms and the composition of the TME (46). Hence,

further investigation into these factors is essential to uncover the

novel biological insights and translatable therapeutic options,

particularly for treatment-resistant patients. Interestingly, PD-1

expressed on MCC tumor cells was also demonstrated to be a

growth promoter driving mitochondrial respiration and tumor cell

proliferation, which can be reversed by conventional inhibition of

the PD-1/PD-L1 axis (47). Considering the rare demographics of

MCC, addressing further complex biological questions could be

impacted by the limited motivation of scientists and oncologists.

The fact that PD-L1 correlated with both MCPyV positivity and the

infiltration of TILs (48) regardless highlights the value of leveraging

MCC as a suitable model to further dissect new mechanisms

underlying the cross talk between anti-viral and anti-tumor

immunity in future studies.

At the same time, there are also some interests in developing

tumor vaccines to target MCPyV+ MCC, though the current

progress from such studies are largely preclinical. Early studies

from more than a decade ago have already demonstrated the

effectiveness of using DNA vaccines to generate LT-specific CD8 T

cell responses in syngeneic tumor mice models (49, 50). Truncated

LT can also be incorporated into monocyte-derived dendritic cells,

which act as antigen presenting cells for the stimulation of

autologous T cells (51). A more recent study further improvised a

fusion design that integrates LT to LAMP1 (lysosomal-associated

membrane protein 1), enhancing antigen presentation to potentiate

antigen-specific CD4 T cell responses and humoral responses in vivo
Frontiers in Immunology 04
(52). Likewise, there are similar studies to evaluate the efficacy of

DNA vaccines encoding sT, mounting antigen-specific CD8 T cell

responses (53). However, it should be emphasized that the majority

of these vaccine studies were heavily reliant on the overexpression of

T-ag in cutaneous B16F10 melanoma cells prior to inoculation into

immunocompetent mice. The use of alternative transgenic mouse

models for MCC has been recently developed, which should be

explored for future immunological studies (54). To delve deeper into

the TME for new discoveries, one can also start with interrogating

publicly available single cell sequencing of MCC tumors or perform

immune gene deconvolution within bulk transcriptomics datasets

(55, 56). With clear evidence of MCPyV-associated humoral

immunity in MCC (30), another plausible hypothesis could be the

potential involvement of B cells in the co-stimulation of T cells

within the tumor-bearing host. However, to further dive deeper into

understanding such immune regulation would require an

immunocompetent mouse model – one that is currently lacking in

the field.
3 Distinct viral-associated immune
landscapes in hepatocellular
carcinoma

Hepatocellular carcinoma (HCC) is the leading primary

malignancy of the liver and the third most common cause of

cancer-related mortality globally (57). 5-year survival is at a

dismal 10-20% despite treatment. It typically arises in the

background of chronic liver disease and cirrhosis. Risk factors of

HCC include chronic viral (HBV/HCV) hepatitis, aflatoxin

exposure, alcoholism, and metabolic syndrome, which features

metabolic dysfunction-associated steatotic liver disease (MASLD)

and metabolic dysfunction-associated steatohepatitis (MASH).

Globally, HBV is responsible for more than 50% of HCC cases,

especially in endemic regions such as Asia and sub-Saharan Africa

(58). Notably, MASLD/MASH accounts for half of the new HCC

cases in the US and, with the rollout of universal HBV vaccination,

this trend is expected to take predominance in both industrialized

and developing societies alike (59).
3.1 Etiology of HCC impacts
immunogenicity and immune responses in
HCC

HBV is a partially double-stranded DNA virus from the

Hepadnaviridae family. It integrates into the host genome and

expresses viral proteins such as HBsAg and HBx, contributing to

oncogenesis via TERT or MLL4 (60) and to the modulation of

immune surveillance (61). In contrast, HCV is a positive-sense

RNA virus from the Flaviviridae family that does not integrate but

causes HCC through sustained inflammation, fibrosis, and immune

perturbation (62). Both viruses can shape distinct immune

microenvironments, affecting tumor development and treatment
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response. As such, the immunogenicity of HCC can vary with its

underlying cause. In HBV-related HCC, the presence of viral

antigens, including HBsAg, HBcAg, and HBx, theoretically

provides targets for immune recognition of the tumor; but it is

often HBx that remains as the only HBV protein detectable in

tumor cells (63). Notably, HBx promotes tumor invasion and

metastas i s in a mechanism unrelated to diminished

immunogenicity (63). Virus-specific CD8+ T cells are detectable

in peripheral blood and TILs in HBV-HCC patients (64–66).

However, these T cells are often functionally exhausted due to

persistent antigen stimulation, high expression of inhibitory

receptors (e.g., PD-1, LAG-3), and metabolic dysregulation (67).

Similarly, another inhibitory receptor, TIGIT was also upregulated

by TILs and the co-inhibition with PD-1 could restore immune

activation ex vivo (68). Together, these evidence offers an

explanation towards the limited efficacy of HBV-specific T cell

therapy in HCC control (69–72). While HCV-related HCCs also

present viral antigens capable of stimulating T cell responses (73),

there is limited literature regarding the presence of HCV-specific T

cells in the TILs of HCV-HCC patients. MASLD-HCC, however, is

more reliant on neoantigen-driven immunity. Notably, TMB is

often higher in non-viral HCCs (especially MASLD-HCC),

potentially increasing the number of neoantigens presented by

tumor cells (74). Despite a higher TMB, MASLD-HCCs do not

uniformly exhibit robust immune activation, suggesting that

antigen presentation or immune cell priming may be impaired.
3.2 Influence of the tumor
microenvironment may play a larger role
than immunogenicity during treatment of
HCC

The composition and functional state of the TME in HCC are

shaped by its etiology and play a crucial role in determining prognosis

and response to immunotherapy. A detailed analysis of lymphoid and

myeloid populations reveals both conserved and aetiology-specific

features. In HBV-related HCC, the TME is enriched with

immunosuppressive populations, especially Tregs, tumor associated

macrophages (TAMs), and myeloid-derived suppressor cells

(MDSCs) (67, 75–77). Tregs can contribute to local

immunosuppression and correlated with worse prognosis in HCC

patients (78). CD8+ T cells are often excluded from the tumor core, a

phenomenon correlated with TGF-b signaling and the presence of

activated hepatic stellate cells (79). TAMs, on the other hand, are

highly heterogeneous in origin or phenotype in HBV-HCC but

typically possess immunomodulatory characteristics (80). In

addition, IL-10-expressing B cells, present in HBV-HCC, suppresses

CD4+ T cell activity (81). Lesser is understood about the tumor

microenvironment of HCV-HCC tumors. A prominent feature

uncovered is that chronic viral antigen stimulation drives CD8+ T

cell exhaustion with elevated PD-1 and TIM-3 expressions (67, 82).

These T cells often exhibit a downregulation of T cell activation

signatures compared to those in HBV-HCC, which correlates with a

reduced immune infiltration in HCV-HCC tumors (83). Of note, in
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chronic HCV-infected patients, NK cell expression of TIM-3 and

CD38 may be an early sign of impending HCC (84). While there are

studies that did not find differences in the proportion and phenotypes

of TILs in HCV-HCC compared to other etiologies (85, 86), further

investigations would be warranted, particularly in the understanding

of immunoregulatory cell types within the TME.

Unlike viral-driven HCCs, the immune landscape of MASLD-

HCC is markedly distinct. Early-stage MASLD is accompanied by

increased macrophage and lymphocyte infiltration, where these

macrophages are predominantly proinflammatory, engaging in

TNFa and IL-6-based acute inflammatory responses (87).

Importantly, a recent seminal paper showed that the activated

PD-1+ CD8+ T cells in MASH do direct damage and resulted in

impaired immune surveillance and HCC development (88).

Prophylactic anti-PD1 ICI treatment in MASH mice resulted in

increased, rather than decreased, HCC tumorigenesis (88). Back-to-

back published, it was also shown that these activated T cells exhibit

resident, effector, and exhausted characteristics, and perform killing

functions independent of antigen presentation, resulting in liver

damage commonly seen in MASH (89). In addition, there may be

dominance of TREM2+, MARCO+, and CD206+ macrophages

within tumor and peritumoral regions in MASLD-HCC (90).

These macrophages have high lipid, impaired phagocytosis, and

produce cytokines such as IL-6, IL-10 and TGF-b (91, 92).

Moreover, CD8 T cells are often sparse and localized to the

tumor margin, co-expressing PD-1 and CD39 with an exhausted

phenotype (88, 93). Interestingly, cancer-associated fibroblasts

(CAFs) are also enriched in inflammatory gene signatures and

produce IL-34, which may promote Treg infiltration and suppress

CD8+ T cell activity, especially in non-viral HCC (94, 95). These

findings have highlighted the importance of inflammation in

MASLD-HCC transition, and the distinct temporal roles of

different immune cell populations in the liver during disease

development and progression.
3.3 Understanding viral/non-viral immune
evasion mechanisms for future therapeutic
directions

Immune escape is central to HCC progression and varies

according to etiology. In HBV-related HCC, viral proteins like

HBx can downregulate MHC class I molecules and IFN-g
expression, impairing CD8+ T cell recognition and inducing their

apoptosis (96, 97). Silencing HBx with a 5’-triphosphate siRNA can

reduce the differentiation of Tregs and MDSCs (98). In HCV-related

HCC, immune evasion arises from T cell exhaustion and altered

antigen-presenting cell (APC) function (99). DCs in HCV-HCC also

exhibit impaired IL-12 production, diminishing effective T cell

priming (100). As such, engineering CAR-T cells and CAR-NK

cells against known HCC targets like GPC3 might represent

promising strategies to overcome these potential immune evasion

mechanisms within the TME (101–105). In MASLD-HCC, immune

suppression is contrastingly driven by metabolic dysfunction. Lipid

accumulation in hepatocytes and immune cells impairs
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immunogenicity (106). TAMs, (including peritumoral macrophages

and monocytes), upregulate PD-L1 (107, 108). IL-6 secreted by

TAMs contributes to STAT3 activation in tumor cells, reinforcing

immune resistance (109). Still, anti-PD-1/PD-L1 ICB therapies have

transformed the treatment landscape for advanced HCC (110, 111).

The profound clinical question is, therefore, what predicts the

response to ICBs. While a recent study shows that poor Atezo/Bev

response is associated with high glypican-3 (GPC3) or alpha-

fetoprotein (AFP) expression, no correlation was seen between the

expression of PD-L1 and Atezo/Bev response – contrary to the data

in non-small cell lung cancer or melanoma (112). Notably, etiology

may impact therapeutic outcomes. A recent meta-analysis of 3,739

patients shows that non-viral HCC does not seem to benefit, or

benefit less, from ICBs compared to HBV-HCC, yet the

heterogeneity of the trials is high (113, 114). This underscores the

need to dissect the immunological nuances across HCC etiologies.

Indeed, targeting the immunosuppressive TME also represents a

promising avenue for improving outcomes in HCC. Combination

therapies that integrate ICB with multi-kinase inhibitors (e.g.,

cabozantinib) have shown promise in clinical trials, especially for

the HBV-HCC subgroup (115, 116). Furthermore, several trials also

investigated the potential of an oncolytic viral vaccine, Pexa-Vec as

means to completement conventional HCC therapies (117–119).

These regimens may leverage immunogenic cell death and

inflammation to enhance ICB response. Myeloid-targeted therapies

such as anti-TREM2, anti-MARCO, and CSF1R inhibitors are also

under preclinical investigations, which may synergize with

conventional ICBs (120–122). However, inhibiting TREM2 or

depleting TREM2+ macrophages may have repercussions for their

protective functions particularly at the earlier stages of liver damage

(123–125). Similar dual protective-immunosuppressive functions

also hold in MARCO (126–129). Therefore, different studies are

disconnected in terms of the temporal progression of myeloid

functions, where the proinflammatory and anti-inflammatory roles

of myeloid cells may both promote HCC tumorigenesis and

progression, depending on the rather heterogeneous temporal

sequence of events. Importantly, new platforms including

organoids can incorporate autologous immune cells and stromal

components to offer powerful translational tools for biomarker

discovery and drug screening in HCC (130). Their ability to retain

patient-specific TME features, including lipid dysregulation and

immune cell crosstalk, makes them ideal for preclinical testing of

aetiology-specific immunotherapies (131). Future work should focus

on refining preclinical models, validating findings in clinical cohorts,

and integrating spatial and multi-omics approaches to fully map the

immunologic heterogeneity of HCC (132). Stratifying patients by

etiology and immune profile may enable more effective, personalized

immunotherapeutic interventions.
4 Role of human papillomaviruses in
carcinogenesis

Human papillomaviruses (HPVs) are a subclass of

papillomaviruses, which are non-enveloped, icosahedral, double-
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stranded DNA viruses (133, 134). Although over 200 strains of HPV

have now been identified, they can be generally stratified into high

and low-risk HPVs – representing two subgroups of HPVs that are

either overrepresented or rarely present in HPV-positive (HPV+)

cancers (135). Of note are HPV16 and HPV18, the two most

common high-risk strains of HPV in HPV+ cancers (136, 137).

While most HPV infections are eventually cleared, chronic

infections, particularly with high-risk strains, can result in the

development of a range of anogenital and oropharyngeal cancers

(OPCs). HPV is by far the leading cause of most anogenital cancers,

accounting for 40-95% of vulvar, vaginal, penile and anal cancers

and virtually all cervical cancers (137, 138). Furthermore, it

accounts for around 70% of all OPCs and around 20% of other

head and neck squamous cell carcinomas (HNSCCs) (139). HPV

viral oncogenes E6 and E7 have been shown to be necessary and

sufficient for cellular immortalization and transformation (140–

142). Briefly, E6 acts to degrade p53 by associating with the E6-

associating protein (E6-AP) – a canonical E3 ubiquitin ligase,

coordinating with E7, which blocks binding of key cell cycle

checkpoint proteins including pRb, p21 and p27, together causing

deregulated cell cycling and genomic instability. This instability has

been thought to be the main contributor to the slow kinetics of

carcinogenesis, through gradual accumulation of genomic

aberrations coupled with uncontrolled cell cycling.
4.1 HPV-associated immunogenicity may
vary with host genome integration

Our discussion here will focus on HNSCCs, in which responses

to immunotherapy have met much more variability. This is in

contrast to cervical cancers – which are consistently reported to

have high ORRs to ICBs (143–146). An important difference to note

is that while virtually all cervical cancers are viral associated, only a

subset of HNSCCs are HPV positive. HPV+ HNSCCs are generally

associated with better prognoses compared to HPV- HNSCC, even

after controlling for confounding factors such as tumor stage,

smoking status and alcohol usage (147–150). Furthermore, they

demonstrate enhanced radio and chemotherapy responsiveness

compared to HPV- HNSCC (150). However, there are mixed

results when comparing the efficacy of immune checkpoint

blockade (ICB) between HPV+ and HPV- HNSCC cases, with

some studies demonstrating enhanced response amongst HPV+

cases (149, 151, 152), and some demonstrating no difference (153).

This discrepancy might be attributed to how the levels of PD-1/PD-

L1 expression cannot be trivially disentangled from the level of

immune infiltrate. Notably, there are also contradicting reports of

PD-L1 and PD-1 levels and viral status, with some reporting

increased levels in HPV+ HNSCC (154–157) and others reporting

no correlation (151, 158–160). This is probably indicative of

heterogenous cohorts and implies that PD-L1 levels are also

influenced by other tumor intrinsic/extrinsic factors not related to

viral status. Nevertheless, the expression of PD-L1/PD-1 stratifies

responders to ICBs in HNSCC, which can be, in part, causally

linked to viral status and immune infiltration (153, 155, 161).
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It is important to note that in HPV+ cancers, the HPV genome

can exist as an episome, integrated into the host genome or a

mixture of both, although in most HPV+ cervical cancers (~80%),

they are stably integrated into the host genome (162). This aberrant

integration event often occurs within the coding region of the E2

gene, which codes for an important transcription factor that is

essential in the careful regulation of the expression of the oncogenic

proteins E6 and E7 (163, 164). Sustained E6 and E7 expression are

essentially required for the establishment and persistence of HPV+

cancers (165, 166) and consequently, the genomic landscapes of

HPV positive and negative cancers are vastly different (167–171).

There are contrasting studies on the impact of viral status on

mutational loads, with some demonstrating no difference (169),

and some showing greater mutational burden in HPV- HNSCCs

(172, 173). Despite this, the mutational landscape of HPV+ and

HPV- HNSCCs vary widely due to the origins of these

genomic aberrations.

Due to the presence of viral antigens and increased immune cell

infiltration into the tumors, HPV+ HNSCCs are generally thought

to be more immunogenic (174). Interestingly, the viral genome is

often maintained in episomes or a mixture of integrated and

episomal genomes in HPV+ HNSCCs (175, 176). A recent study

looking at integration events in HPV+ HNSCCs revealed that

integration-negative tumors correlated with an increased immune

signature, specifically T, B and NK cells compared with integration-

positive HPV+ HNSCCs (177). Furthermore, emerging evidence

has demonstrated constant expression of many early viral genes

when the genome is maintained episomally, drawing the link

between integration-negative HPV+ HNSCC and increased viral

antigenic presence to influence viral-specific immune responses

(178, 179). Integration events also play a role in modulating the

genomic landscape, gene expression profiles and even epigenetic

signatures (180) within HPV+ HNSCCs, driving differential

responses to various therapies and correlating with prognosis

(181). Such events presumably also contribute to divergent TMEs

between integration positive and negative HPV+ cancers (182). It is

noteworthy that HPV+ HNSCCs rarely exhibit oncogenic/tumor

suppressor driver mutations (183, 184), and instead are completely

dependent on the E6/E7 viral oncogenes (165, 166). In the context

of non-viral OPCs, tobacco and alcohol overuse are strong

contributors of overall TMB and immunogenicity (168, 173, 185).

Notably, immunogenicity and immune cell infiltration of HPV-

OPCs vary widely, depending on neoantigen load and driver

mutations accumulated (161, 186). Nevertheless, a higher TMB in

HNSCC, independent of viral status, is linked to superior

immunotherapy responses (161, 171, 187).
4.2 HPV-associated HNSCCs are largely
influenced by their microenvironment

Similar to HCCs, the role of the tumor microenvironment of

HNSCCs appears to be a stronger deterministic factor for ICB

responses rather than immunogenicity. A high degree of

intratumoral immune cell infiltrate may be a key factor in HPV+
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individuals’ improved response to conventional treatment and

favorable clinical outcome. In HNSCCs, the immune landscape of

HPV+ tumors had considerably more infiltrating IFNg+ CD8+ T

lymphocytes, DCs and more proinflammatory cytokines within the

milieu (157). Multiplex immunofluorescence coupled with

immune-related gene expression profiling revealed that compared

to HPV- OPCs, HPV+ lesions were more heavily infiltrated by CD8

+ T cells, with an increase in various subsets of T cells including

cytotoxic and exhausted cells. Spatially, these T cells appeared in

much closer proximity to tumor cells, CD163+ macrophages and

FOXP3+ Tregs (154). This overall suggests a stronger activation of

immune pathways and an inflamed TME. Additionally, Eberhardt

et al. identified CD8 T cell clones specific to a range of E proteins,

and further characterized a subset of HPV-specific PD-1+ stem-like

population capable of proliferating upon exposure to antigen in

vitro (188). This study presents evidence of the ability of these T cell

clones to maintain cytotoxic responses under persistent antigenic

exposure and ultimately, alludes to the amenability of HPV+

HNSCC to respond to PD-1 checkpoint blockade.

While the differentiation trajectories of CD8 T cells are

relatively similar between HPV+ and HPV- HNSCCs, there could

be viral-driven divergence in the polarization of CD4 T cells and B

cell subsets (189). Leveraging TCGA datasets, it was reported that

HPV positivity correlated with increased levels of CD4 T follicular

helper (Tfh) and Tregs (190). The CD4 T cell compartment in HPV

+ samples also showed skewing towards an inflammatory Th1

response. Furthermore, these T cells presented with a higher

expression of a range of exhaustion-related molecules including

LAG3, PD1, TIGIT and TIM3, which counterintuitively correlated

with improved survival, presumably suggesting an active T cell

response. Importantly, this correlation was not seen in HPV-

samples, indicating a viral-specific T cell response. This ‘T-cell-

inflamed’ phenotype points towards the potential of immune

checkpoint inhibitor blockade as a HPV+HNSCC-specific

treatment. While inflammation could drive immune tolerance

within the TME, it still remains unclear if Tregs are significantly

enriched in HPV+ HNSCC compared to HPV- HNSCC. It appears

that there is heterogeneity in localization of these Tregs, which some

studies observing an increased Treg infiltrate in the stromal

compartment (191), while others demonstrated enriched Treg

signatures within the intraepithelial compartment (192). Studies

have also reported correlation of a higher level of Treg infiltration

with better prognosis in certain HNSCC subsets (193, 194). While

Treg-dependent immune suppression is associated with poor

prognosis in some cancers, the paradoxical opposite observed in

HPV+ HNSCCs is thought to be reflective of an overall pro-

inflammatory immune microenvironment, promoting general

CD4/8 T cell infiltration (190). This immune ‘hot’ environment is

speculated to be a virus-dependent phenomenon.

Shifting focus to viral-driven humoral immunity differences,

while CD20+ B cells were enriched in HPV+ HNSCC, studies did

not find correlation between B cells and patient survival (192, 195).

However, the TME of HPV+ HNSCC is characterized by active

HPV-specific intertumoral B cell responses and antibody

production (196). While antibodies against viral proteins such as
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E2, E6 and E7 were detected, E2-specific responses appeared most

dominant, based off IgG titers. The authors also demonstrated the

preferential localization of these B cells (and antibody-producing

cells) to the tumor stroma, where they form germinal center-like

clusters indicative of an activated B cell phenotype. While the link

between HPV-specific antibodies and enhanced anti-tumor

immunity is unclear, studies have evidenced a correlation between

anti-HPV antibodies and survival benefit (197, 198). Another study

revealed that germinal center B cells were enriched in HPV+

HNSCC, while HPV- HNSCC had fewer total B cells and

presented in a non-germinal center state (189). Further TCGA

analysis also demonstrated enriched signatures of plasma and

memory B cells in HPV+ HNSCC, which correlated with higher

CXCL13 production from CD4+ T cells (199). This correlated with

better prognosis, indicating viral-specific mechanisms driving

preferential induction of TLS that presumably contributes to

enhanced antitumor responses as a peripheral consequence of

persistent HPV infections. Using a murine model of HPV+

HNSCC, Kim et al. demonstrated an expansion of memory B

cells, plasma cells and antigen-specific B cells upon radiotherapy

or PD-1 blockade. Furthermore, IgM and IgG serum levels were

elevated post PD-1 treatment in a cohort of HPV+ HNSCC patients

that showed positive clinical response, strongly suggesting that a

similar mechanism of B cell expansion correlated with better

response to PD-1 blockade (200). Collectively, the notion that B

cells may play a key role in the immune-mediated eradication of

HPV-driven HNSCCs is promising. It is therefore imperative to

gain a better mechanistic understanding of this link, perhaps

through established murine mouse models of HPV+ HNSCC,

informing of potential vaccination strategies to enhance B cell

responses against HPV.

Focusing on the innate lymphocyte compartment, particularly

NK cells due to their heavy involvement in early anti-tumor and

metastatic responses (201), a pan-cancer analysis uncovered

HNSCCs to have one of the highest mean CD56dim NK cell

infiltration particularly in HPV+ HNSCCs compared to HPV-

HNSCC (202, 203). This phenomenon could perhaps explain why

lower MHC class I expression is correlated with favorable prognosis

in HPV+ HNSCC but a poor prognosis in HPV- HNSCC (204,

205). NK cell activity is also modulated by the balance between

activating and inhibitory ligands present within the TME (206). Of

interest, HPV+ HNSCC trended towards a higher HLA-G

expression than HPV- samples (192). HLA-G is a known

inhibitory MHC molecule is recognized by KIRs and LILRB1/2

expressed on NK cells, which represents a possible NK inhibitory

axis that is differentially modulated based on viral status of HNSCC

(207). Interestingly, an intraepithelial ILC1-like NK state was also

described in HNSCC independent of HPV status. These CD49a

+CD103+ cells represented a tissue-resident (trNK) phenotype that

co-expressed key cytotoxic signatures indicative of its ability to kill

tumor cells (208). It would be of interest to dissect the impact of

viral presence on the tissue-residency status of NK cells, since these

trNKs represent a potentially immunomodulatory subset of NKs

(209) that maintain the activation status of various adaptive

immune cells, including CD4+ and CD8+ T cells (210).
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While HNSCCs possess favorable features of adaptive

immunity, the regulatory role of myeloid cells may play a critical

influence as well. Increased infiltration of CD68+ macrophages is

associated with poorer prognoses in HNSCC (211). Notably, there is

an increased density of CD68+ macrophages in transcriptionally

active HPV+ HNSCC compared to HPV- HNSCC patients. M1-like

macrophage inflammatory signatures were also enriched in HPV+

HNSCC alluding to unique viral-driven mechanisms of modulating

monocyte infiltration and macrophage polarization (190, 212).

Similarly, the functionality of DCs within the TME can be

influenced by viral-driven factors. Despite showing no correlation

between the abundance of infiltrating plasmacytoid dendritic cells

(pDCs) and viral status in HNSCC, pDCs have a reduced capacity

to produce IFNa upon toll-like receptor activation in HPV-negative

samples but remain uncompromised in HPV+ tumors. This effect

was dependent on differential levels of TNFa and IL-10 between

viral and non-viral cases (213). While no direct link between viral

status and TNFa levels has been discovered yet, we speculate that

this difference in cytokine milieu is attributed to the different forms

of immune evasion mechanisms that the HPV virus takes during

chronic infections and carcinogenesis of HNSCC compared to non-

viral-induced mechanisms.
4.3 Addressing immune evasion and
uncertainties in HPV-associated HNSCCs

There is clear evidence of viral-specific regulation within the

TME of HNSCC. HPV-specific mechanisms of immune evasion in

HNSCCs have been widely studied and previously discussed (214–

216). In general, HPV early proteins (particularly E5, E6, E7) are

central in the downregulation of host immune responses against the

virus. Some common nodes of immunomodulation include

modulation of the NF-kB pathway (217–220), inhibition of

inflammatory cytokine production (221, 222), interferon and

pattern recognition receptor signaling (217, 223, 224) and the

disruption of antigen presentation processes (225–230). These

mechanisms aim to downregulate the recognition and activation

of innate and adaptive immunity against the virus. It is important to

note that these evasion mechanisms are not exclusive to viruses

capable of inducing carcinogenesis. These processes are, however,

seen as factors that exacerbate carcinogenesis by inducing chronic

inflammation due to persistence of HPV infections, since

immunosurveillance is widely disrupted and viral clearance is

impaired (231). Further mechanistic studies are needed to

elucidate the relative contributions of viral evasion mechanisms to

the suppression of anti-tumor immunity in these HPV-

driven cancers.

Nevertheless, it appears that targeting these viral mechanisms

could, in theory, be complementary to immunotherapeutic options

(such as immune checkpoint blockade) against HPV+ cancers,

since eliminating the virus would target the main vulnerability of

these malignancies. Antigen-primed DCs were explored to mount

HPV-specific responses to complement CAR-T cell therapy (232).

Even in the absence of known antigens, such DC vaccines could also
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be prepared by the fusion of tumor and dendritic cells ex vivo (233).

Importantly, robust pre-clinical and clinical responses to TCR-T

cell therapy targeting HPV-E7 in HNSCC and cervical cancers were

observed (234, 235). Still, prophylactic vaccinations against HPV

strains is the current best option to prevent cervical cancers (236),

which are almost always caused by a persistent HPV infection.

While efforts are underway to determine the efficacy of therapeutic

HPV vaccines against HPV+ HNSCC (237–241), it is imperative to

better understand the consequences of chronic HPV infection on

immunomodulation within the TME to determine if targeting the

virus is a viable option as a therapeutic.
5 Epstein-Barr virus amongst the
earliest known viruses for
oncogenesis

Epstein-Barr virus (EBV), the first human tumorigenic virus

discovered in 1964 in Burkitt’s Lymphoma cells, has since been

implicated in various malignancies including epithelial cancers like

gastric cancers (GCs) and nasopharyngeal carcinomas (NPCs)

(242). Unlike the positive findings reported on HPV and HBV/

HCV-associated cancers, the presence of EBV may not necessarily

contribute to better OS or ORRs across EBV-driven cancers (23,

243). Our current understanding is that the involvement of EBV in

the modulation of the tumor immune landscape is much more

complex in contrast to other oncogenic viruses, which could explain

the highly variable therapeutic responses to ICBs as reported in

EBV-associated cancers.

Of which, EBVaGCs (EBV-associated gastric cancers) seem to

yield better clinical outcomes despite being a small minority of

EBV-driven cancers. EBVaGCs is a molecularly and clinically

distinct subtype of gastric cancer accounting for about 10% of

gastric cancers world-wide (244). It is largely driven by extensive

viral epigenetic modifications, mainly DNA hypermethylation,

unlike other gastric cancers, which are driven by mutational

burden or genomic instability such as high microsatellite (MSI) or

chromosomal instability (CI) (245). EBV promotes oncogenesis

through BART miRNAs and BARF1 (BamHI-A rightward frame

1a), inducing methylation and altering gene expression. EBVaGC is

not only characterized by high DNA hypermethylation but also

frequent PIK3CA mutations and overexpression of JAK2, PD-L1

and PD-L2 (246). Paradoxically, despite its immune-rich TME, it

exhibits reduced sensitivity to conventional chemotherapy

(docetaxel and 5-fluorouracil) (247), highlighting the necessity for

further investigation on its immunogenic profile and alternative

therapeutic strategies such as immunotherapeutics for better

patient outcomes.
5.1 EBV drives distinct immune profiles in
gastric and nasopharyngeal carcinomas

Like other viral-driven cancers, the immunogenicity of

EBVaGCs is also neither driven by mutational burden nor
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genomic instability. EBVaGCs were found to be mutually

exclusive from MSI-H GCs with high amplification of PD-L1

expression (248–251). Conflictingly, PD-L1 expression can be

either associated with both poor or better patient survival (250,

252, 253). While MSI-H tumors typically respond well to

conventional ICBs, a case study reported a late stage metastatic

EBV-GC patient that also showed beneficial response to PD-L1

blockade (avelumab). Of note, the patient’s tumor did not show

high mutational burden or any mismatch repair defect. The authors

then interrogated TCGA cohort showing that EBV-GC are

microsatellite stable with low mutational burden but are well

infiltrated by immune cells (254). Another study reported a

patient with EBVaGC that displayed durable complete response

to ICB, overcoming resistance to trastuzumab plus chemotherapy

(255). While MSI-H tumors are associated with B2M (beta-2

microglobulin) mutation, which is a form of acquired resistance

to immunotherapy, durable responses to ICBs can still be observed

in MSI-H tumors within EBV-negative GCs (256). Furthermore,

though not significant, a considerably high numbers of MSI-high

GCs were either negative for HLA-A/B/C (22/37 cases) or B2M (21/

37 cases) (257). Conversely, EBVaGCs highly express both MHCI

and MHCII molecules, which is likely a potential consequence of

being highly infiltrated by activated immune cells into the TME

(257–259). In fact, the expression of HLA-DR was shown to be

prognostic for better five-year overall survival (260). Importantly,

EBVaGC represents a distinct clinicopathological entity with low

incidence of lymph node invasion (249, 261). Following up by the

same authors, EBVaGC tumors were reported to be better

infiltrated with CD8 T cells and mature DCs (262). Both higher

infiltrates of CD8+ and FOXP3+ cells were also found to be

prognostic for better five-year overall survival (253). Likewise, the

TME of EBVaGCs can contain high density of DCs, and

interestingly, the maturation of these DCs can also be suppressed

by exosomes derived from EBVaGC tumor cells (263).

Unlike gastric cancers, a great majority of NPCs are EBV+,

which are also much more extensively studied given the

considerably higher occurrences particularly across Asian

countries (139, 264). Notably, United States was the second most

common study sites for immunotherapy trials of NPCs despite

much lower incidence rates across the world (243). Various EBV

encoded nuclear antigens (EBNAs) and latent membrane proteins

(LMPs) can be expressed in NPCs (265). Of which, EBNA1 can be

overexpressed in NPCs, associated with metastasis (266) and

immunosuppression within the TME (267). Mechanistically,

EBNA1 contributes to TGFb-mediated Treg formation and the

production of Treg chemoattractants, CCL20 and CXCL12 (267,

268). Even though EBNA1 can be considered an EBV antigen, it is

poorly immunogenic in cancer (269). Several other EBV-derived

molecules were also found to play an integral role in tumor immune

escape in NPCs. Like EBVaGCs, reports revealed mutations and

downregulation of MHCI and MHCII molecules in EBVaNPCs

(270, 271). Another EBV-encoded protein, BNLF2a, also inhibits

TAP (transporter associated with antigen processing) to reduce

antigen presentation and evade EBV-specific CD8 T cells (272). At

the epigenetic level, LMP2A mediates hypermethylation of the
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HLA-ABC promoter. It was further demonstrated that the use of 5’-

azacytidine as a demethylation agent was able to restore the

expression of HLA-ABC in epithelial-origin tumor cell lines in

vitro (273). In addition, EBV-encoded microRNAs (miRNAs) have

profound immune suppressive effects against viral-specific T cells

through means of downregulating of TAP1, TAP2 and HLA-ABC

(274). Likewise, these EBV miRNAs also suppress the

differentiation of naïve CD4 T cells into Th1 cells and the

subsequent release of pro-inflammatory cytokines (275). Other

non-coding RNAs such as circular RNAs (circRNAs) could also

be involved in the immune modulation of the TME. EBV-encoded

circBART2.2 was demonstrated to upregulate PD-L1 in NPC by

promoting RIG-I signaling and the activation of IRF3 and NF-kB,

causing T cell suppression (276).
5.2 Roles of tertiary lymphoid structures
and B cells within the TME of NPCs

NPCs can be a promising target for ICBs considering the likely

formation of TLS within the TME. Distinct TLS formation has been

profiled in EBVaNPC, identifying a unique population of CXCL13-

producing CD4+ T cells which can contribute to the recruitment of

B cells and the maturation of TLS (277). Importantly, only B and

plasma cells correlated with tumor mutational load in NPCs (278).

Furthermore, in a recent study by Helmink et al., the enriched

presence of B cells within TLS correlated with better outcomes in

patients treated with ICB (279). While TLS can be common within

NPC tumors, EBV-encoded LMP1 can suppress the maturation of

antibody secreting cells and germinal center B cells. At the same

time, LMP1-expressing B cells can act as regulatory B cells with high

expression of IDO-1 (indoleamine 2,3-dioxygenase 1) (280). NPC-

derived LMP1 was found to be non-immunogenic, in contrast to B

cell-derived LMP1 which is capable of eliciting immune rejection in

vivo (281, 282). Nevertheless, there is a rationale for combining ICB

with strategies that promote TLS development. The presence of

memory B cells and plasma cells may contribute to both T cell

activation and antigen presentation, amplifying the local anti-tumor

immunity through carefully coordinated B-T cell interactions.
5.3 Promising prospects in targeting EBV-
driven cancers with immunotherapy

Satisfactory responses to ICBs have been reported in metastatic

NPCs (243, 283, 284). From an experimental perspective, perhaps

the way forward is to study immune responses to novel treatments

such as EBV-targeted cell therapies and cancer vaccines. A case

report highlighted the potential synergy of ICBs and the adoptive

transfer of EBV-specific T cells resulting in the patient showing

complete resolution of metastatic disease without any signs of

relapse. More interestingly, the combinatory treatment resulted in

the emergence of novel T cell clonotypes alongside the maintenance

of dominant clones, indicating potential epitope spreading and TCR

diversification (285). It was also demonstrated that the use of
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CRISPR/Cas9 to delete PD-1 could enhance in vitro and in vivo

killing of GCs by cytotoxic T lymphocytes (CTLs) specific for the

viral antigen LMP2A (latent membrane protein 2A) (251). Prior

immunization with BARF1, an EBV antigen presented on tumor

cells, may represent a potential tumor vaccine target, eliciting both

humoral and T cell-mediated immune responses in vivo (286).

Additionally, the targeting of alternative immune checkpoints such

as TIM-3 and LAG-3 on tumor-specific CTL clones can further

enhance eradication of tumor cells as demonstrated in GCs (287).

Alternatively, one could also consider exploiting the fact that

EBV-infected targets are highly susceptible to NK cell-mediated

killing (288, 289). NK cells incubated in EBV seropositive serum

were demonstrated to be highly activated in vitro, suggesting an

interplay of the humoral immunity or other upregulated cytokine

factors within the viral-infected host (290). Adoptive transfer of NK

cells in combination with anti-PD1 therapy also showed promising

efficacy in a GC xenograft model (291). Furthermore, mesothelin-

targeting CAR-NK92 cells were demonstrated to specifically

eradicate GCs both in vitro and in vivo (292). Still, it is well

known that adoptive NK cell therapies in general do not

penetrate well into solid tumors (293, 294). It may perhaps be

more effective to reinvigorate intratumoral NK cells within the

TME, but our current understanding of tumor-infiltrating NK cells

in GCs and NPCs are limited. The upregulation of EBV-encoded

BZLF1 (BamHI Z fragment leftward open reading frame 1) during

the early lytic cycle sensitizes viral-infected cells to NK cell-

mediating killing by the upregulation of NKG2D ligands.

However, such BZLF1-dependent sensitization could be

counteracted by BHRF1, a viral homologue for BCL-2 acting as a

potent anti-apoptotic protein also known to drive chemoresistance

in EBV-associated cancers (295, 296). Apart from BHRF1-

conferred resistance, other immune evasion pathways were

characterized particularly in EBVaNPC. EBV-encoded microRNA

BART7 (miR-BART7) indirectly represses the expression of

NKG2D ligand, MIC-A (major histocompatibility complex class I

chain-related peptide A) to desensitize NPC tumors from NK cell-

mediated killing (297). The EBV gene, BCRF1, also encodes an IL-

10 homologue that was demonstrated to impair NK cell and CD4 T

cell activity (272). Another study reported lower infiltrates of

granzyme B-positive NK cells in EBVaNPCs and further

demonstrated that LMP2A upregulates F3 (Coagulation factor

III), which in turn triggers platelet aggregation that suppresses

NK cell cytotoxicity (298). Despite EBVaGCs being less extensively

studied than NPCs, an immune deconvolution on the TCGA

dataset for bulk GC tumor transcriptomics data putatively

uncovered EBVaGCs to have higher infiltration of NK cells and T

cells, but unexpectedly not B cells, as compared to EBV-negative

GCs. Compared to both adjacent normal and EBV-negative tissues,

EBVaGCs expressed higher levels of CD155 (encoding PVR) which

is a ligand for either inhibitory receptors (TIGIT and CD96) or

activating receptor, DNAM-1 (299, 300). Thus, future studies can

focus on characterizing the immune profile of intratumoral NK cells

to evaluate the potential of existing anti-TIGIT blockade as an

alternative ICB (301, 302), acting to potently reinvigorate NK cell

activity by enhancing PVR-DNAM1 binding.
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Looking forward, one can also leverage on the wealth of publicly

accessible NPC datasets to study novel cellular interactions that may

play a critical role within the tumor immune landscape. Large

datasets can be interrogated using immune deconvolution

approaches such as CIBERSORT to uncover representative TME

features that are prognostic to patient survival (303, 304). Single cell

transcriptomics also revealed a unique population of Clec9a+ DCs,

though its functions and relevance in NPCs remained unelucidated

(278). In addition, the use of the CellPhoneDb algorithm further

revealed putative cell-cell interactions that is unique between LMP+

NPC tumor cells and immune cells, driven by the chemokine

CX3CL1 (305, 306). Contrastingly, there are lesser data resources

available to understand EBVaGC. One can explore the use of a

transplantable strain of EBVaGC known as “KT” in a humanized

mice xenograft (307). Taken together, there are indeed several EBV-

derived molecules that are of druggable potential but yet, a research

gap remains to address if these targets can be feasibly combined with
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ICBs to yield better therapeutic responses in the clinics. We also

render that EBVaNPCs may seem to appear more immune-tolerant

for the fact that they are much more well-studied than EBVaGCs,

which are of much lower incidence rates. Although not yet elucidated,

it is highly plausible that EBV-driven mechanisms of immune

evasion could occur in EBVaGCs as similarly observed in NPCs.
6 Concluding remarks

In general, it appears that cancers of viral etiologies tend not to

rely on tumor mutational burden or neo/tumor antigens to prime

immune responses. Evidently in these viral-driven cancers, ICB

treatments are widely evaluated in the clinics while viral-associated

immunity can be exploited in various forms of tumor vaccines or

adoptive cell therapies (Summarized in Table 1). Taken together, we

should agree here that there is substantial knowledge to exploit
TABLE 1 Non-exhaustive examples highlighted for various immunotherapies targeting viral-associated cancers.

Cancer type Virus In clinics Experimental

Merkel Cell
Carcinoma (MCC)

MCPyV • Phase 2 clinical trial with Pembrolizumab (44)
• Pembrolizumab on CITN-09/Keynote-017 trial (33)
• Meta-analysis for PD-1/PD-L1 treatments in MCC patients

(45)
• A case study reporting adoptive transfer of polyomavirus-

specific T cells (35)

• In vitro expansion of MCPyV-specific T cells and
demonstrated cytotoxicity (45)

• Use of HDAC inhibitors to enhance antigen
presentation (37)

• STING agonism to enhance cytokine production and T
cell immunity in vitro (38)

• DNA vaccines targeting large T/small T antigen
(49, 50, 53)

• MCPyV-LT antigen-primed dendritic cells as potential
DC vaccine (51)

Hepatocellular
Carcinoma (HCC)

HBV,
HCV

• Phase 3 clinical trials involving Atezolizumab (110, 115)
• Phase 3 clinical trial for Tremelimumab + Durvalumab (111)
• Phase 3 clinical trial for Lenvatinib + Pembrolizumab (116)
• Clinical trials using oncolytic virus, Pexa-Vec (117–119)
• Case reports for HbsAg-specific TCR T cell therapy (71, 72)
• Phase 1 clinical trial for patients receiving short-lived HBV-

specific T cell therapy (70)

• HBx silencing with siRNA enhances activity of CD8 T
cells and NK cells (98)

• Anti-TREM2 mAb targets macrophages and improves
responsiveness to anti-PD-1 in mice (120, 121)

• GPC3-targeting CAR T cell therapies in HCC
(101–103)

• GPC3-targeted CAR NK therapy (104, 105)
• Co-blockade of TIGIT/PD-1 restores ex-vivo functions

of CD8 TILs in HCC (68)

HPV-associated Cancers
(Cervical, HNSCC)

HPV16,
HPV18

• Clinical trials involving Pembrolizumab (143, 144)
• Clinical trials involving Nivolumab (145, 146)
• Clinical studies involving ADXS11-001 (Vaccine targeting

HPV-E7 antigen) (237, 239–241)
• Phase 1 clinical trial for TCR T cell therapy targeting HPV-E7

in cervical cancer and HNSCCs (234)

• Adoptive NK cell transfers in vitro and HNSCC
xenografts (208)

• In vitro efficacy of CD70-targeting CAR T cells in
HNSCCs (308)

• Dendritic cell-tumor cell fusion as a DC vaccine
against murine SCC in vivo (233)

• In vivo efficacy HPV-E7 targeted TCR-T cell therapy
in cervical cancer (235)

• Combination of CAR T cells and HPV-E7 primed DCs
targeting cervical cancer (232)

EBV-Associated Cancers
(NPC, EBVaGC)

EBV • Cross-sectional analysis of NPC patients involving immune
checkpoint inhibitors and cell therapies (243)

• Phase 2 multicenter consortium of NPC patients receiving
Nivolumab (283)

• Phase 2 clinical trial for EBV-NPC patients receiving a
combination of Nivolumab and Ipilimumab (284)

• Case report of an NPC patient receiving adoptive transfer of
EBV-specific T cells and Nivolumab (285)

• Case report of benefit from avelumab despite low TMB in
EBVaGC (254)

• DNA vaccine targeting BARF1 in vivo (286)
• CRISPR-mediated deletion of PD-1 in LMP2A-specific

T cells targeting EBVaGC (251)
• Combination of anti-PD-1 and adoptive NK cell

transfer targeting GC in vivo (291)
• Efficacy of mesothelin-specific CAR-NK92 cells

demonstrated in xenograft models of GCs (292)
• Combinatory targeting TIM-3/LAG-3/TIGIT as

alternative immune checkpoint in vitro (287)
• Inhibition of F3-mediated platelet aggregation

reinvigorates NK cell activity in NPC and
EBVaGCs (298)
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viral-associated immunogenicity and the highly dynamic TME for

translation into direct applications within the oncology space.

Moreover, the utilization of artificial intelligence (AI) has enabled

precise prediction of ICB response (309), tumor progression or

recurrence (132, 310), as well as immunogenic neoantigens (311,

312) for novel immunotherapies such as neoantigen vaccines. With

a multi-omics, AI-powered analysis of the TME heterogeneity

(313), it is hoped that immune signatures of different viral-

associated cancers can be further delineated, ultimately improving

therapeutic efficacy and patient outcomes with precision immuno-

oncology. To conclude, we envision that clinicians can recognize

and leverage these factors as powerful biomarkers for patients’

responses to ICBs, and at the same time, inspire future science to

revisit rare cancers such as MCPyV+MCCs and EBVaGCs for more

novel and critical discoveries to improve conventional ICBs.
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